首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Myosin binding protein C (MyBP-C) is a component of the thick filament of striated muscle. The importance of this protein is revealed by recent evidence that mutations in the cardiac gene are a major cause of familial hypertrophic cardiomyopathy. Here we investigate the distribution of MyBP-C in the A-bands of cardiac and skeletal muscles and compare this to the A-band structure in cardiac muscle of MyBP-C-deficient mice. We have used a novel averaging technique to obtain the axial density distribution of A-bands in electron micrographs of well-preserved specimens. We show that cardiac and skeletal A-bands are very similar, with a length of 1.58 ± 0.01 μm. In normal cardiac and skeletal muscle, the distributions are very similar, showing clearly the series of 11 prominent accessory protein stripes in each half of the A-band spaced axially at 43-nm intervals and starting at the edge of the bare zone. We show by antibody labelling that in cardiac muscle the distal nine stripes are the location of MyBP-C. These stripes are considerably suppressed in the knockout mouse hearts as expected. Myosin heads on the surface of the thick filament in relaxed muscle are thought to be arranged in a three-stranded quasi-helix with a mean 14.3-nm axial cross bridge spacing and a 43 nm helix repeat. Extra “forbidden” meridional reflections, at orders of 43 nm, in X-ray diffraction patterns of muscle have been interpreted as due to an axial perturbation of some levels of myosin heads. However, in the MyBP-C-deficient hearts these extra meridional reflections are weak or absent, suggesting that they are due to MyBP-C itself or to MyBP-C in combination with a head perturbation brought about by the presence of MyBP-C.  相似文献   

2.
Antibodies specific for the novel 86 kd protein purified from chicken pectoralis myofibrils stained by indirect immunofluorescence the middle third of each half A-band of isolated myofibrils and myotubes. Pectoralis muscle 86 kd protein, like pectoralis C-protein, displayed a fibre-type specific distribution by being restricted to fast twitch fibres and absent in slow tonic and heart muscle fibres. This was demonstrated by immunoblotting experiments with tissue extracts and by immunofluorescence labelling of cryosections. In primary cell cultures prepared from embryonic chicken breast muscle, 86 kd protein, C-protein and myomesin were all detected in post-mitotic myoblasts where fluorescence was found in a cross-striated pattern along strands of nascent myofibrils. Fluorescence due to the 86 kd protein was restricted to myofibrils within myotubes and no significant labelling of the sarcoplasm was evident. Glycerinated fast twitch muscle fibres, after incubation with antibodies to 86 kd protein, revealed in each half of the A-band nine distinctly labelled stripes, spaced about 43 nm apart. Simultaneous incubation of fibres with antibodies against 86 kd protein and C-protein showed a co-localization of the seven C-protein stripes (stripes 5 to 11), with seven stripes of 86 kd protein. The two additional stripes (stripes 3 and 4) labelled by anti-86 kd antibody continued towards the M-band at the same periodicity from the last C-protein stripe (stripe 5). Thus, partial co-localization of two different thick filament proteins is demonstrated and the identity of transverse stripes at positions 3 and 4 attributed in part to the presence of the new 86 kd protein.  相似文献   

3.
Ion-exchange column-purified I-protein was labeled by fluorescein isothiocyanate (FITC) at an equimolar ratio. When FITC-labeled I-protein was reacted with glycerinated myofibrils of chicken breast muscle in a phosphate-buffered saline, fluorescence was observed at the A-band and/or the Z-line of the sarcomere. However, FITC-labeled I-protein did not stain freshly prepared myofibrils. When FITC-I-protein was reacted with a nitrocellulose paper sheet on which muscle proteins were blotted after SDS-polyacrylamide gel electrophoresis, some peptide bands, including connectin and nebulin, were fluorescent. These facts can explain why anti-I-protein antibodies stain the A-I junctional region of fresh myofibrils and A-bands and/or Z-lines of glycerinated myofibrils. It is very likely that I-protein is transferred from the A-I junctions of myofibrils and translocates to A-bands and Z-lines, where some components that can bind to I-protein are localized, as myofibrils are degraded during the glycerination.  相似文献   

4.
The events occurring during phorbol ester mediated destruction of myofibrils in differentiated muscle cells were followed at the fluorescence and electron microscope levels using antibodies which bind troponin-T, a newly discovered 185 000 dalton M-line protein called myomesin and muscle type creatine kinase. The following series of events is proposed. Within one day of phorbol ester treatment, Z-bands and thin filaments, including troponin-T, are absent from many myofibrils resulting in the rapid loss of longitudinal and lateral alignment. A-bands become randomly oriented and clustered into ever smaller compartments within the rounding, myosac-like, multinucleated cells until after 3 days of treatment they too disappear. The M-line proteins are always present in existing A-bands. These results suggest that the Z-band and associated structures are responsible for the maintenance of alignment and the lateral register of myofibrils, whereas the M-line is responsible for the structural integrity of the A-band. When phorbol ester is removed, the cells revert to a myotube morphology and within 2 to 3 days are filled with myofibrils. A comparison of the appearance of troponin-T and the 185 000 dalton myomesin in the recovery period to their appearance during normal myofibrillogenesis reveals that these proteins are more temporally co-ordinated during myofibrillogenesis than in the phorbol ester experimental system.  相似文献   

5.
Rabbit antiserum raised agains I-protein was used for immunofluorescent staining of chicken myofibrils. The FITC-conjugated anti-I-protein antibody stained A-band regions except at their middle regions. According to the conditions used, the myofibrils stained by their fluorescent antibody showed slightly different patterns, i.e., the nonstained regions in the center of the A-bands were wider. On fixing with glutaraldehyde, myofibrils were stained in the A-band regions except at their middle regions. Therefore, I-protein may be localized at A-bands except for the center.  相似文献   

6.
FITC-labeled antibodies raised against chicken myofibrillar I-protein stained chicken myofibrils, which were fixed with formalin immediately after being cut from the sacrificed chicken breast muscle, at the junctional region of A-bands and I-bands. On the other hand, the antibodies stained the glycerinated myofibrils at the region around Z-bands. Aged glycerinated myofibrils stored in a cold room became stained with the same antibodies at the M-line and the A-band region except for the H-zone and the Z-band. I-Protein, which was originally localized at the A-I junctions, moved to the region around Z-bands and A-bands during the process of preparing myofibrils, paralleling the deterioration of myofibrils. Although I-protein is easily released from its original position, it is not a cytoplasmic protein of muscle but an intrinsic myofibrillar component, because immunoblotting tests showed that I-protein is contained in the myofibrillar fraction and not in the muscular cytoplasmic fraction.  相似文献   

7.
Monoclonal antibodies (McAbs) specific for the C-proteins of chicken pectoralis major and anterior latissimus dorsi (ALD) muscles have been produced and characterized. Antibody specificity was demonstrated by solid phase radioimmunoassay (RIA), immunoblots, and immunofluorescence cytochemistry. Both McAbs MF-1 (or MF-21) and ALD-66 bound to myofibrillar proteins of approximately 150,000 daltons; the former antibody reacted with pectoralis but not ALD myofibrils, whereas the latter recognized ALD but not pectoralis myofibrils. Chromatographic elution of the antigens from DEAE-Sephadex, and their distribution in the A-band, support the conclusion that both of these antibodies recognize variant isoforms of C-protein. Since both McAbs react with a protein of similar molecular weight in the A-band of all myofibrils of the posterior latissimus dorsi (PLD) muscle, we suggest that either another isoform of C-protein exists in the PLD muscle or both pectoralis and ALD-like isoforms coexist in the A-bands of PLD muscle.  相似文献   

8.
A monoclonal antibody, MF20, which has been shown previously to bind the myosin heavy chain of vertebrate striated muscle, has been proven to bind the light meromyosin (LMM) fragment by solid phase radioimmune assay with alpha-chymotryptic digests of purified myosin. Epitope mapping by electron microscopy of rotary-shadowed, myosin-antibody complexes has localized the antibody binding site to LMM at a point approximately 92 nm from the C-terminus of the myosin heavy chain. Since this epitope in native thick filaments is accessible to monoclonal antibodies, we used this antibody as a high affinity ligand to analyze the packing of LMM along the backbone of the thick filament. By immunofluorescence microscopy, MF20 was shown to bind along the entire A-band of chicken pectoralis myofibrils, although the epitope accessibility was greater near the ends than at the center of the A-bands. Thin-section, transmission electron microscopy of myofibrils decorated with MF20 revealed 50 regularly spaced, cross-striations in each half A-band, with a repeat distance of approximately 13 nm. These were numbered consecutively, 1-50, from the A-band to the last stripe, approximately 68 nm from the filament tips. These same striations could be visualized by negative staining of native thick filaments labeled with MF20. All 50 striations were of a consecutive, uninterrupted repeat which approximated the 14-15-nm axial translation of cross-bridges. Each half M-region contained five MF20 striations (approximately 13 nm apart) with a distance between stripes 1 and 1', on each half of the bare zone, of approximately 18 nm. This is compatible with a packing model with full, antiparallel overlap of the myosin rods in the bare zone region. Differences in the spacings measured with negatively stained myofilaments and thin-sectioned myofibrils have been shown to arise from specimen shrinkage in the fixed and embedded preparations. These observations provide strong support for Huxley's original proposal for myosin packing in thick filaments of vertebrate muscle (Huxley, H. E., 1963, J. Mol. Biol., 7:281-308) and, for the first time, directly demonstrate that the 14-15-nm axial translation of LMM in the thick filament backbone corresponds to the cross-bridge repeat detected with x-ray diffraction of living muscle.  相似文献   

9.
Thick and thin filaments in asynchronous flight muscle overlap nearly completely and thick filaments are attached to the Z-disc by connecting filaments. We have raised antibodies against a fraction of Lethocerus flight muscle myofibrils containing Z-discs and associated filaments and also against a low ionic strength extract of myofibrils. Monoclonal antibodies were obtained to proteins of 800 kd (p800), 700 kd (p700), 400 kd (p400) and alpha-actinin. The positions of the proteins in Lethocerus flight and leg myofibrils were determined by immunofluorescence and electron microscopy. p800 is in connecting filaments of flight myofibrils and in A-bands of leg myofibrils. p700 is in Z-discs of flight myofibrils and an immunologically related protein, p500, is in leg muscle Z-discs. p400 is in M-lines of both flight and leg myofibrils. Preliminary DNA sequencing shows that p800 is related to vertebrate titin and nematode twitchin. Molecules of p800 could extend from the Z-disc a short way along thick filaments, forming a mechanical link between the two structures. All three high molecular weight proteins probably stabilize the structure of the myofibril.  相似文献   

10.
Binding and location of AMP deaminase in rabbit psoas muscle myofibrils   总被引:2,自引:0,他引:2  
It is shown that an interaction exists between AMP deaminase (EC 3.5.4.6) and myofibrils that is sufficiently strong (Kd congruent to 10(-10) M) for more than 99% of the binding sites for the enzyme to be filled in vivo. The binding is not strong enough, however, to stop removal of the enzyme during the extensive washing normally used in the preparation of myofibrils. Fluorescent antibodies to the enzyme label myofibrils close to the junction of the A- and I-bands. The invariance of the position of the antibody stripes at this site, over a range of sarcomere lengths, indicates that the enzyme is attached to the A-band. The intensity of the fluorescence declines in parallel with dissociation of the enzyme. In this muscle, the number of AMP deaminase binding sites per thick filament is approximately six, suggesting that the enzyme is located at a single axial position in each half A-band. Electron microscopy of negatively stained, antibody-labelled myofibrils reveals the distance between the AMP deaminase sites at opposite ends of an A-band to be 1.69(+/- 0.02 micron). Since the length of the A-band is 1.57 micron, the binding site for the enzyme must be significantly beyond where thick filaments have previously been thought to end.  相似文献   

11.
We studied the development of transverse (T)-tubules and sarcoplasmic reticulum (SR) in relationship to myofibrillogenesis in normal and dysgenic (mdg/mdg) mouse skeletal muscle by immunofluorescent labeling of specific membrane and myofibrillar proteins. At E16 the development of the myofibrils and membranes in dysgenic and normal diaphragm was indistinguishable, including well developed myofibrils, a delicate network of T-tubules, and a prominent SR which was not yet cross-striated. In diaphragms of E18 dysgenic mice, both the number and size of muscle fibers and myofibrillar organization were deficient in comparison to normal diaphragms, as previously reported. T-tubule labeling was abnormal, showing only scattered tubules and fragments. However, many muscle fibers displayed cross striation of sarcomeric proteins and SR comparable to normal muscle. In cultured myotubes, cross-striated organization of sarcomeric proteins proceeded essentially in two stages: first around the Z-line and later in the A-band. Sarcomeric organization of the SR coincided with the first stage, while the appearance of T-tubules in the mature transverse orientation occurred infrequently, only after A-band maturation. In culture, myofibrillar and membrane organization was equivalent in normal and dysgenic muscle at the earlier stage of development, but half as many dysgenic myotubes reached the later stage as compared to normal. We conclude that the mdg mutation has little effect on the initial stage of membrane and myofibril development and that the deficiencies often seen at later stages result indirectly from the previously described absence of dihydropyridine receptor function in the mutant.  相似文献   

12.
The two major proteins in the I-bands of skeletal muscle, actin and tropomyosin, were each labeled with fluorescent dyes and microinjected into cultured cardiac myocytes and skeletal muscle myotubes. Actin was incorporated along the entire length of the I-band in both types of muscle cells. In the myotubes, the incorporation was uniform, whereas in cardiac myocytes twice as much actin was incorporated in the Z-bands as in any other area of the I-band. Labeled tropomyosin that had been prepared from skeletal or smooth muscle was incorporated in a doublet in the I-band with an absence of incorporation in the Z-band. Tropomyosin prepared from brain was incorporated in a similar pattern in the I-bands of cardiac myocytes but was not incorporated in myotubes. These results in living muscle cells contrast with the patterns obtained when labeled actin and tropomyosin are added to isolated myofibrils. Labeled tropomyosins do not bind to any region of the isolated myofibrils, and labeled actin binds to A-bands. Thus, only living skeletal and cardiac muscle cells incorporate exogenous actin and tropomyosin in patterns expected from their known myofibrillar localization. These experiments demonstrate that in contrast to the isolated myofibrils, myofibrils in living cells are dynamic structures that are able to exchange actin and tropomyosin molecules for corresponding labeled molecules. The known overlap of actin filaments in cardiac Z-bands but not in skeletal muscle Z-bands accounts for the different patterns of actin incorporation in these cells. The ability of cardiac myocytes and non-muscle cells but not skeletal myotubes to incorporate brain tropomyosin may reflect differences in the relative actin-binding affinities of non-muscle tropomyosin and the respective native tropomyosins. The implications of these results for myofibrillogenesis are presented.  相似文献   

13.
We studied the development of transverse (T)-tubules and sarcoplasmic reticulum (SR) in relationship to myofibrillogenesis in normal and dysgenic (mdg/mdg) mouse skeletal muscle by immunofluorescent labeling of specific membrane and myofibrillar proteins. At E16 the development of the myofibrils and membranes in dysgenic and normal diaphragm was indistinguishable, including well developed myofibrils, a delicate network of T-tubules, and a prominent SR which was not yet cross-striated. In diaphragms of E18 dysgenic mice, both the number and size of muscle fibers and myofibrillar organization were deficient in comparison to normal diaphragms, as previously reported. T-tubule labeling was abnormal, showing only scattered tubules and fragments. However, many muscle fibers displayed cross striation of sarcomeric proteins and SR comparable to normal muscle. In cultured myotubes, cross-striated organization of sarcomeric proteins proceeded essentially in two stages: first around the Z-line and later in the A-band. Sarcomeric organization of the SR coincided with the first stage, while the appearance of T-tubules in the mature transverse orientation occurred infrequently, only after A-band maturation. In culture, myofibrillar and membrane organization was equivalent in normal and dysgenic muscle at the earlier stage of development, but half as many dysgenic myotubes reached the later stage as compared to normal. We conclude that the mdg mutation has little effect on the initial stage of membrane and myofibril development and that the deficiencies often seen at later stages result indirectly from the previously described absence of dihydropyridine receptor function in the mutant.  相似文献   

14.
Obscurin is a newly identified giant muscle protein whose functions remain to be elucidated. In this study we used high-resolution confocal microscopy to examine the dynamics of obscurin localization in cultures of rat cardiac myocytes during the assembly and disassembly of myofibrils. Double immunolabeling of neonatal and adult rat cells for obscurin and sarcomeric alpha-actinin, the major protein of Z-lines, demonstrated that, during myofibrillogenesis, obscurin is intensely incorporated into M-band areas of A-bands and, to a lesser extent, in Z-lines of newly formed sarcomeres. Presarcomeric structural precursors of myofibrils were intensely immunopositive for alpha-actinin and, unlike mature myofibrils, weakly immunopositive or immunonegative for obscurin. This indicates that most of the obscurin assembles in developing myofibrils after abundant incorporation of alpha-actinin and that massive integration of obscurin occurs at more advanced stages of sarcomere assembly. Immunoreactivity for obscurin in the middle of A-bands and in Z-lines of sarcomeres bridged the gaps between individual bundles of newly formed myofibrils, suggesting that this protein appears to be directly involved in their primary lateral connection and registered alignment into larger clusters. Close sarcomeric localization of obscurin and titin suggests that they may interact during myofibril assembly. Interestingly, the laterally aligned striated pattern of obscurin formed at a stage when desmin, traditionally considered as a molecular linker responsible for the lateral binding and stabilization of myofibrils at the Z-bands, was still diffusely localized. During the disassembly of the contractile system in adult myocytes, disappearance of the cross-striated pattern of obscurin preceded the disorganization of registered alignment and intense breakdown of myofibrils. The cross-striated pattern of desmin typical of terminally differentiated myocytes disappeared before or simultaneously with obscurin. During redifferentiation, as in neonatal myocytes, sarcomeric incorporation of obscurin closely followed that of alpha-actinin and occurred earlier than the striated arrangement of desmin intermediate filaments. The presence of obscurin in the Z-lines and its later assembly into the A/M-bands indicate that it may serve to stabilize and align sarcomeric structure when myosin filaments are incorporated. Our data suggest that obscurin, interacting with other muscle proteins and possibly with the sarcoplasmic reticulum, may have a role as a flexible structural integrator of myofibrils during assembly and adaptive remodeling of the contractile apparatus.  相似文献   

15.
The ultrastructure of sarcomeres of glycerinated rabbit psoas muscle was studied using freeze-fracture-etching, freeze-drying and optical diffraction techniques in comparison with the investigation of this muscle by plastic sections and negative staining methods. In frozen and dried myofibrils isolated from the above muscle the stripes of minor proteins location in A- and I-disks were clearly seen. The pivot structure in thick filaments was revealed in longitudinal fractures of the muscle. The ordered arrangement of myosin heads (crossbridges) associated with actin filaments was preserved in frozen longitudinal fractures as evidenced by optical diffraction. Freeze etching technique allowed to revealed some details of Z-line structure: alpha-actinin bridges connecting the ends of actin filaments of neighbouring sarcomeres and to preserve the lateral struts between actin filaments in I-disks.  相似文献   

16.
When fluorescently labeled contractile proteins are injected into embryonic muscle cells, they become incorporated into the cells' myofibrils. In order to determine if this exchange of proteins is unique to the embryonic stage of development, we isolated adult cardiac myocytes and microinjected them with fluorescently labeled actin, myosin light chains, alpha-actinin, and vinculin. Each of these proteins was incorporated into the adult cardiomyocytes and was colocalized with the cells' native proteins, despite the fact that the labeled proteins were prepared from noncardiac tissues. Within 10 min of injection, alpha-actinin was incorporated into Z-bands surrounding the site of injection. Similarly, 30 sec after injection, actin was incorporated into the entire I-bands at the site of injection. Following a 3-h incubation, increased actin fluorescence was noted at the intercalated disc. Vinculin exchange was seen in the intercalated discs, as well as in the Z-bands throughout the cells. Myosin light chains required 4-6 h after injection to become incorporated into the A-bands of the adult muscle. Nonspecific proteins, such as fluorescent BSA, showed no association with the myofibrils or the former intercalated discs. When adult cells were maintained in culture for 10 days, they retain the ability to incorporate these contractile proteins into their myofibrils. T-tubules and the sarcoplasmic reticulum could be detected in periodic arrays in the freshly isolated cells using the membrane dye WW781 and DiOC6[3], respectively. In conclusion, the myofibrils in adult, as in embryonic, muscle cells are dynamic structures, permitting isoform transitions without dismantling of the myofibrils.  相似文献   

17.
The position of paramyosin in insect flight muscle was determined by labelling myofibrils with antibody to paramyosin and examining them by fluorescent and electron microscopy.Antiserum to dung beetle paramyosin had antibodies to another protein as well as to paramyosin. Specific anti-paramyosin bound to the H-zone of Lethocerus myofibrils showing paramyosin was exposed only in that region. Antibodies to the other protein bound at the ends of the A-band.The exposure of antigenic sites in the two regions of the myofibril depended on the extent of contraction in the myofibril: the sites at the end of the A-band were most exposed in rest-length myofibrils and those at the H-zone in shortened ones.Antibody-labelling in stretched bee muscle showed that the protein at the ends of the sarcomere extended from myosin filaments to Z-line.The high resting elasticity of insect flight muscle and hence its capacity for oscillatory contraction may be due to the protein between myosin filaments and Z-line.  相似文献   

18.
Obscurin is a recently identified giant multidomain muscle protein (∼800 kDa) whose structural and regulatory functions remain to be defined. The goal of this study was to examine the effect of obscurin gene silencing induced by RNA interference on the dynamics of myofibrillogenesis and hypertrophic response to phenylephrine in cultured rat cardiomyocytes. We found that that the adenoviral transfection of short interfering RNA (siRNA) constructs targeting the first coding exon of obscurin sequence resulted in progressive depletion of cellular obscurin. Confocal microscopy demonstrated that downregulation of obscurin expression led to the impaired assembly of new myofibrillar clusters and considerable aberrations of the normal structure of the contractile apparatus. While the establishment of the initial periodic pattern of α-actinin localization remained mainly unaffected in siRNA-transfected cells, obscurin depletion did cause the defective lateral alignment of myofibrillar bundles, leading to their abnormal bifurcation, dispersal and multiple branching. Bending of immature myofibrils, apparently associated with the loss of their rigidity, a modified titin pattern, the absence of well-formed A-bands in newly formed contractile structures as documented by a diffuse localization of sarcomeric myosin labeling, and an occasional irregular periodicity of sarcomere spacing were typical of obscurin siRNA-treated cells. These results suggest that obscurin is indispensable for spatial positioning of contractile proteins and for the structural integration and stabilization of myofibrils, especially at the stage of myosin filament incorporation and A-band assembly. This demonstrates a vital role for obscurin in myofibrillogenesis and hypertrophic growth.  相似文献   

19.
The body wall muscle cells of the nematode, Caenorhabditis elegans, contain two unique types of myosin heavy chain, A and B. We have utilized an immunochemical approach to define the structural location of these two myosins within body wall muscle thick filaments. By immunofluorescence microscopy, myosin B antibodies label the thick filament-containing A-bands of body wall muscle with the exception of a thin gap at the center of each A-band, and myosin A antibodies react to form a medial fluorescent stripe within each A-band. The complexes of these monoclonal antibodies with isolated thick filaments were negatively stained and studied by electron microscopy. The myosin B antibody reacts with the polar regions of all filaments but does not react with a central 0.9 μm zone. The myosin A antibody reacts with a central 1.8 μm zone in all filaments but does not react with the polar regions.  相似文献   

20.
The three-dimensional arrangement of the myosin filaments in the A-band of frog sartorius muscle was studied using electron micrographs of very thin and accurately cut transverse sections through the bare region (on each side of the M-band) where the thick filament shafts are roughly triangular in shape. It was found that the orientations of these triangular profiles are arranged to give a superlattice of the same size and shape as that proposed by Huxley & Brown (1967) on the basis of X-ray diffraction evidence, but the contents of the superlattice may not be as they suggested. The results from detailed image analysis strongly suggest that myosin filaments (which have been shown to have 3-fold rotational symmetry, Luther, 1978; Luther, Munro and Squire, unpublished results) are arranged with one of two orientations which are 60 ° (or 180 °) apart. This arrangement of filaments with 3-fold symmetry is not that predicted for a superlattice with the symmetry suggested by Huxley & Brown.Two rules define the way in which the orientations of neighbouring filaments are defined. Rule (1): no three mutually adjacent filaments in the hexagonal array of filaments in the A-band can all have identical orientations; and rule (2): no three successive filaments along a 101? row in the filament array can have identical orientations. These two no-three-alike rules are sufficient to describe the observed arrangement of filament profiles in the frog bare region (except for some minor violations discussed in the text), and they lead automatically to the generation of the required superlattice. The A-band structure in fish muscle is different; there is no superlattice and the triangular bare region profiles have only one orientation. The frog superlattice and fish simple lattice are explained directly in terms of different interactions between the M-bridges in the M-bands of these muscles. The observed structures require that the myosin filament symmetry at the centre of the M-band is that of the dihedral point group 32. The two possible forms of interaction between filaments with this symmetry (apart from a completely random structure) give rise to the observed A-band lattices in frog and fish muscles. The 3-fold rotational symmetry of the myosin filaments required to explain the observed micrographs also requires that the myosin crossbridge arrangements around the actin filaments in frog and fish muscles will be different. It is suggested that the structure in the frog A-band (and in the A-bands of other higher vertebrates) has evolved from that in fish to improve the distribution of crossbridges around the aotin filaments. The X-ray diffraction evidence of Huxley & Brown (1967) will be accounted for in terms of the proposed A-band structure in a further paper in this series.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号