首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microbial theophylline oxidase (ThOx) is a redox enzyme catalysing 8-hydroxylation of theophylline to form 1,3-dimethyluric acid. In this work, ThOx has been characterized as a fragile haem-containing protein complex composed of several non-covalently bound dynamic domains with molecular weights of around 60 and 210 kDa, and capable of formation of 1.5 MDa assemblies as well. The rate of theophylline oxidation by ThOx with the non-physiological electron acceptor ferricyanide was 0.17 s?1, approaching that with cytochrome c, 0.33 s?1. The apparent catalytic constant depended on the electron acceptor concentration. At concentrations lower than 0.2 mM the reaction did not fit the Michaelis–Menten scheme, and some non-catalytic processes dominated in the overall reaction. The kinetics of ThOx catalysis were also studied at electrodes modified with self-assembled monolayers (SAM) of hydroxyl- and amine-terminated alkanethiols. Different compositions of the SAM provide different orientations of ThOx on these layers. Depending on the orientation of ThOx onto the SAM-modified electrodes, the heterogeneous electron transfer (ET) constant, ks, which characterizes the ET reaction between the electrodes and the haem of ThOx (Eo/ of 87 mV (NHE)) was 0.4 s?1 and 3.2 s?1. Only the low-ET-rate orientation appeared to be productive for the electrocatalytic function of ThOx, giving a reaction similar to that with ferricyanide and cytochrome c. The apparent efficiency of ThOx bioelectrocatalysis in the absence of mediators was substantially lower than that mediated by ferricyanide or cytochrome c. This lower efficiency is consistent with a correspondingly lower amount of ThOx being in direct ET contact with the electrodes and thus involved in electrocatalysis.  相似文献   

2.
Direct electron transfer (DET) was shown between the heme containing enzyme theophylline oxidase (ThO) and the surface of both graphite and gold electrodes. As proof on graphite a steady state current for theophylline was recorded using the electrode modified with adsorbed ThO. The electrode showed a Michaelis-Menten-like response to theophylline with a detection limit of 0.2 mM and a Michaelis-Menten constant equal to 3.2 mM. These initial results open up a possibility for the development of reagentless third generation biosensor based on heterogeneous DET between ThO and an electrode. On gold DET between ThO and the surface of aldrithiol modified gold was studied with spectroelectrochemical measurements. DET was observed for soluble ThO as a change of its spectrum in a gold capillary responding to a change in the applied potential. It was shown that the redox conversion of the heme domain of the enzyme is directly (mediatorlessly) driven by the potential applied at the gold electrode. The measurements enabled an estimation of the formal potential (E degrees ') of the redox process equal to -275 +/- 50 mV versus Ag|AgClsat at pH 7.0. The experimentally determined number of the electrons involved in this heterogeneous electron transfer process was estimated to be equal to 0.53. The low precision in determination of the E degrees ' and the value of the number of electrons lower than one indicate that kinetic restrictions disturbed the evaluation of the true thermodynamic values from relatively fast spectroelectrochemical measurements.  相似文献   

3.
A simple, selective and sensitive method for the detection of NADH and ethanol is presented. Self-assembled monolayers (SAMs) of mercaptopyrimidine (MPM) and their derivatives, thiocytosine (TC) and 4,6-diamino-2-mercaptopyrimidine (DMP) on gold (Au) electrode are used for the voltammetric detection of NADH and ethanol in neutral aqueous solution. A decrease of 200-300 mV in the overpotential associated with an observable increase in the peak current was obtained for the oxidation of NADH on MPM and TC monolayer-modified electrodes without any redox mediator. The facilitated electron transfer for the oxidation of NADH at the TC monolayer is ascribed to the existence of stable cationic p-quinonoid form of TC. The electrode modified with DMP monolayer could not exhibit stable response for NADH owing to the fouling of electrode surface. The MPM and TC monolayer-modified electrodes show high selectivity and excellent sensitivity (MPM: 0.633+/-0.005 microA cm(-2) microM(-1); TC: 0.658+/-0.008 microA cm(-2) microM(-1)) towards NADH with detection limit (3sigma) of 2.5 and 0.5 microM, respectively. Presence of large excess of ascorbate (AA) does not interfere the detection of NADH and the monolayer-modified electrode shows individual voltammetric peaks for AA and NADH. Voltammetric sensing of ethanol using alcohol dehydrogenase on MPM and TC monolayer-modified electrode is successfully demonstrated and these electrode can detect as low as 0.5 mM ethanol in neutral pH. The sensitivity of the MPM and TC monolayer-modified electrodes toward ethanol was found to be 3.24+/-0.03 and 3.435+/-0.04 microA cm(-2) mM(-1), respectively.  相似文献   

4.
Direct electrochemistry for catalase (CAT) embedded in the liquid crystal film of didodecyldimethylammonium bromide (DDAB) was investigated at pyrolytic graphite (PG) electrode by voltammetric methods. The reduction reaction involved the redox couple in CAT, i.e. FeIII/FeII couple. The electron transfer between the incorporated CAT and PG electrode was found to be greatly enhanced by DDAB. The heterogeneous electron transfer rate constant k(s) was fitted as 3.0 +/- 0.4 s(-1) using the nonlinear regression analysis of the square wave voltammograms at a series of pulse heights. The pH dependence of the formal potential for CAT in DDAB film was 57 mV/pH, which suggested one-proton-transfer together with a one-electron reaction. Visible absorption and reflectance-absorbance infrared (RAIR) spectra inferred the similar heme environment of CAT in DDAB film to its native status. Circular dichroism (CD) results indicated DDAB affected slightly on the second structure of CAT.  相似文献   

5.
Direct and indirect electron transfer between electrodes and redox proteins   总被引:4,自引:0,他引:4  
The direct electrochemistry of redox proteins has been achieved at a variety of electrodes, including modified gold, pyrolytic graphite and metal oxides. Careful design of electrode surfaces and electrolyte conditions are required for the attainment of rapid and reversible protein-electrode interaction. The electron transfer reactions of more complex systems, such as redox enzymes, are now being examined. The 'well-behaved' electrochemistry of redox proteins can be usefully exploited by coupling the electrode reaction to enzymes for which the redox proteins act as cofactors. In systems where direct electron transfer is very slow, small electron carriers, or mediators, may be employed to enhance the rate of electron exchange with the electrode. The organometallic compound ferrocene and its derivatives have proved particularly effective in this role. A new generation of electrochemical biosensors employs ferrocene derivatives as mediators.  相似文献   

6.
This work reports on the direct electrochemistry of the Desulfovibrio gigas aldehyde oxidoreductase (DgAOR), a molybdenum enzyme of the xanthine oxidase family that contains three redox-active cofactors: two [2Fe-2S] centers and a molybdopterin cytosine dinucleotide cofactor. The voltammetric behavior of the enzyme was analyzed at gold and carbon (pyrolytic graphite and glassy carbon) electrodes. Two different strategies were used: one with the molecules confined to the electrode surface and a second with DgAOR in solution. In all of the cases studied, electron transfer took place, although different redox reactions were responsible for the voltammetric signal. From a thorough analysis of the voltammetric responses and the structural properties of the molecular surface of DgAOR, the redox reaction at the carbon electrodes could be assigned to the reduction of the more exposed iron cluster, [2Fe-2S] II, whereas reduction of the molybdopterin cofactor occurs at the gold electrode. Voltammetric results in the presence of aldehydes are also reported and discussed.  相似文献   

7.
Direct electrochemistry and bioelectrocatalysis of a newly discovered C-19 steroid 1α-hydroxylase (CYP260A1) from the myxobacterium Sorangium cellulosum So ce56 were investigated. CYP260A1 was immobilized on screen-printed graphite electrodes (SPE) modified with gold nanoparticles, stabilized by didodecyldimethylammonium bromide (SPE/DDAB/Au). Cyclic voltammograms in argon-saturated substrate free 0.1 M potassium phosphate buffer, pH 7.4, and in enzyme-substrate complex with androstenedione demonstrated a redox processes with a single redox couple of E0′ of −299 ± 16 mV and −297.5 ± 21 mV (vs. Ag/AgCl), respectively. CYP260A1 exhibited an electrocatalytic activity detected by an increase of the reduction current in the presence of dissolved oxygen and upon addition of the substrate (androstenedione) in the air-saturated buffer. The catalytic current of the enzyme correlated with substrate concentration in the electrochemical system and this dependence can be described by electrochemical Michaelis-Menten model. The products of CYP260A1-depended electrolysis at controlled working electrode potential of androstenedione were analyzed by mass-spectrometry. MS analysis revealed a mono-hydroxylated product of CYP260A1-dependent electrocatalytic reaction towards androstenedione.  相似文献   

8.
The reduction potentials of an engineered CuA azurin in its native and thermally denatured states have been determined using cyclic voltammetry and spectrochemical titrations. Using a 4,4-dipyridyl disulfide modified gold electrode, the reduction potentials of native and thermally denatured CuA azurin are the same within the experimental error (422±5 and 425±5 mV vs. NHE, respectively, in 50 mM ammonium acetate buffer, pH 5.1, 300 mM NaCl, 25 °C), indicating that the potential is that of a nonnative state. In contrast, using a didodecyldimethylammonium bromide (DDAB) film-pyrolytic graphite edge (PGE) electrode, the reduction potentials of native and thermally denatured CuA azurin have been determined to be 271±7 mV (50 mM ammonium acetate buffer, pH 5.1, 4 °C) and 420±1 mV (50 mM ammonium acetate buffer, pH 5.1, 25 °C), respectively. Spectroscopic redox titration using [Ru(NH3)5Py]2+ resulted in a reduction potential (254±4 mV) (50 mM ammonium acetate buffer, pH 5.1, 4 °C) similar to the value obtained using the DDAB film-PGE electrochemical method. Complete reoxidation of [Ru(NH3)5Py]2+-reduced CuA azurin is also consistent with the conclusion that this spectrochemical titration method using [Ru(NH3)5Py]2+ measures the reduction potential of native CuA azurin.Abbreviations CcO cytochrome c oxidase - N2OR nitrous oxide reductase - ET electron transfer - CV cyclic voltammetry - NHE normal hydrogen electrode - DDAB didodecyldimethylammonium bromide - PGE pyrolytic graphite edge  相似文献   

9.
Intramolecular and intermolecular direct (unmediated) electron transfer was studied by electrochemical techniques in a flavohemoprotein cytochrome P450 BM3 (CYP102A1 from Bacillius megaterium) and between cytochromes b 5 and c. P450 BM3 was immobilized on a screen printed graphite electrode modified with a biocompatible nanocomposite material based on didodecyldimethylammonium bromide (DDAB) and gold nanoparticles. Analytical characteristics of SPG/DDAB/Au/P450 BM3 electrodes were studied with cyclic voltammetry and square wave voltammetry. The electron transport chain in P450 BM3 immobilized on the nanostructured electrode is: electrode → FAD → FMN → heme; i.e., electron transfer takes place inside the cytochrome, in evidence of functional interaction between its diflavin and heme domains. The effects of substrate (lauric acid) or inhibitor (metyrapone or imidazole) binding on the electro-chemical parameters of P450 BM3 were assessed. Electrochemical analysis has also demonstrated intermolecular electron transfer between electrode-immobilized and soluble cytochromes properly differing in redox potentials.  相似文献   

10.
The structure of cytochrome c552 (Cyt-c552) from Thermus thermophilus shows many differences to other c-type cytochromes. The rich lysine domain close to the heme does not exist in this cytochrome, allowing us to postulate that the interaction with its redox partner must be different to the cytochrome c/cytochrome c oxidase interaction. We report a study of Cyt-c552 adsorbed on self-assembled monolayers (SAMs) of functionalized alkanethiols used to mimic the chemical properties of its redox partner (ba3-oxydase). Hydrophilic (-COOH), polar (-OH), hydrophobic (-CH3), and mixed (-OH/-CH3) SAMs grafted on roughened silver electrodes were characterized by X-ray photoelectron spectroscopy. Surface enhanced resonance Raman spectroscopy (SERRS) was employed to determine the structure and the redox properties (E degrees and number of transferred electron) of the heme of Cyt-c552 adsorbed on roughened silver electrodes coated by the different SAMs. The surface that most closely models the environment of the ba3-oxidase is a mixed SAM formed by 50% polar [Ag-(CH2)5-CH2OH] and 50% hydrophobic [Ag-(CH2)5-CH3] alkanethiols. Only the native form B1(6cLS) of Cyt-c552 is detected by SERRS when the protein is adsorbed on such a surface that promotes a protein orientation favorable for the electron transfer (number of transferred electron = 1). We shall discuss the differences and similarities of the electron-transfer mechanism of Cyt-c552 compared to cyt-c.  相似文献   

11.
This paper describes an amperometric enzyme electrode for the rapid determination of theophylline in serum. The method is based on the catalysed oxidation of theophylline by the haem-containing enzyme theophylline oxidase. Results are presented for two approaches. First, ferrocene monocarboxylic acid was used as a mediator. The second-order rate constant was 1.1 x 10(3) 1 mol-1 s-1. Secondly, the organic conducting salt NMP.TCNQ was used to construct enzyme electrodes. These electrodes were employed for the rapid (60 s) measurement of theophylline in serum at a working potential of +100 mV versus Ag/AgCl. Linear calibration curves were obtained over the clinically relevant range (y = 0.13x + 0.22, n = 8). Caffeine, theobromine and 3-methylxanthine at levels up to 100 mg l-1 do not interfere and 1-methylxanthine shows cross-reactivity at concentrations greater than 50 mg l-1.  相似文献   

12.
13.
The demonstration of a labeless immunosensor for the detection of pathogenic bacteria using screen printed gold electrodes (SPGEs) and a potassium hexacyanoferrate(II) redox probe is reported. Gold electrodes were produced using screen printing and the gold surfaces were modified by a thiol based self assembled monolayer (SAM) to facilitate antibody immobilisation. SAMs based on the use of thioctic acid (TA), mercaptopropionic acid (MPA) and mercaptoundecanoic acid (MUA) were evaluated. Following antibody immobilisation via the optimum SAM, the redox behaviour and diffusion co-efficient (D) of the potassium hexacyanoferrate(II) probe was monitored in the absence and presence of analyte. In the presence of analyte, a change in the apparent diffusion co-efficient of the redox probe was observed, attributable to impedance of the diffusion of redox electrons to the electrode surface due to the formation of the antibody-bacteria immunocomplex. No change in the diffusion co-efficient was observed when a non-specific antibody (mouse IgG) was immobilised and antigen added. The system has been demonstrated with Listeria monocytogenes and Bacillus cereus.  相似文献   

14.
Electrodes modified with passivating organic layers have been shown to, here and previously, to exhibit good Faradaic electrochemistry upon attachment of gold nanoparticles (AuNP). Due to their low background capacitances these constructs have good potential in electrochemical sensing. Herein is reported the application of these electrode constructs for impedance based immunosensing. The immunosensor was constructed by modifying a gold electrode with 4-thiophenol (4-TP) passivating layers by diazonium salt chemistry. Subsequently, the attachment of AuNP and then a biotin derivative as a model epitope to detect anti-biotin IgG were carried out. The interfacial properties of the modified electrodes were evaluated in the presence of Fe(CN)(6)(4-/3-) redox couple as a probe by cyclic voltammetry and electrochemical impedance spectroscopy. The impedance change, due to the specific immuno-interaction at the immunosensor surface was utilized to detect anti-biotin IgG. The increase in charge-transfer resistance (R(ct)) was linearly proportional to the concentration of anti-biotin IgG in the range of 5-500 ng mL(-1), with a detection limit of 5 ng mL(-1).  相似文献   

15.
We synthesized a kind of gold nanoparticle protected by a synthetic lipid (didodecyldimethylammonium bromide, DDAB). With the help of these gold nanoparticles, hemoglobin can exhibit a direct electron transfer (DET) reaction. The formal potential locates at -169 mV vs. Ag/AgCl. Spectral data indicated the hemoglobin on the electrode was not denatured. The lipid-protected gold nanoparticles were very stable (for at least 8 months). Their average diameter is 6.42 nm. It is the first time to use monolayer-protected nanoparticles to realize the direct electrochemistry of protein.  相似文献   

16.
Biocompatible nanosized polyamidoamine (PAMAM) dendrimer films provided a suitable microenvironment for heme proteins to transfer electron directly with underlying pyrolytic graphite (PG) electrodes. Hemoglobin (Hb), myoglobin (Mb), horseradish peroxidase (HRP), and catalase (Cat) incorporated in PAMAM films exhibited a pair of well-defined, quasi-reversible cyclic voltammetric peaks, respectively, characteristic of the protein heme Fe(III)/Fe(II) redox couples. While Hb-, Mb-, and HRP-PAMAM films showed the cyclic voltammetry (CV) peaks at about -0.34 V vs. saturated calomel electrode (SCE) in pH 7.0 buffers, Cat-PAMAM films displayed the peak pair at a more negative potential of -0.47 V. The protein-PAMAM films demonstrated a surface-confined or thin-layer voltammetric behavior. The electrochemical parameters such as apparent heterogeneous electron transfer rate constants (k(s)) and formal potentials (E (degrees ')) were estimated by square wave voltammetry with nonlinear regression analysis. UV-vis and IR spectroscopy showed that the proteins retained their near-native secondary structures in PAMAM films. Oxygen, hydrogen peroxide, and nitrite were catalytically reduced at the protein-PAMAM film electrodes, showing the potential applicability of the films as the new type of biosensors or bioreactors based on direct electrochemistry of the proteins.  相似文献   

17.
The influence of theophylline and theobromine on cellular respiration and on membrane transport of calcium has been studied in isolated rat liver mitochondria, using oxygen and Ca2+ selective electrodes. A linear decrease in respiratory coefficients, in the total amount and rate of "extra" oxygen consumption induced by ADP is observed with drug concentration. Theobromine does not show any appreciable effect on these respiratory parameters, but this result is similar to that observed with theophylline for the same concentration range. Calcium uptake coupled to respiration is inhibited by both drugs depending on their concentrations. Theobromine is more effective than theophylline. Calcium saturation of the mitochondria takes place in all cases after 36 +/- 2 s but only a 20% of the maximum calcium uptake observed in the absence of the drugs is determined in the presence of 15 mM theophylline or only 1.8 mM theobromine. Comparative studies show direct correlation between the pharmacological activities as stimulants of caffeine, theophylline and theobromine and their behaviour as inhibitors of calcium uptake coupled to respiration by mitochondria.  相似文献   

18.
The present study demonstrates direct electron transfer between cytochromes P450 2B4 (CYP2B4), P450 1A2 (CYP1A2), sterol 14alpha-demethylase (CYP51b1) on the one hand and screen-printed graphite electrodes, modified with gold nanoparticles and didodecyldimethylammonium bromide (DDAB) on the other. Electro detection of heme proteins was possible when 2-200 pmol P450/electrode were adsorbed on the surface of nanostructured electrochemical interfaces. Electron transfer, direct electrochemical reduction and interaction with P450 substrates (oxygen, benzphetamine, and lanosterol) and with P450 inhibitor (ketoconazole) were analyzed using cyclic voltammetry (CV), square wave voltammetry (SWV) differential pulse voltammetry (DPV), and amperometry.  相似文献   

19.
A homogeneous spectrophotometric EMIT immunoassay kit for the quantitation of theophylline in serum or plasma has been modified to produce a rapid, amperometric immunoassay requiring a 50 μl whole blood sample. The basis of the detection system for the assay is the electrochemical oxidation of NADH produced by G6PDH-labelled theophylline at a potential of + 150 mV vs Ag/AgCl using platinised activated carbon (PACE) electrodes. Comparison of the amperometric whole blood method with the conventional spectrophotometric plasma assay produced a reasonable correlation: Y = 0·90x − 1·01, (r = 0·98, N = 12). The advantage of the new method is that simple and robust instrumentation can rapidly determine theophylline in whole blood with no sample pre-treatment or separation steps.  相似文献   

20.
Glucose sensing electrodes have been realized by immobilizing glucose oxidase (GOx) on unmodified edge plane of highly oriented pyrolytic graphite (epHOPG) and the native oxide of heavily doped silicon (SiO2/Si). Both kinds of electrode show direct interfacial electron transfer due to the redox process of the immobilized GOx. The measured formal potential of the redox process agrees with that of the native enzyme, suggesting that the immobilized GOx has retained its enzymatic activity. The electron transfer rates of the GOx immobilized electrode are 2s(-1) for GOx/epHOPG electrode and 7.9s(-1) for GOx/SiO2/Si electrode, which are greater than those for which GOx is immobilized on modified electrodes, probably due to the fact that the enzyme makes direct contact to electrode surface. The preservation of the enzymatic activity of the immobilized GOx has been confirmed by observing the response of the GOx/epHOPG and GOx/SiO2/Si electrodes to glucose with a detection limit of 0.050 mM. The response signals the catalyzed oxidation of glucose and, therefore, confirms that the immobilized GOx retained its enzymatic activity. The properties of the electrode as a glucose sensor are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号