首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitric oxide-endothelin-1 interaction in humans   总被引:2,自引:0,他引:2  
Ahlborg, Gunvor, and Jan M. Lundberg. Nitricoxide-endothelin-1 interaction in humans. J. Appl.Physiol. 82(5): 1593-1600, 1997.Healthy menreceived NG-monomethyl-L-arginine(L-NMMA) intravenously to studycardiovascular and metabolic effects of nitric oxide synthase blockadeand whether this alters the response to endothelin-1 (ET-1) infusion.Controls only received ET-1.L-NMMA effects were that heartrate (17%), cardiac output (17%), and splanchnic and renal blood flow(both 33%) fell promptly (all P < 0.01). Mean arterial blood pressure (6%), and systemic (28%) andpulmonary (40%) vascular resistances increased(P < 0.05 to 0.001). Arterial ET-1levels (21%) increased due to a pulmonary net ET-1 release(P < 0.05 to 0.01). Splanchnic glucose output (SGO) fell (26%, P < 0.01). Arterial insulin and glucagon were unchanged. Subsequent ET-1infusion caused no change in mean arterial pressure, heart rate, orcardiac output, as found in the present controls, or in splanchnic andrenal blood flow or splanchnic glucose output as previously found withET-1 infusion (G. Ahlborg, E. Weitzberg, and J. M. Lundberg.J. Appl. Physiol. 79: 141-145,1995). In conclusion, L-NMMAlike ET-1, induces prolonged cardiovascular effects and suppresses SGO.L-NMMA causes pulmonary ET-1release and blocks responses to ET-1 infusion. The results indicatethat nitric oxide inhibits ET-1 production and thereby interacts withET-1 regarding increase in vascular tone and reduction of SGO inhumans.

  相似文献   

2.
The effects of synthetic linear somatostatin on basal circulating levels on several pituitary and pancreatic hormones, and of glucose and free fatty acids (FFA) were studied in 6 normal men after an overnight fast. A priming intravenous infusion of 250 mug of somatostatin in 18 sec was followed by a constant infusion of 500 mug over a period of 60 min. A decrease in plasma values of GH, prolactin, TSH, insulin and glucagon and in blood glucose was observed during somatostatin infusion, while FFA levels increased progressively. Plasma IRI and blood glucose increased rapidly when the somatostatin infusion was stopped, while FFA decreased progressively; GH, prolactin, TSH and glucagon remained low as compared to basal levels for one hour after the end of the infusion, i.e. until the end of the experiment. A slight but significant increase of LH and ACTH was observed after the end of the infusion.  相似文献   

3.
Six healthy subjects were given endothelin-1, intravenously in a dose of 4 pmol.kg-1.min-1 for 20 min. Blood samples were drawn from arterial, hepatic and renal vein catheters for determinations of splanchnic and renal blood flows and the extraction of endothelin-1 in these vascular beds. Intravenous infusion of endothelin-1 increased the mean arterial blood pressure by 6.8 +/- 2.0 mm Hg (p less than 0.05) and reduced splanchnic and renal blood flows by 34% (p less than 0.005) and 26% (p less than 0.001) respectively. Return to basal flow values occurred after about 1 hr for the splanchnic and 3 hrs for the renal blood flow. The fractional extractions of endothelin-1-like immunoreactivity corresponded to 75 +/- 2% and 60 +/- 2% in the splanchnic and renal vascular beds, respectively. The disappearance curve in plasma and two half-lives of 1.4 +/- 0.1 min and 35 +/- 2.8 min respectively.  相似文献   

4.
Our aim was to measure whole body energy expenditure after a mixed liquid meal, with and without simultaneous propranolol infusion, in patients with cirrhosis. We also wanted to investigate the effect of propranolol on substrate fluxes and oxygen uptake in the tissues drained by the hepatic vein and azygos vein in the postprandial period in these patients. Whole-body oxygen uptake, hepatic blood flow, hepatic venous pressure gradient and net-hepatic fluxes of oxygen, lactate, glucose, glycerol, and free fatty acids (FFA) were measured in 12 patients with alcoholic cirrhosis before and for 2 h after ingestion of a mixed liquid meal (700 kcal). Half of the patients (n = 6) were randomized to a treatment group receiving intravenous infusion of propranolol in combination with the meal. The meal-induced energy expenditure was significantly lower in patients given propranolol [15.0 +/- 18.9 vs. 67.0 +/- 26.1 kJ/120 min (means +/- SD), P < 0.01]. Meal-induced whole body oxygen uptake was lower in patients receiving propranolol (19.2 +/- 38 vs. 135.7 +/- 61 mmol/120 min, P < 0.01), and the meal-induced increase in splanchnic oxygen uptake was nonexistent when propranolol was administered in combination (-13.2 +/- 34.8 vs. 110.4 +/- 34.8 mmol/120 min, P = 0.04). Postprandially, the propranolol group had a tendency toward a reduced splanchnic glucose output, and the FFA uptake was significantly reduced. Propranolol reduces meal-induced whole body oxygen uptake and energy expenditure as well as splanchnic oxygen uptake. The splanchnic reduction in oxygen consumption can explain almost the entire reduction in whole body oxygen consumption.  相似文献   

5.
To determine the importance of basal glucagon to the stimulation of net splanchnic glucose output (NSGO) during exercise, seven healthy males performed cycle exercise during a pancreatic islet cell clamp. In one group (BG), glucagon was replaced at basal levels and insulin was adjusted to achieve euglycemia. In another group (GD), only insulin was replaced at the identical rate used in BG, and basal glucagon was not replaced. Exogenous glucose infusion was necessary to maintain euglycemia during exercise in BG and during rest and exercise in GD. Arterial glucagon was at least twofold greater in BG than in GD throughout the pancreatic islet cell clamp. Although basal NSGO remained stable in BG (2.5 +/- 0.5 mg x kg(-1) x min(-1)), basal NSGO dropped by 70% in GD (0.7 +/- 0.3 mg. kg(-1) x min(-1)). NSGO was also greater in BG than in GD at 10 min of moderate exercise, most likely due to the residual effect of basal glucagon replacement. However, NSGO increased slightly and remained similar throughout the remainder of moderate and heavy exercise in BG and GD. Therefore, a mechanism independent of changes in pancreatic hormones and/or the level of glycemia contributes toward modest stimulation of NSGO during moderate and heavy exercise.  相似文献   

6.
We measured splanchnic and leg glucose uptake during prolonged (i.e., 15 hours), moderate hyperglycemia-hyperinsulinemia (clamp). Plasma free fatty acid (FFA) concentration was maintained at basal concentration during the clamp via infusion of exogenous lipids and heparin in healthy volunteers to create a metabolic profile similar to glucose intolerance (i.e., hyperglycemia-hyperinsulinemia with elevated FFA concentration). During the clamp, glucose was infused at an average rate of 49 +/- 4 micromol/kg/min, which resulted in a plasma glucose concentration of 8.8 +/- 0.5 mmol/L compared with a concentration of 4.4 +/- 0.2 mmol/L in the basal state (P < 0.05). Insulin concentration increased from 5.5 +/- 1.1 microU/mL (basal) to 31.3 +/- 12.7 microU/mL (clamp; P < 0.05), whereas plasma FFA concentration was similar in the two conditions (3.9 +/- 0.5 mmol/L and 4.1 +/- 0.5 mmol/L, basal and clamp, respectively). Glucose balance across the splanchnic region switched from net release (-5.8 +/- 0.7 micromol/kg/min) in the basal state to net uptake in the clamp (19.8 +/- 3.7 micromol/kg/min; P < 0.05) and accounted for approximately 40% of the infused glucose. Glucose uptake across the leg was 0.7 +/- 0.2 micromol/kg/min (basal) and 5.5 +/- 2.2 micromol/kg/min (clamp; P < 0.05). In summary, tissues in the splanchnic region (i.e., liver) are important for disposal of intravenously infused glucose during prolonged, moderate hyperglycemia-hyperinsulinemia. Accelerated hepatic glucose uptake may disrupt normal liver metabolism, with potentially dangerous consequences for the patient. Measures to control systemic glucose concentration may be necessary to prevent excessive glucose disposal in the liver.  相似文献   

7.
The pathophysiology of alcohol-induced acute pancreatitis is not clear. Ischemic injury has been suggested as a possible mechanism. To examine the effects of ethanol on pancreatic and splanchnic blood flow, measurements were made in fasted, conditioned awake dogs before and after iv infusion of ethanol (1.7 g/kg). At 30 min blood ethanol concentration ranged between 60 and 150 mg/dl and at 60 min between 166 and 350 mg/dl. Although cardiac output, aortic pressure, left atrial pressure, and arterial pH did not change, pancreatic flow declined by 39 +/- 12 ml/min/100 g, P less than 0.05 (from 173 +/- 10 ml/min/100 g) at 30 min and was still depressed (by 27 +/- 12 ml/min/100 g, P less than 0.05) at 60 min. Concomitantly, hepatic arterial flow increased. While hepatic and pancreatic flow changed inversely, the correlation (r = -0.17) of these changes was not significant. At comparable blood ethanol concentrations in pentobarbital-anesthetized dogs hepatic arterial flow increased by 11 +/- 3 ml/min/100 g, P less than 0.01 (from 24 +/- 5 ml/min/100 g), but pancreatic flow did not change. Thus, in the awake dog at blood levels that would produce mild to moderate alcoholic intoxication in man, ethanol reduces pancreatic flow. Although hepatic flow increases concomitantly, the relationship of these changes appears to be independent.  相似文献   

8.
The present study compared the arteriohepatic venous (a-hv) balance technique and the tracer-dilution method for estimation of hepatic glucose production during both moderate and heavy exercise in humans. Eight healthy young men (aged 25 yr; range, 23-30 yr) performed semisupine cycling for 40 min at 50.4 +/- 1.5(SE)% maximal O(2) consumption, followed by 30 min at 69.0 +/- 2.2% maximal O(2) consumption. The splanchnic blood flow was estimated by continuous infusion of indocyanine green, and net splanchnic glucose output was calculated as the product of splanchnic blood flow and a-hv blood glucose concentration differences. Glucose appearance rate was determined by a primed, continuous infusion of [3-(3)H]glucose and was calculated by using formulas for a modified single compartment in non-steady state. Glucose production was similar whether determined by the a-hv balance technique or by the tracer-dilution method, both at rest and during moderate and intense exercise (P > 0. 05). It is concluded that, during exercise in humans, determination of hepatic glucose production can be performed equally well with the two techniques.  相似文献   

9.
To determine the effect of nonesterified fatty acids (NEFA) on glucagon action, glucagon was infused intraportally (1.65 ng.min(-1).kg(-1)) for 3 h into 18-h-fasted, pancreatic-clamped conscious dogs in the presence [NEFA + glucagon (GGN)] or absence (GGN) of peripheral Intralipid plus heparin infusion. Additionally, hyperglycemic (HG), hyperglycemic-hyperlipidemic (NEFA + HG), and glycerol plus glucagon (GLYC + GGN) controls were studied. Arterial plasma glucagon concentrations rose equally in GGN, NEFA + GGN, and GLYC + GGN but remained basal in hyperglycemic controls. Peripheral infusions of Intralipid and heparin increased arterial plasma NEFA concentrations equally in NEFA + GGN and NEFA + HG and did not change in other protocols. After 15 min, glucagon infusion resulted in a rapid, brief increase in net hepatic glycogenolysis (NHGLY, mg.min(-1).kg(-1)) of approximately 6.0 in GGN and GLYC + GGN but only increased by 3.8 +/- 1.3 in NEFA + GGN. Thus increases in NHGLY, and consequently net hepatic glucose output (NHGO), were blunted by 40%, with no difference between the groups in the last 2.5 h of the study. NHGO and NHGLY did not significantly change in HG and NEFA + HG. Net hepatic gluconeogenic flux did not change in GGN, GLYC + GGN, or HG. However, Intralipid and heparin infusion resulted in similar increases in net hepatic gluconeogenic flux in NEFA + GGN and NEFA + HG. Thus elevated NEFA limit the initial increase in glucagon-stimulated HGO by blunting glycogenolysis, without having any effect on the gluconeogenic or glycogenolytic contributions or NHGO thereafter.  相似文献   

10.
Cardiovascular and sympathoadrenal responses to a reproducible mental stress test were investigated in eight healthy young men before and during intravenous infusion of the nitric oxide (NO) synthesis inhibitor N-monomethyl-L-arginine (L-NMMA). Before L-NMMA, stress responses included significant increases in heart rate, mean arterial pressure, and cardiac output (CO) and decreases in systemic and forearm vascular resistance. Arterial plasma norepinephrine (NE) increased. At rest after 30 min of infusion of L-NMMA (0.3 mg.kg(-1).min(-1) iv), mean arterial pressure increased from 98 +/- 4 to 108 +/- 3 mmHg (P <0.001) because of an increase in systemic vascular resistance from 12.9 +/- 0.5 to 18.5 +/- 0.9 units (P <0.001). CO decreased from 7.7 +/- 0.4 to 5.9 +/- 0.3 l/min (P <0.01). Arterial plasma NE decreased from 2.08 +/- 0.16 to 1.47 +/- 0.14 nmol/l. Repeated mental stress during continued infusion of L-NMMA (0.15 mg.kg(-1).min(-1)) induced qualitatively similar cardiovascular responses, but there was a marked attenuation of the increase in mean arterial blood pressure, resulting in similar "steady-state" blood pressures during mental stress without and with NO blockade. Increases in heart rate and CO were attenuated, but stress-induced decreases in systemic and forearm vascular resistance were essentially unchanged. Arterial plasma NE increased less than during the first stress test. Thus the increased arterial tone at rest during L-NMMA infusion is compensated for by attenuated increases in blood pressure during mental stress, mainly through a markedly attenuated CO response and suppressed sympathetic nerve activity.  相似文献   

11.
The effect of surgical end-to-side portacaval anastomosis (PCSA) on systemic and splanchnic circulation has been studied in cirrhotic rats with portal hypertension (CCl4-phenobarbital method) and in control animals. Hemodynamics have been measured using the microsphere technique, with a reference sample for the systemic hemodynamic measurements, and intrasplenic injection for portal systemic shunting rate measurements. Compared with controls, sham-operated (SO) cirrhotic rats showed a hyperdynamic circulation with increased cardiac output (CO) and decreased mean arterial pressure and peripheral resistances. PCSA in control rats induced only a small change in systemic hemodynamics, with parallel decreases in arterial pressure and peripheral resistances, and a small, nonsignificant increase in CO. In cirrhotic rats, PCSA induced a decrease of CO to values similar to those of control rats, with an increase in total peripheral resistances. PCSA induced an increase in hepatic arterial blood flow in control and in cirrhotic rats, portal pressure becoming in this latter group not different from that of control rats. Blood flow to splanchnic organs was higher in SO cirrhotic than in SO control animals. Thus portal venous inflow was also increased in SO cirrhotic rats. PCSA induced an increase in portal venous inflow in control rats, which was only significant in cirrhotic rats when expressed as a percentage of CO. In SO control animals, a significant correlation was observed between total peripheral resistances and splanchnic arteriolar resistances and between CO and splanchnic blood flow. These correlations were not observed in cirrhotic rats. These results do not support the hypothesis that hyperdynamic circulation shown by cirrhotic rats is based on increases in splanchnic blood flow and (or) massive portal systemic shunting.  相似文献   

12.
The distribution of cardiac output and systemic vascular conductance was measured in five rabbits. Cardiac output was measured by ascending aortic flowmetry and was partitioned according to the distribution of 15-micron radiolabeled microspheres injected into the left atrium. The rabbits were studied under four conditions: at rest and after 20 s of treadmill exercise, both before and approximately 5 min after acute barodenervation of the conscious animal. During exercise in the baroinnervated state, approximately 40% of the increased blood flow to skeletal and cardiac muscle was contributed by diversion from the splanchnic organs, kidneys, systemic arteriovenous anastomoses, and skin. This diversion of blood flow during exercise was absent after arterial barodenervation. We conclude that at the onset of exercise in rabbits the mismatch between cardiac output and the metabolic demands of skeletal and cardiac muscle is accommodated by vasoconstriction in other vascular beds. We suggest that the vasoconstriction in the splanchnic organs and skin may be caused by transient suppression of the reflex effects of arterial baroreceptor input at the onset of exercise.  相似文献   

13.
Moderate exercise elicits a relative postexercise hypotension that is caused by an increase in systemic vascular conductance. Previous studies have shown that skeletal muscle vascular conductance is increased postexercise. It is unclear whether these hemodynamic changes are limited to skeletal muscle vascular beds. The aim of this study was to determine whether the splanchnic and/or renal vascular beds also contribute to the rise in systemic vascular conductance during postexercise hypotension. A companion study aims to determine whether the cutaneous vascular bed is involved in postexercise hypotension (Wilkins BW, Minson CT, and Halliwill JR. J Appl Physiol 97: 2071-2076, 2004). Heart rate, arterial pressure, cardiac output, leg blood flow, splanchnic blood flow, and renal blood flow were measured in 13 men and 3 women before and through 120 min after a 60-min bout of exercise at 60% of peak oxygen uptake. Vascular conductances of leg, splanchnic, and renal vascular beds were calculated. One hour postexercise, mean arterial pressure was reduced (79.1 +/- 1.7 vs. 83.4 +/- 1.8 mmHg; P < 0.05), systemic vascular conductance was increased by approximately 10%, leg vascular conductance was increased by approximately 65%, whereas splanchnic (16.0 +/- 1.8 vs. 18.5 +/- 2.4 ml.min(-1).mmHg(-1); P = 0.13) and renal (20.4 +/- 3.3 vs. 17.6 +/- 2.6 ml.min(-1).mmHg(-1); P = 0.14) vascular conductances were unchanged compared with preexercise. This suggests there is neither vasoconstriction nor vasodilation in the splanchnic and renal vasculature during postexercise hypotension. Thus the splanchnic and renal vascular beds neither directly contribute to nor attenuate postexercise hypotension.  相似文献   

14.
Insufficient cardiac preload and impaired contractility are frequent in early sepsis. We explored the effects of acute cardiac preload reduction and dobutamine on hepatic arterial (Qha) and portal venous (Qpv) blood flows during endotoxin infusion. We hypothesized that the hepatic arterial buffer response (HABR) is absent during preload reduction and reduced by dobutamine. In anesthetized pigs, endotoxin or vehicle (n = 12, each) was randomly infused for 18 h. HABR was tested sequentially by constricting superior mesenteric artery (SMA) or inferior vena cava (IVC). Afterward, dobutamine at 2.5, 5.0, and 10.0 μg/kg per minute or another vehicle (n = 6, each) was randomly administered in endotoxemic and control animals, and SMA was constricted during each dose. Systemic (cardiac output, thermodilution) and carotid, splanchnic, and renal blood flows (ultrasound Doppler) and blood pressures were measured before and during administration of each dobutamine dose. HABR was expressed as hepatic arterial pressure/flow ratio. Compared with controls, 18 h of endotoxin infusion was associated with decreased mean arterial blood pressure [49 ± 11 mmHg vs. 58 ± 8 mmHg (mean ± SD); P = 0.034], decreased renal blood flow, metabolic acidosis, and impaired HABR during SMA constriction [0.32 (0.18-1.32) mmHg/ml vs. 0.22 (0.08-0.60) mmHg/ml; P = 0.043]. IVC constriction resulted in decreased Qpv in both groups; whereas Qha remained unchanged in controls, it decreased after 18 h of endotoxemia (P = 0.031; constriction-time-group interaction). One control and four endotoxemic animals died during the subsequent 6 h. The maximal increase of cardiac output during dobutamine infusion was 47% (22-134%) in controls vs. 53% (37-85%) in endotoxemic animals. The maximal Qpv increase was significant only in controls [24% (12-47%) of baseline (P = 0.043) vs. 17% (-7-32%) in endotoxemia (P = 0.109)]. Dobutamine influenced neither Qha nor HABR. Our data suggest that acute cardiac preload reduction is associated with preferential hepatic arterial perfusion initially but not after established endotoxemia. Dobutamine had no effect on the HABR.  相似文献   

15.
This study aimed to test whether stimulation of net hepatic glucose output (NHGO) by increased concentrations of the AMP analog, 5-aminoimidazole-4-carboxamide-1-beta-d-ribosyl-5-monophosphate, can be suppressed by pharmacological insulin levels. Dogs had sampling (artery, portal vein, hepatic vein) and infusion (vena cava, portal vein) catheters and flow probes (hepatic artery, portal vein) implanted >16 days before study. Protocols consisted of equilibration (-130 to -30 min), basal (-30 to 0 min), and hyperinsulinemic-euglycemic (0-150 min) periods. At time (t) = 0 min, somatostatin was infused, and basal glucagon was replaced via the portal vein. Insulin was infused in the portal vein at either 2 (INS2) or 5 (INS5) mU.kg(-1).min(-1). At t = 60 min, 1 mg.kg(-1).min(-1) portal venous 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) infusion was initiated. Arterial insulin rose approximately 9- and approximately 27-fold in INS2 and INS5, respectively. Glucagon, catecholamines, and cortisol did not change throughout the study. NHGO was completely suppressed before t = 60 min. Intraportal AICAR stimulated NHGO by 1.9 +/- 0.5 and 2.0 +/- 0.5 mg.kg(-1).min(-1) in INS2 and INS5, respectively. AICAR stimulated tracer-determined endogenous glucose production similarly in both groups. Intraportal AICAR infusion significantly increased hepatic acetyl-CoA carboxylase (ACC, Ser(79)) phosphorylation in INS2. Hepatic ACC (Ser(79)) phosphorylation, however, was not increased in INS5. Thus intraportal AICAR infusion renders hepatic glucose output insensitive to pharmacological insulin. The effectiveness of AICAR in countering the suppressive effect of pharmacological insulin on NHGO occurs even though AICAR-stimulated ACC phosphorylation is completely blocked.  相似文献   

16.
The human vagina is known to be heavily innervated by vasoactive intestinal polypeptide (VIP) immunoreactive nerve fibres. In the present study we have examined the effect of VIP (900 pmol x kg-1 x h-1, IV during 30 min) on vaginal lubrication and blood flow in fourteen normal non-pregnant women. Vaginal blood flow was measured by the heat clearance technique and the vaginal lubrication quantified by the weight gain of preweighed filter papers placed on the surface of the vaginal wall for 30 min. Arterial blood pressure, pulse frequency and the concentration of VIP in peripheral blood were monitored. VIP (median concentrations of 200-300 pmol x l-1) induced a significant increase in vaginal blood flow accompanied by a 100% increase in vaginal lubrication (from 27 mg/cm2 to 53 mg/cm2). The VIP infusion lead to a significant increase in pulse frequency and a significant fall in diastolic arterial blood pressure. The findings suggest that VIP may participate in the control of the local physiological changes observed during sexual arousal: genital vasodilation and increase in vaginal lubrication.  相似文献   

17.
The turnover of plasma free fatty acid (FFA) was studied during the recovery from exercise with the aid of a continuous infusion of 14C-labeled oleic acid. Arterial FFA reached a maximum of twice the exercise value after 6 min of recovery and was still 75% above the basal level after 20 min. Within 2 min after exercise, plasma radioactivity had increased and the specific activity of plasma oleic acid had fallen. The rate of uptake of FFA from the plasma pool rsoe by 40% during the first minutes after exercise. The rate of release of FFA to the plasma pool showed a peak 2 min after exercise and was thereafter about 40 mumol/min lower than the rate of uptake. The fractional turnover of FFA decreased to resting levels within 5-10 min after exercise. It is concluded that the postexercise peak in arterial FFA is a consequence of augmented release of FFA into the plasma pool above the level during exercise, possibly related to the release of sympathetic vasoconstrictor tone. As a consequence, the rate of removal of FFA rises at the end of exercise and remains augmented above the basal level for as long as the arterial concentration is increased.  相似文献   

18.
The role of beta-adrenergic agonists, such as isoproterenol, on vascular capacitance is unclear. Some investigators have suggested that isoproterenol causes a net transfer of blood to the chest from the splanchnic bed. We tested this hypothesis in dogs by measuring liver thickness, cardiac output, cardiopulmonary blood volume, mean circulatory filling pressure, portal venous, central venous, pulmonary arterial, and systemic arterial pressures while infusing norepinephrine (2.6 micrograms.min-1.kg-1), or isoproterenol (2.0 micrograms.min-1.kg-1), or histamine (4 micrograms.min-1.kg-1), or a combination of histamine and isoproterenol. Norepinephrine (an alpha- and beta 1-adrenergic agonist) decreased hepatic thickness and increased mean circulatory filling pressure, cardiac output, cardiopulmonary blood volume, total peripheral resistance, and systemic arterial and portal pressures. Isoproterenol increased cardiac output and decreased total peripheral resistance, but it had little effect on liver thickness or mean circulatory filling pressure and did not increase the cardiopulmonary blood volume or central venous pressure. Histamine caused a marked increase in portal pressure and liver thickness and decreased cardiac output, but it had little effect on the estimated mean circulatory filling pressure. Isoproterenol during histamine infusions reduced histamine-induced portal hypertension, reduced liver size, and increased cardiac output. We conclude that the beta-adrenergic agonist, isoproterenol, has little influence on vascular capacitance or liver volume of dogs, unless the hepatic outflow resistance is elevated by agents such as histamine.  相似文献   

19.
Physiological increases in circulating insulin level significantly increase myocardial glucose uptake in vivo. To what extent this represents a direct insulin action on the heart or results indirectly from reduction in circulating concentrations of free fatty acids (FFA) is uncertain. To examine this, we measured myocardial glucose, lactate, and FFA extraction in 10 fasting men (ages 49-76 yr) with stable coronary artery disease during sequential intracoronary (10 mU/min, coronary plasma insulin = 140 +/- 20 microU/ml) and intravenous (100 mU/min, systemic plasma insulin = 168 +/- 26 microU/ml) insulin infusion. Basally, hearts extracted 2 +/- 2% of arterial glucose and extracted 27 +/- 6% of FFA. Coronary insulin infusion increased glucose extraction to 5 +/- 3% (P < 0.01 vs. basal) without changing plasma FFA or heart FFA extraction. Conversion to intravenous infusion lowered plasma FFA by approximately 50% and heart FFA extraction by approximately 75%, increasing heart glucose extraction still further to 8 +/- 3% (P < 0. 01 vs. intracoronary). This suggests the increase in myocardial glucose extraction observed in response to an increment in systemic insulin concentration is mediated equally by a reduction in circulating FFA and by direct insulin action on the heart itself. Coronary insulin infusion increased myocardial lactate extraction as well (from 20 +/- 10% to 29 +/- 9%, P < 0.05), suggesting the local action may include stimulation of a metabolic step distal to glucose transport and glycolysis.  相似文献   

20.
We previously reported that infection decreases hepatic glucose uptake when glucose is given as a constant peripheral glucose infusion (8 mg. kg(-1) x min(-1)). This impairment persisted despite greater hyperinsulinemia in the infected group. In a normal setting, hepatic glucose uptake can be further enhanced if glucose is given gastrointestinally. Thus the aim of this study was to determine whether hepatic glucose uptake is impaired during an infection when glucose is given gastrointestinally. Thirty-six hours before study, a sham (SH, n = 7) or Escherichia coli-containing (2 x 10(9) organisms/kg; INF; n = 7) fibrin clot was placed in the peritoneal cavity of chronically catheterized dogs. After the 36 h, a glucose bolus (150 mg/kg) followed by a continuous infusion (8 mg. kg(-1). min(-1)) of glucose was given intraduodenally to conscious dogs for 240 min. Tracer ([3-(3)H]glucose and [U-(14)C]glucose) and arterial-venous difference techniques were used to assess hepatic and intestinal glucose metabolism. Infection increased hepatic blood flow (35 +/- 5 vs. 47+/-3 ml x g(-1) x min(-1); SH vs. INF) and basal glucose rate of appearance (2.1+/-0.2 vs. 3.3+/-0.1 mg x kg(-1) x min(-1)). Arterial insulin concentrations increased similarly in SH and INF during the last hour of glucose infusion (38+/-8 vs. 46+/-20 microU/ml), and arterial glucagon concentrations fell (62+/-14 to 30+/-3 vs. 624+/-191 to 208+/-97 pg/ml). Net intestinal glucose absorption was decreased in INF, attenuating the increase in blood glucose caused by the glucose load. Despite this, net hepatic glucose uptake (1.6+/-0.8 vs. 2.4+/- 0.9 mg x kg(-1) x min(-1); SH vs. INF) and consequently tracer-determined glycogen synthesis (1.3+/-0.3 vs. 1.0+/-0.3 mg. kg(-1) x min(-1)) were similar between groups. In summary, infection impairs net glucose absorption, but not net hepatic glucose uptake or glycogen deposition, when glucose is given intraduodenally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号