首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 198 毫秒
1.
聚苹果酸的发酵培养条件优化   总被引:3,自引:0,他引:3  
对出芽短梗霉(Aureobasidium pullulans)BS02发酵制备生物降解材料聚苹果酸的摇瓶发酵条件进行研究,确定了出芽短梗霉发酵制备聚苹果酸的摇瓶培养条件。由实验结果可知:优化的培养基(g/L)为葡萄糖120.0、丁二酸铵3.0、丁二酸2.0、MnSO4.H2O 0.005、MgSO4.7H2O 0.1,另外每升发酵液加玉米浆0.5 mL,CaCO350 g/L,培养条件为pH4.0~4.5、24℃、500 mL摇瓶装发酵液100 mL、摇床转速220 r/min,在最优条件下,聚苹果酸产量可达到30 g/L。  相似文献   

2.
对海洋真菌Xylariasp.(No.2508)生产xyloketa]B的摇瓶发酵过程进行了初步优化。结果表明,Xylariasp.(No.2508)在培养120h时xyloketalB产量最高,当培养168h后菌体进入衰亡期且xyloketalB迅速降解,因此Xylariasp.(No.2508)生产xyloketalB的最适发酵周期为120h;Xylariasp.(No.2508)合成xyloketalB的过程及用乙酸乙酯萃取xyloketalB的过程对pH非常敏感,其中最适xyloketalB生产的发酵液初始pH为5.7,利用乙酸乙酯萃取xyloketalB时的发酵液最适pH为3。0;最适接种量为10%(v/v);接种前发酵液中加入10g/L的大孔树脂XAD-16可以降低某些代谢产物对xyloketalB合成的抑制作用,从而使产量提高2倍左右,而菌体进入稳定期以后加入大孔树脂XAD-16对产物产量没有影响。  相似文献   

3.
实验确定了Lacobacillus delbrueckii subsp.lactis BME5-18M接种的最佳种龄为24h。以氨水取代传统的中和剂碳酸钙中和发酵生成的乳酸、调控发酵液的pH,考察了不同pH值对菌体生长和产酸的影响,确定了菌种生长和产酸的较适pH值为6.5。考察了底物流加速度对菌种生长和产酸的影响,对间歇和流加发酵时菌体的生长量和产酸量进行了动力学关联。在较适pH值6.5和较佳流加速度25mL/h条件下,乳酸的产量可达到136.8g/L,产率为1.71g/(L.h)。  相似文献   

4.
【背景】出芽短梗霉可发酵葡萄糖生成聚苹果酸,但存在转化率和转化效率低等瓶颈,阻碍其实现商业化生产。【目的】通过优化发酵培养条件,提高出芽短梗霉的聚苹果酸产量、糖酸转化率和生产强度。【方法】采用单因素试验优化适宜出芽短梗霉BK-10菌株产生聚苹果酸的培养条件,通过Plackett-Burman法对培养基组分筛选显著性影响因素,并对其培养基中无机盐进行正交试验优化,最后进行5 L发酵罐验证。【结果】最优培养基配方和培养条件:100 g/L葡萄糖,1.5 g/L尿素,0.20 g/L KH_2PO_4,0.20 g/L ZnSO_4,0.05 g/L MgSO_4,0.75 g/L KCl,30 g/L CaCO_3,0.01%吐温-80,发酵温度26°C,250 mL摇瓶装液量50 mL。【结论】通过优化,聚苹果酸的糖酸转化率达到0.71 g/g,生产强度达到0.89 g/(L·h),较优化前分别提高了18.33%和71.15%,为发酵葡萄糖合成聚苹果酸进而生产L-苹果酸工艺的工业化生产奠定经济性基础。  相似文献   

5.
红曲多糖液态发酵工艺条件的优化   总被引:2,自引:0,他引:2  
实验研究红曲多糖的液态发酵条件,得出优化后红曲菌ZKOA发酵工艺条件:蔗糖40g/L,酵母粉4.5g/L,KH2PO4·3H2O3.5∥L.MgSO40.4g/L,植物油2mL/L,接种量8%,种龄30h,发酵液起始pH5.0,发酵时间90h,在此条件下,摇瓶和中试发酵罐中的粗多糖质量浓度分别为7.6g/L和7.34g/L。  相似文献   

6.
MM工程菌的大规模发酵培养工艺研究   总被引:5,自引:0,他引:5  
首先在50L发酵罐上研究了MM工程菌的发酵培养工艺。确定了接种量4%,搅拌转速300~500r/min,pH7,2和糖补加速率0.066 g.(L·mjn)-1等参数,活菌数可达每毫升211亿。以氧传递系数为放大准则可成功地将该工艺在200L倒产发酵罐上再现,说明该工艺具有可放大性。  相似文献   

7.
环境条件及摇瓶补糖策略对谷胱甘肽发酵的影响   总被引:19,自引:1,他引:18  
研究了酵母摇瓶发酵中pH、装液量、初糖浓度、碳氮磷比和补糖方式对谷胱甘肽(GSH)发酵的影响。结果表明,GSH发酵适宜的初始pH和装液量分别为6 0和500ml锥形瓶内装液量60m1。初糖浓度对GSH发酵有较大的影响,超过12g/l,的初糖浓度将减少胞内GSH含量。应用计算得出的一种以控制比生长速率为目的的摇瓶补糖策略,在总糖浓度为26.2g/L下发酵12h,最终细胞浓度和胞内GSH含量分别达到8.78g/L和13.6mg/g,发酵液内GSH总量达到119.4mg/L,细胞对糖产率达到0.335g/g。  相似文献   

8.
乳酸菌用于苹果酒酿造中 ,可以触发苹果酸 乳酸发酵 ,通过分解苹果酸 ,产生乳酸 ,并引起其他有机酸的变化而使苹果酒的口感质量得以改善。供试的 3个乳酸菌种中 ,L3由于具有较高的苹果酸分解速率 ,发酵的苹果酒感官质量优良而成为苹果酒苹果酸 乳酸发酵的优良菌种。pH、温度、二氧化硫、酒度通过影响乳酸菌的活动而对苹果酸 乳酸发酵产生一定的影响  相似文献   

9.
对芦竹内生真菌F0238的细胞生长和代谢产曲酸量进行了代谢调控。结果表明,F0238生长及产曲酸的营养和环境条件为:PDA培养基,8%淀粉为碳源,0.2%蛋白胨为N源,发酵温度28℃,初始pH为6.5,发酵时间5d/(120h),装液量80mL/500mL三角瓶。在摇瓶试验的基础上,对该菌发酵过程作了初步放大试验(10L全自动发酵罐),得到F0238发酵过程的动态曲线。动态曲线反映了在一个发酵周期内,发酵液的pH值、DO值及残糖的降低趋势和生物量与抗菌产物量的上升趋势。  相似文献   

10.
目的基于质量源于设计(quality by design, QbD)理念,确定伤寒沙门菌(Salmonella typhi)中试规模(200 L)的培养工艺。方法运用QbD通过分析伤寒沙门菌培养工艺核心指标、培养过程,以确定对核心指标可能产生影响的因素。采用单因素试验对pH控制值、溶氧控制值和补料方式等进行考察,通过中试规模(20 L)培养工艺桥接和中试规模(200 L)培养工艺的放大,分析中试规模培养条件及发酵液中伤寒Vi荚膜多糖含量等。结果连续培养了6批次200 L规模发酵液,培养8 h时发酵液中伤寒Vi荚膜多糖含量均≥43.33μg/mL(期望值);培养条件:(1) pH控制值为7.2;(2)溶氧控制值为35%;(3)补料方式为培养初始补加葡萄糖溶液使其质量浓度为3 g/L,培养过程中补加葡萄糖溶液使其质量浓度保持在1~3 g/L。结论通过分析200 L规模培养过程监测数据,成功在中试规模(200 L)完成伤寒沙门菌培养工艺放大。  相似文献   

11.
 Eight strains of the genus Aureobasidium obtained from culture collections were tested for their capability to produce poly(β-L-malic acid) (PMA). Four of the tested strains showed positive results. The most productive strain, A. pullulans CBS 591.75, was used to study the production of PMA in stirred-tank reactors. It was found that PMA was mainly produced in the late exponential phase, and the production related positively to glucose consumption. At the beginning of the fermentation the pH increased from 4.0 to about 7.0; subsequently the pH decreased and remained stable at around 3.0–3.5 for several days. Temperatures higher than 25°C were detrimental to PMA production and cell growth. PMA production and cell growth at 20°C and 25°C exhibited no significant differences. PMA production and cell growth were studied under pH-controlled fermentation (at pH 2.0, 4.0, 5.5). The highest PMA production occurred at pH 4.0. PMA production was reduced at pH 2.0 although quite reasonable cell growth occurred at this pH value. Under optimized conditions 9.8 g PMA/l was produced during 9 days of fermentation in the stirred-tank reactors with an overall yield of 0.11 g PMA/g glucose. A procedure for the isolation of PMA and its separation from the other components of the fermentation broth was developed. The isolated PMA was characterized by 1H and 13C-NMR spectroscopy as well as by infrared absorption spectroscopy. Gel-permeation chromatography revealed a relative molecular mass of approximately 3000–5000 by comparison with polyethylene glycol standards. Received: 13 February 1996/Received revision: 25 April 1996/Accepted: 1 May 1996  相似文献   

12.
The amount of lactocin S activity in a growing culture depends on the growth stage of the bacteria, the pH of the medium, the presence of ethanol, and the aeration of the culture. We observed the highest levels of bacteriocin activity in the early stationary growth phase of cultures at 30 deg C. When Lactobacillus sake L45 was grown in a fermentor at pH 5, it produced 2,000 to 3,000 bacteriocin units per ml, which represented an 8- to 10-fold increase in bacteriocin production compared with production during batch culture fermentation. Less than 10% of this level of bacteriocin activity was observed during fermentation at pH 6.0. When 1% ethanol was included in the growth medium, a two- to fourfold increase in the bacteriocin yield was observed. Aerating the culture during growth almost completely eliminated the production of active bacteriocin. Our results also showed that lactocin S-mediated killing of target cells depended on the pH of the culture. The pH had to be less than 6 in order to obtain a bactericidal effect with lactocin S-sensitive cells. At pH values greater than 6, lactocin S had no apparent effect on sensitive cells.  相似文献   

13.
Malic acid is a dicarboxylic acid widely used in the food industry and also a potential C4 platform chemical that can be produced from biomass. However, microbial fermentation for direct malic acid production is limited by low product yield, titer, and productivity due to end‐product inhibition. In this work, a novel process for malic acid production from polymalic acid (PMA) fermentation followed by acid hydrolysis was developed. First, a PMA‐producing Aureobasidium pullulans strain ZX‐10 was screened and isolated. This microbe produced PMA as the major fermentation product at a high‐titer equivalent to 87.6 g/L of malic acid and high‐productivity of 0.61 g/L h in free‐cell fermentation in a stirred‐tank bioreactor. Fed‐batch fermentations with cells immobilized in a fibrous‐bed bioreactor (FBB) achieved the highest product titer of 144.2 g/L and productivity of 0.74 g/L h. The fermentation produced PMA was purified by adsorption with IRA‐900 anion‐exchange resins, achieving a ~100% purity and a high recovery rate of 84%. Pure malic acid was then produced from PMA by hydrolysis with 2 M sulfuric acid at 85°C, which followed the first‐order reaction kinetics. This process provides an efficient and economical way for PMA and malic acid production, and is promising for industrial application. Biotechnol. Bioeng. 2013; 110: 2105–2113. © 2013 Wiley Periodicals, Inc.  相似文献   

14.
This study describes several essential factors for direct and effective lactic acid production from food wastes by Lactobacillus manihotivorans LMG18011, and optimum conditions for simultaneous saccharification and fermentation using soluble starch and food wastes as substrates. The productivity was found to be affected by three factors: (1) initial pH, which influenced amylase production for saccharification of starch, (2) culture pH control which influenced selective production of L(+)-lactic acid, and (3) manganese concentration in medium which improved in production rate and yield of lactic acid. The optimum initial pH was 5.0-5.5, and the fermentation pH for the direct and effective fermentation from starchy substrate was 5.0 based on the yield of L(+)-lactic acid. Under these conditions, 19.5 g L(+)-lactic acid was produced from 200 g food wastes by L. manihotivorans LMG18011. Furthermore, the addition of manganese stimulated the direct fermentation significantly, and enabled complete bioconversion within 100 h.  相似文献   

15.
Kojic acid production byAspergillus flavus strain S44-1 using sucrose as a carbon source was carried out in a 250-mL shake flask and a 2-L stirred tank fermenter. For comparison, production of kojic acid using glucose, fructose and its mixture was also carried out. Kojic acid production in shake flask fermentation was 25.8 g/L using glucose as the sole carbon source, 23.6 g/L with sucrose, and 6.4 g/L from fructose. Reduced kojic acid production (13.5 g/L) was observed when a combination of glucose and fructose was used as a carbon source. The highest production of kojic acid (40.2 g/L) was obtained from 150 g/L sucrose in a 2 L fermenter, while the lowest kojic acid production (10.3 g/L) was seen in fermentation using fructose as the sole carbon source. The experimental data from batch fermentation and resuspended cell system was analysed in order to form the basis for a kinetic model of the process. An unstructured model based on logistic and Luedeking-Piret equations was found suitable to describe the growth, substrate consumption, and efficiency of kojic acid production byA. flavus in batch fermentation using sucrose. From this model, it was found that kojic acid production byA. flavus was not a growth-associated process. Fermentation without pH control (from an initial culture pH of 3.0) showed higher kojic acid production than single-phase pH-controlled fermentation (pH 2.5, 2.75, and 3.0).  相似文献   

16.
以树干毕赤酵母和酿酒酵母为发酵菌株,酸性蒸汽爆破玉米秸秆预水解液和纯糖模拟液为C源,采用固定化酵母细胞的方法,研究了酸爆玉米秸秆预水解液初始pH、N源种类及其浓度、3种发酵模式对树干毕赤酵母戊糖发酵的影响。结果表明:玉米秸秆预水解液适合发酵的初始pH范围为6.0~7.0;1.0 g/L的(NH4)2SO4作为N源,在40 g/L葡萄糖和25 g/L木糖培养基中发酵24 h,糖利用率达到99.47%,乙醇质量浓度为24.72 g/L,优于尿素和蛋白胨作为N源;3种模式的发酵体系中,以游离树干毕赤酵母和固定化酿酒酵母发酵性能最好,糖利用率和乙醇得率分别为99.43%和96.39%。  相似文献   

17.
Fermentation of sulfuric acid treated corn fiber hydrolysate (SACFH) inhibited cell growth and butanol production (1.7 ± 0.2 g/L acetone butanol ethanol or ABE) by Clostridium beijerinckii BA101. Treatment of SACFH with XAD-4 resin removed some of the inhibitors resulting in the production of 9.3 ± 0.5 g/L ABE and a yield of 0.39 ± 0.015. Fermentation of enzyme treated corn fiber hydrolysate (ETCFH) did not reveal any cell inhibition and resulted in the production of 8.6 ± 1.0 g/L ABE and used 24.6 g/L total sugars. ABE production from fermentation of 25 g/L glucose and 25 g/L xylose was 9.9 ± 0.4 and 9.6 ± 0.4 g/L, respectively, suggesting that the culture was able to utilize xylose as efficiently as glucose. Production of only 9.3 ± 0.5 g/L ABE (compared with 17.7 g/L ABE from fermentation of 55 g/L glucose-control) from the XAD-4 treated SACFH suggested that some fermentation inhibitors may still be present following treatment. It is suggested that inhibitory components be completely removed from the SACFH prior to fermentation with C. beijerinckii BA101. In our fermentations, an ABE yield ranging from 0.35 to 0.39 was obtained, which is higher than reported by the other investigators.  相似文献   

18.
Fluorescent pseudomonad R81, a root-colonizing bacterium, is a potential bio-inoculant due to its plant growth promoting characteristics. It produces hydroxamate-type siderophore which is involved in disease suppression in plants. Genetic algorithm (GA) methodology was applied for the optimization of siderophore and cell mass production simultaneously in shake flask experiments. A total of 10 medium components were optimized within 80 experiments. A high siderophore concentration of 1.9 g/L and cell mass concentration of 2.8 g/L was achieved in the optimized medium. The application of GA was well suited for determination of optimum concentration levels of the medium constituents for a bi-objective function. GA was able to increase the siderophore concentration by 2.8-fold when compared to RSM-based optimization. Further, the batch fermentation of the GA-optimized medium in 14 L bioreactor without pH control produced 2.2 g/L siderophore in 36 h, the highest reported so far. GA was also successfully used to estimate the kinetic parameters of the mathematical models of the batch fermentation.  相似文献   

19.
Xylose, the second most abundant sugar in lignocellulosic materials, is not efficiently utilized in current lignocellulose biotransformation processes, such as cellulosic ethanol production. The bioconversion of xylose to value-added products, such as pullulan, is an alternative strategy for efficient lignocellulose biotransformation. This paper reports the production of pullulan from xylose and hemicellulose hydrolysate by Aureobasidium pullulans AY82. The effects of DL-dithiothreitol (DTT) and pH on pullulan production from xylose were also intensively investigated. A maximal increase of 17.55% of pullulan production was observed in flasks added with 1.0 mM DTT. Batch fermentations with controlled pH were also conducted, and the optimal pH for cell growth and pullulan synthesis was 3.0 and 5.0, respectively. Based on these findings, two-stage pH control fermentations were performed, in which the pH of the medium was first adjusted to 3.0 for cell growth, and then changed to 5.0 for pullulan synthesis. However, the earlier the pH was changed to 5.0, the more pullulan was produced. Fermentation with controlled pH of 5.0 acquired the highest pullulan production. Under the optimized conditions (with the addition of 1.0 mM DTT and controlled pH of 5.0), the maximal pullulan production obtained from xylose was 17.63 g/L. A. pullulans AY82 also readily fermented hemicellulose hydrolysate under these optimized conditions, but with lower pullulan production (12.65 g/L). Fourier transform infrared spectroscopy and high-performance liquid chromatography showed that the structure of the pullulan obtained in this study was identical to that of the pullulan standard.  相似文献   

20.
选择乙酸根、糠醛、5-羟甲基糠醛、苯酚、香草酸和丁香醛等6种典型木质纤维素酸解副产物,考察它们对D-乳酸生产菌Sporolactobacillus sp.Y2-8生长及发酵的影响。实验结果表明:酚类物质抑制作用最强烈,0.25 g/L丁香醛已经完全抑制了菌体的生长和D-乳酸的发酵;苯酚和香草酸在低浓度(≤1.0 g/L)时抑制作用较小,但质量浓度达到3 g/L时对D-乳酸产量的抑制率分别为99%和70%;3 g/L糠醛和5-羟甲基糠醛对产物的抑制率分别为60%与20%,抑制作用小于酚类;乙酸根的影响最小,10 g/L的乙酸钠对菌体的生长和发酵几乎无抑制作用;当抑制物混合时,存在着相互促进作用,抑制作用更强烈。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号