首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Trinitrophernol (TNP) selectively alters the sodium conductance system of lobster giant axons as measured in current clamp and voltage clamp experiments using the double sucrose gap technique. TNP has no measurable effect on potassium currents but reversibly prolongs the time-course of sodium currents during maintained depolarizations over the full voltage range of observable currents. Action potential durations are increased also. Tm of the Hodgkin-Huxley model is not markedly altered during activation of the sodium conductance but is prolonged during removal of activation by repolarization, as observed in sodium tail experiments. The sodium inactivation versus voltage curve is shifted in the hyperpolarizing direction as is the inactivation time constant curve, measured with conditioning voltage steps. This shift speeds the kinetics of inactivation over part of the same voltage range in which sodium currents are prolonged, a contradiction incompatible with the Hodgkin-Huxley model. These results are interpreted as support for a hypothesis of two inactivation processes, one proceeding directly from the resting state and the other coupled to the active state of sodium conductance.  相似文献   

2.
The interaction of pancuronium with sodium channels was investigated in squid axons. Sodium current turns on normally but turns off more quickly than the control with pancuronium 0.1-1mM present internally; The sodium tail current associated with repolarization exhibits an initial hook and then decays more slowly than the control. Pancuronium induces inactivation after the sodium inactivation has been removed by internal perfusion of pronase. Such pancuronium-induced sodium inactivation follows a single exponential time course, suggesting first order kinetics which represents the interaction of the pancuronium molecule with the open sodium channel. The rate constant of association k with the binding site is independent of the membrane potential ranging from 0 to 80 mV, but increases with increasing internal concentration of pancuronium. However, the rate constant of dissociation l is independent of internal concentration of pancuronium but decreases with increasing the membrane potential. The voltage dependence of l is not affected by changine external sodium concentration, suggesting a current-independent conductance block, The steady-state block depends on the membrane potential, being more pronounced with increasing depolarization, and is accounted for in terms of the voltage dependence of l. A kinetic model, based on the experimental observations and the assumption on binding kinetics of pancuronium with the open sodium channel, successfully simulates many features of sodium current in the presence of pancuronium.  相似文献   

3.
Inactivation viewed through single sodium channels   总被引:17,自引:12,他引:5       下载免费PDF全文
Recordings of the sodium current in tissue-cultured GH3 cells show that the rate of inactivation in whole cell and averaged single channel records is voltage dependent: tau h varied e-fold/approximately 26 mV. The source of this voltage dependence was investigated by examining the voltage dependence of individual rate constants, estimated by maximum likelihood analysis of single channel records, in a five-state kinetic model. The rate constant for inactivating from the open state, rather than closing, increased with depolarization, as did the probability that an open channel inactivates. The rate constant for closing from the open state had the opposite voltage dependence. Both rate constants contributed to the mean open time, which was not very voltage dependent. Both open time and burst duration were less than tau h for voltages up to -20 mV. The slowest time constant of activation, tau m, was measured from whole cell records, by fitting a single exponential either to tail currents or to activating currents in trypsin-treated cells, in which the inactivation was abolished. tau m was a bell-shaped function of voltage and had a voltage dependence similar to tau h at voltages more positive than -35 mV, but was smaller than tau h. At potentials more negative than about -10 mV, individual channels may open and close several times before inactivating. Therefore, averaged single channel records, which correspond with macroscopic current elicited by a depolarization, are best described by a convolution of the first latency density with the autocorrelation function rather than with 1 - (channel open time distribution). The voltage dependence of inactivation from the open state, in addition to that of the activation process, is a significant factor in determining the voltage dependence of macroscopic inactivation. Although the rates of activation and inactivation overlapped greatly, independent and coupled inactivation could not be statistically distinguished for two models examined. Although rates of activation affect the observed rate of inactivation at intermediate voltages, extrapolation of our estimates of rate constants suggests that at very depolarized voltages the activation process is so fast that it is an insignificant factor in the time course of inactivation. Prediction of gating currents shows that an inherently voltage-dependent inactivation process need not produce a conspicuous component in the gating current.  相似文献   

4.
Inactivation of the sodium channel. I. Sodium current experiments   总被引:75,自引:39,他引:36       下载免费PDF全文
Inactivation of sodium conductance has been studied in squid axons with voltage clamp techniques and with the enzyme pronase which selectively destroys inactivation. Comparison of the sodium current before and after pronase treatment shows a lag of several hundred microseconds in the onset of inactivation after depolarization. This lag can of several hundred microseconds in the onset of inactivation after polarization. This lag can also be demonstrated with double-pulse experiments. When the membrane potential is hyperpolarized to -140 mV before depolarization, both activation and inactivation are delayed. These findings suggest that inactivation occurs only after activation are delayed. These findings suggest that inactivation occurs only after activation; i.e. that the channels must open before they can inactivate. The time constant of inactivation measured with two pulses (τ(c)) is the same as the one measured from the decay of the sodium current during a single pulse (τ(h)). For large depolarizations, steady-state inactivation becomes more incomplete as voltage increases; but it is relatively complete and appears independent of voltage when determined with a two- pulse method. This result confirms the existence of a second open state for Na channels, as proposed by Chandler and Meves (1970. J. Physiol. [Lond.]. 211:653-678). The time constant of recovery from inactivation is voltage dependent and decreases as the membrane potential is made more negative. A model for Na channels is presented which has voltage-dependent transitions between the closed and open states, and a voltage-independent transition between the open and the inactivated state. In this model the voltage dependence of inactivation is a consequence of coupling to the activation process.  相似文献   

5.
A pair of tyrosine residues, located on the cytoplasmic linker between the third and fourth domains of human heart sodium channels, plays a critical role in the kinetics and voltage dependence of inactivation. Substitution of these residues by glutamine (Y1494Y1495/QQ), but not phenylalanine, nearly eliminates the voltage dependence of the inactivation time constant measured from the decay of macroscopic current after a depolarization. The voltage dependence of steady state inactivation and recovery from inactivation is also decreased in YY/QQ channels. A characteristic feature of the coupling between activation and inactivation in sodium channels is a delay in development of inactivation after a depolarization. Such a delay is seen in wild-type but is abbreviated in YY/QQ channels at -30 mV. The macroscopic kinetics of activation are faster and less voltage dependent in the mutant at voltages more negative than -20 mV. Deactivation kinetics, by contrast, are not significantly different between mutant and wild-type channels at voltages more negative than -70 mV. Single-channel measurements show that the latencies for a channel to open after a depolarization are shorter and less voltage dependent in YY/QQ than in wild-type channels; however the peak open probability is not significantly affected in YY/QQ channels. These data demonstrate that rate constants involved in both activation and inactivation are altered in YY/QQ channels. These tyrosines are required for a normal coupling between activation voltage sensors and the inactivation gate. This coupling insures that the macroscopic inactivation rate is slow at negative voltages and accelerated at more positive voltages. Disruption of the coupling in YY/QQ alters the microscopic rates of both activation and inactivation.  相似文献   

6.
Linear Systems convolution analysis of muscle sodium currents was used to predict the opening rate of sodium channels as a function of time during voltage clamp pulses. If open sodium channel lifetimes are exponentially distributed, the channel opening rate corresponding to a sodium current obtained at any particular voltage, can be analytically obtained using a simple equation, given single channel information about the mean open-channel lifetime and current.Predictions of channel opening rate during voltage clamp pulses show that sodium channel inactivation arises coincident with a decline in channel opening rate.Sodium currents pharmacologically modified with Chloramine-T treatment so that they do not inactivate, show a predicted sustained channel opening rate.Large depolarizing voltage clamp pulses produce channel opening rate functions that resemble gating currents.The predicted channel opening rate functions are best described by kinetic models for Na channels which confer most of the charge movement to transitions between closed states.Comparisons of channel opening rate functions with gating currents suggests that there may be subtypes of Na channel with some contributing more charge movement per channel opening than others.Na channels open on average, only once during the transient period of Na activation and inactivation.After transiently opening during the activation period and then closing by entering the inactivated state, Na channels reopen if the voltage pulse is long enough and contribute to steady-state currents.The convolution model overestimates the opening rate of channels contributing to the steady-state currents that remain after the transient early Na current has subsided.  相似文献   

7.
Recovery from inactivation of T-type Ca channels is slow and saturates at moderate hyperpolarizing voltage steps compared with Na channels. To explore this unique kinetic pattern we measured gating and ionic currents in two closely related isoforms of T-type Ca channels. Gating current recovers from inactivation much faster than ionic current, and recovery from inactivation is much more voltage dependent for gating current than for ionic current. There is a lag in the onset of gating current recovery at -80 mV, but no lag is discernible at -120 mV. The delay in recovery from inactivation of ionic current is much more evident at all voltages. The time constant for the decay of off gating current is very similar to the time constant of deactivation of open channels (ionic tail current), and both are strongly voltage dependent over a wide voltage range. Apparently, the development of inactivation has little influence on the initial deactivation step. These results suggest that movement of gating charge occurs for inactivated states very quickly. In contrast, the transitions from inactivated to available states are orders of magnitude slower, not voltage dependent, and are rate limiting for ionic recovery. These findings support a deactivation-first path for T-type Ca channel recovery from inactivation. We have integrated these concepts into an eight-state kinetic model, which can account for the major characteristics of T-type Ca channel inactivation.  相似文献   

8.
An attempt is made to model sodium channel inactivation based upon real physical processes. The principle involved, which is supported by calculation and by direct appeal to experimental results, is that the gating dipole reversal or gating charge transfer that occurs when the channel is activated, markedly modulates the electrical properties of charged groups at the channel ends. Four examples of possible mechanisms that lead to channel inactivation are described. The simple four-state model that results is able to predict: (a) the steep voltage dependence of the equilibrium inactivation characteristic without the presence of any appreciable displacement current associated with inactivation; (b) the negative shift in membrane voltage of the equilibrium inactivation characteristic relative to the activation characteristic; (c) the bell-shaped dependence of inactivation time constant on membrane voltage; (d) the similarity of the membrane voltage dependence of the time constant of recovery from inactivation, to that of inactivation itself. A brief discussion of a model for sodium channel activation based upon the same physical principle is included.  相似文献   

9.
Sodium-calcium exchange current was isolated in inside-out patches excised from guinea pig ventricular cells using the giant patch method. The outward exchange current decayed exponentially upon activation by cytoplasmic sodium (sodium-dependent inactivation). The kinetics and mechanism of the inactivation were studied. (a) The rate of inactivation and the peak current amplitude were both strongly temperature dependent (Q10 = 2.2). (b) An increase in cytoplasmic pH from 6.8 to 7.8 attenuated the current decay and shifted the apparent dissociation constant (Kd) of cytoplasmic calcium for secondary activation of the exchange current from 9.6 microM to < 0.3 microM. (c) The amplitude of exchange current decreased synchronously over the membrane potential range from -120 to 60 mV during the inactivation, indicating that voltage dependence of the exchanger did not change during the inactivation process. The voltage dependence of exchange current also did not change during secondary modulation by cytoplasmic calcium and activation by chymotrypsin. (d) In the presence of 150 mM extracellular sodium and 2 mM extracellular calcium, outward exchange current decayed similarly upon application of cytoplasmic sodium. Upon removal of cytoplasmic sodium in the presence of 2-5 microM cytoplasmic free calcium, the inward exchange current developed in two phases, a fast phase within the time course of solution changes, and a slow phase (tau approximately 4 s) indicative of recovery from sodium-dependent inactivation. (e) Under zero-trans conditions, the inward current was fully activated within solution switch times upon application of cytoplasmic calcium and did not decay. (f) The slow recovery phase of inward current upon removal of cytoplasmic sodium was also present under the zero-trans condition. (g) Sodium-dependent inactivation shows little or no dependence on membrane potential in guinea pig myocyte sarcolemma. (h) Sodium-dependent inactivation of outward current is attenuated in rate and extent as extracellular calcium is decreased. (i) Kinetics of the sodium-dependent inactivation and its dependence on major experimental variables are well described by a simple two-state inactivation model assuming one fully active and one fully inactive exchanger state, whereby the transition to the inactive state takes place from a fully sodium-loaded exchanger conformation with cytoplasmic orientation of binding sites (E1.3Ni).  相似文献   

10.
Inactivation path of voltage gated sodium channel has been studied here under various voltage protocols as it is the main governing factor for the periodic occurrence and shape of the action potential. These voltage protocols actually serve as non-equilibrium response spectroscopic tools to study the ion channel in non-equilibrium environment. In contrast to a lot of effort in finding the crystal structure based molecular mechanism of closed-state(CSI) and open-state inactivation(OSI); here our approach is to understand the dynamical characterization of inactivation. The kinetic flux as well as energetic contribution of the closed and open- state inactivation path is compared here for voltage protocols, namely constant, pulsed and oscillating. The non-equilibrium thermodynamic quantities used in response to these voltage protocols serve as improved characterization tools for theoretical understanding which not only agrees with the previously known kinetic measurements but also predict the energetically optimum processes to sustain the auto-regulatory mechanism of action potential and the consequent inactivation steps needed. The time dependent voltage pattern governs the population of the conformational states which when couple with characteristic rate parameters, the CSI and OSI selectivity arise dynamically to control the inactivation path. Using constant, pulsed and continuous oscillating voltage protocols we have shown that during depolarization the OSI path is more favored path of inactivation however, in the hyper-polarized situation the CSI is favored. It is also shown that the re-factorisation of inactivated sodium channel to resting state occurs via CSI path. Here we have shown how the subtle energetic and entropic cost due to the change in the depolarization magnitude determines the optimum path of inactivation. It is shown that an efficient CSI and OSI dynamical profile in principle can characterize the open-state drug blocking phenomena.  相似文献   

11.
Goldman L 《Biophysical journal》1999,76(5):2553-2559
Computations on sodium channel gating were conducted using a closed-open-inactivated coupled kinetic scheme. The time constant of inactivation (tauh) derives a voltage dependency from coupling to voltage-dependent activation even when rate constants between inactivated and other states are strictly voltage independent. The derived voltage dependency does not require any physical, molecular link between the structures responsible for inactivation and the charges producing voltage-dependent activation. The only requirement is that the closed to inactivated rate constant (kCI) differs from the open to inactivated (kOI), consistent with experimental results. A number of mutations and other treatments uncouple sodium channel activation and inactivation in that the voltage dependency of tauh is substantially reduced while voltage-dependent activation persists. However, a clear basis for uncoupling has not been described. A variety of experimental results are accounted for just by changes in the difference between kOI and kCI. In wild type channels, kOI > kCI and inactivation develops with a delay whose time constant is just that for channel opening. Mutations that reduce the kOI - kCI difference reduce the amplitude of the delay process and the derived voltage dependency of tauh. If kOI = kCI, inactivation develops as a single exponential (no matter what the number of closed states), activation and inactivation become independent, parallel processes, and any voltage dependency of tauh is then entirely intrinsic to inactivation. If kOI < kCI, inactivation develops as the sum of exponentials, tauh at negative potentials speeds and then slows with more positive potentials. These predicted kOI < kCI effects have all been seen experimentally (O'Leary, M.E., L.-Q. Chen, R.G. Kallen, and R. Horn. 1995. J. Gen. Physiol. 106: 641-658). An open to closed rate constant of zero also removes the derived voltage dependency of tauh, but activation and inactivation are still coupled and the inactivation delay remains.  相似文献   

12.
Recent experimental evidence from a number of preparations indicates that sodium channel inactivation may be intrinsically voltage sensitive. Intrinsically voltage sensitive inactivation should produce a charge movement. Crayfish giant axons provide a unique opportunity to reexamine the slower components of gating currents (Ig) for a contribution from inactivation (Igh). In reference to other axon preparations, this preparation has relatively rapid inactivation, and steady-state inactivation has a comparatively steep voltage dependence. As predicted by a two-state scheme for voltage-sensitive sodium channel inactivation, Ig in crayfish axons includes a slow component with time constant comparable to the time constant of decay of the sodium current. Allowing for some delay in its onset (60 microseconds), inactivation as described by this slow component of Ig carries roughly the amount of charge predicted by the voltage dependence of inactivation.  相似文献   

13.
The effects of internal tetrabutylammonium (TBA) and tetrapentylammonium (TPeA) were studied on human cardiac sodium channels (hH1) expressed in a mammalian tsA201 cell line. Outward currents were measured at positive voltages using a reversed Na gradient. TBA and TPeA cause a concentration-dependent increase in the apparent rate of macroscopic Na current inactivation in response to step depolarizations. At TPeA concentrations < 50 microM the current decay is well fit by a single exponential over a wide voltage range. At higher concentrations a second exponential component is observed, with the fast component being dominant. The blocking and unblocking rate constants of TPeA were estimated from these data, using a three-state kinetic model, and were found to be voltage dependent. The apparent inhibition constant at 0 mV is 9.8 microM, and the blocking site is located 41 +/- 3% of the way into the membrane field from the cytoplasmic side of the channel. Raising the external Na concentration from 10 to 100 mM reduces the TPeA-modified inactivation rates, consistent with a mechanism in which external Na ions displace TPeA from its binding site within the pore. TBA (500 microM) and TPeA (20 microM) induce a use-dependent block of Na channels characterized by a progressive, reversible, decrease in current amplitude in response to trains of depolarizing pulses delivered at 1-s intervals. Tetrapropylammonium (TPrA), a related symmetrical tetra-alkylammonium (TAA), blocks Na currents but does not alter inactivation (O'Leary, M. E., and R. Horn. 1994. Journal of General Physiology. 104:507-522.) or show use dependence. Internal TPrA antagonizes both the TPeA-induced increase in the apparent inactivation rate and the use dependence, suggesting that all TAA compounds share a common binding site in the pore. A channel blocked by TBA or TPeA inactivates at nearly the normal rate, but recovers slowly from inactivation, suggesting that TBA or TPeA in the blocking site can interact directly with a cytoplasmic inactivation gate.  相似文献   

14.
The effects of n-alkylguanidine derivatives on sodium channel conductance were measured in voltage clamped, internally perfused squid giant axons. After destruction of the sodium inactivation mechanism by internal pronase treatment, internal application of n-amylguanidine (0.5 mM) or n-octylguanidine (0.03 mM) caused a time-dependent block of sodium channels. No time-dependent block was observed with shorter chain derivatives. No change in the rising phase of sodium current was seen and the block of steady-state sodium current was independent of the membrane potential. In axons with intact sodium inactivation, an apparent facilitation of inactivation was observed after application of either n-amylguanidine or n-octylguanidine. These results can be explained by a model in which alkylguanidines enter and occlude open sodium channels from inside the membrane with voltage-independent rate constants. Alkylguanidine block bears a close resemblance to natural sodium inactivation. This might be explained by the fact that alkylguanidines are related to arginine, which has a guanidino group and is thought to be an essential amino acid in the molecular mechanism of sodium inactivation. A strong correlation between alkyl chain length and blocking potency was found, suggesting that a hydrophobic binding site exists near the inner mouth of the sodium channel.  相似文献   

15.
In Myxicola axons subjected to moderate depolarizations the sodium inactivation time constants obtained from the decay of sodium current during a maintained depolarizatin (TSh) are substantially smaller than inactivation time constants determined at the same potential from the effect of changes in the duration of conditioning prepulses (Tph). This report extends these observations to positive membrane potentials and demonstrates that for sufficiently large depolarizations TSh and Tph become comparable. The ratio of inactivation time constants, Tph/TSh, is unaffected by changes in [Ca++] provided total divalent cation concentration is maintained constant, while changes in total divalent ion concentrations produce simple voltage shifts comparable to those obtained from measurement of membrane sodium or potassium conductances. Sodium inactivation delay was quantitatively determined as a function of membrane potential, and found to be similarly unaffected by changes in [Ca++] at constant total divalent ion concentration. Inactivation delay is, however, directly proportional to the activation rate constant over a wide range of potentials.  相似文献   

16.
Experiments on sodium channel inactivation kinetics were performed on voltage-clamped crayfish giant axons. The primary goal was to investigate whether channels must open before inactivating. Voltage-clamp artifacts were minimized by the use of low-sodium solutions and full series resistance compensation, and the spatial uniformity of the currents was checked with a closely spaced pair of electrodes used to measure local current densities. For membrane potentials between -40 and +40 mV, sodium currents decay to zero with a single exponential time-course. The time constant for decay is a steep function of membrane potential. The time-course of inactivation measured with the double-pulse method is very similar to the decay of current at the same potential. Steady-state inactivation curves measured with different test pulses are identical. The time-course of double pulse inactivation shows a lag that roughly correlates with the opening of sodium channels, but detailed comparisons with the time course of the prepulse current suggest that it is not strictly necessary for channels to open before inactivating. Measurements of the potential dependence of the integral of sodium conductance area also inconsistent with the simplest cases of models in which channels must open before inactivating.  相似文献   

17.
成年蜜蜂脑神经细胞的培养和电生理特征   总被引:1,自引:0,他引:1  
为了研究杀虫剂等对蜜蜂毒性作用的神经机制,需在体外建立成年蜜蜂脑神经细胞的分离培养和电生理记录技术并研究其正常电生理特征,而对成年蜜蜂脑神经细胞的分离培养和电生理特性的研究报道甚少。我们采用酶解和机械吹打相结合的方法获得了数量较多且活力较好的成年意大利蜜蜂Apis mellifera脑神经细胞,并用全细胞膜片钳技术研究了成年意大利蜜蜂脑神经细胞对电流和电压刺激的反应,获得了成年意蜂脑神经细胞的基本电生理特征以及钠电流和钾电流的特性。全细胞电流钳的记录结果表明,在体外培养条件下,细胞无自发放电发生,注射电流后仅引起细胞单次放电,引起细胞放电的阈电流平均为60.8±63 pA; 细胞动作电位产生的阈电位平均为−27.4±2.3 mV。用全细胞电压钳记录了神经细胞的钠电流和钾电流。钠电流的分离是在电压刺激下通过阻断钾通道和钙通道实现。细胞的内向钠电流在指令电压为−40~−30 mV左右激活,−10 mV达峰值,钠通道的稳态失活电压V1/2为−58.4 mV; 外向钾电流成份至少包括较小的快速失活钾电流和和较大的缓慢失活钾电流(占总钾电流的80%),其半激活膜电位V1/2为3.86 mV,无明显的稳态失活。结果提示缓慢失活钾电流的特征可能是细胞单次放电的机制之一。  相似文献   

18.
Calcium currents in bullfrog sympathetic neurons. II. Inactivation   总被引:4,自引:0,他引:4       下载免费PDF全文
Calcium currents in bullfrog sympathetic neurons inactivate slowly and partially during depolarizations lasting 0.5-1 s. There is also a slower (minutes) inactivation process with a broad voltage dependence. An irreversible loss of current (rundown) is prominent with low concentrations of intracellular Ca2+ buffers, with either Ca2+ or Ba2+ as the charge carrier. The extent and rate of the more rapid inactivation process are maximal near the voltage at which the peak inward current is generated, suggesting that inactivation might be Ca2+ dependent. However, inactivation occurs with either Ca2+ or Ba2+ as the charge carrier, is not prevented by strong buffering of intracellular Ca2+ with 10 mM BAPTA, and varies little as the peak current is changed 10-fold by changing the divalent ion concentration. That is, rapid inactivation is not explained by simple versions of voltage, Ca2+- or current-dependent inactivation models. A model in which ion binding within the channel allows a slower, rate-limiting inactivation process fits some but not all of the observed features of inactivation. A purely voltage-dependent three-state cyclic model fits the data if microscopic inactivation is favored by hyperpolarization.  相似文献   

19.
Spike-frequency adaptation is the continuous decline in discharge rate in response to a constant stimulus. We have described three distinct phases of adaptation in rat hypoglossal motoneurones: initial, early and late. The initial phase of adaptation is over in one or two intervals, and is primarily due to summation of the calcium-activated potassium conductance underlying the medium duration afterhyperpolarization (mAHP). The biophysical mechanisms underlying the later phases of adaptation are not well understood. Two of the previously-proposed mechanisms for adaptation are an increase in outward current flowing through calcium-activated potassium channels and increasing outward current produced by the electrogenic sodium-potassium pump. We found that neither of these mechanisms are necessary for the expression of the early and late phases of adaptation. The magnitude of the initial phase of adaptation was reduced when the calcium in the external solution was replaced with manganese, but the magnitudes of the early and late phases were consistently increased under these conditions. Partial blockade of the sodium-potassium pump with ouabain had no significant effect on any of the three phases of adaptation. Our current working hypothesis is that the magnitude of late adaptation depends upon the interplay between slow inactivation of sodium currents, that tends to decrease discharge rate, and the slow activation or facilitation of a calcium current that tends to increase discharge rate. Adaptation is often associated with a progressive decrease in the peak amplitude and rate of rise of action potentials, and a computer model that incorporated slow inactivation of sodium channels reproduced this phenomenon. However, the time course of adaptation does not always parallel changes in spike shape, indicating that the progressive activation of another inward current might oppose the decline in frequency caused by slow sodium inactivation.  相似文献   

20.
The interaction of n-propylguanidinium (nPG) with sodium channels has been further characterized. From experiments at varying temperatures, the Q10 for the sodium current decay time constant in the two [Na+] gradients is 2.6-2.9 independent of drug. Testing several nPG concentrations we find that peak sodium current declines sharply with [nPG] at all levels, but the decay time constant approaches an asymptote above 4 mM. No "hooks" in sodium tail currents are seen. If the sodium current is allowed to decay completely before repolarization no tail current is observed. We have developed a kinetic model in which nPG acts at a single site within the sodium channel. Reaction of nPG with its receptor requires two steps. Fitting the temperature data shows that the first step involves diffusion of the drug to the site and close association with it. The second step may include molecular reorganization of the complex. The rate constants for the reaction are all simple exponential functions of voltage. Using them, the model successfully predicts decay time constants and peak currents, and their dependence on potential, [Na+] gradient, temperature, and nPG concentration. The results are consistent with the idea that an arginine residue may be closely associated with inactivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号