首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
In Dictyostelium discoideum counting factor (CF), a secreted approximately 450-kDa complex of polypeptides, inhibits group and fruiting body size. When the gene encoding countin (a component of CF) was disrupted, cells formed large groups. We find that recombinant countin causes developing cells to form small groups, with an EC(50) of approximately 3 ng/ml, and affects cAMP signal transduction in the same manner as semipurified CF. Recombinant countin increases cell motility, decreases cell-cell adhesion, and regulates gene expression in a manner similar to the effect of CF. However, countin does not decrease adhesion or group size to the extent that semipurified CF does. A 1-min exposure of developing cells to countin causes an increase in F-actin polymerization and myosin phosphorylation and a decrease in myosin polymerization, suggesting that countin activates a rapid signal transduction pathway. (125)I-Labeled countin has countin bioactivity, and binding experiments suggest that vegetative and developing cells have approximately 53 cell-surface sites that bind countin with a K(D) of approximately 1.5 ng/ml or 60 pm. We hypothesize that countin regulates cell development through the same pathway as CF and that other proteins within the complex may modify the activity of countin and/or have independent size-regulating activities.  相似文献   

2.
Developing Dictyostelium cells form evenly sized groups of approximately 2 x 10(4) cells. A secreted 450-kDa protein complex called counting factor (CF) regulates group size by repressing cell-cell adhesion and myosin polymerization and by increasing cAMP-stimulated cAMP production, actin polymerization, and cell motility. We find that CF regulates group size in part by repressing internal glucose levels. Transformants lacking bioactive CF and wild-type cells with extracellular CF depleted by antibodies have high glucose levels, whereas transformants oversecreting CF have low glucose levels. A component of CF, countin, affects group size in a manner similar to CF, and a 1-min exposure of cells to countin decreases glucose levels. Adding 1 mm exogenous glucose negates the effect of high levels of extracellular CF on group size and mimics the effect of depleting CF on glucose levels, cell-cell adhesion, cAMP pulse size, actin polymerization, myosin assembly, and motility. These results suggest that glucose is a downstream component in part of the CF signaling pathway and may be relevant to the observed role of the insulin pathway in tissue size regulation in higher eukaryotes.  相似文献   

3.
A secreted 450-kDa complex of proteins called counting factor (CF) is part of a negative feedback loop that regulates the size of the groups formed by developing Dictyostelium cells. Two components of CF are countin and CF50. Both recombinant countin and recombinant CF50 decrease group size in Dictyostelium. countin- cells have a decreased cAMP-stimulated cAMP pulse, whereas recombinant countin potentiates the cAMP pulse. We find that CF50 cells have an increased cAMP pulse, whereas recombinant CF50 decreases the cAMP pulse, suggesting that countin and CF50 have opposite effects on cAMP signal transduction. In addition, countin and CF50 have opposite effects on cAMP-stimulated Erk2 activation. However, like recombinant countin, recombinant CF50 increases cell motility. We previously found that cells bind recombinant countin with a Hill coefficient of approximately 2, a KH of 60 pm, and approximately 53 sites/cell. We find here that cells also bind 125I-recombinant CF50, with a Hill coefficient of approximately 2, a KH of approximately 15 ng/ml (490 pm), and approximately 56 sites/cell. Countin and CF50 require each other's presence to affect group size, but the presence of countin is not necessary for CF50 to bind to cells, and CF50 is not necessary for countin to bind to cells. Our working hypothesis is that a signal transduction pathway activated by countin binding to cells modulates a signal transduction pathway activated by CF50 binding to cells and vice versa and that these two pathways can be distinguished by their effects on cAMP signal transduction.  相似文献   

4.
Biosynthesis of protease nexin-I   总被引:1,自引:0,他引:1  
Protease nexin-I (PN-I) is representative of a newly described class of serine protease inhibitors secreted by human fibroblasts, the protease nexins. Protease nexins form covalent complexes with their target proteases, subsequently binding to cells via specific receptors. PN-I preferentially binds thrombin, urokinase, trypsin, and plasmin, and its binding to thrombin is accelerated by heparin. We have previously described the production of a polyclonal antibody against PN-I which is able to block the binding of PN-I X proteinase complexes to cells and will immunoprecipitate metabolically labeled PN-I. Anti-PN-I was used to investigate the biosynthesis and regulation of PN-I in human fibroblasts. Unlabeled PN-I could compete for the binding of metabolically labeled PN-I to anti-PN-I, as shown by the elimination of the 43-kDa band representing PN-I on sodium dodecyl sulfate-polyacrylamide gel electrophoresis autoradiographs. Excision of this 43-kDa band from gels, followed by amino-terminal sequencing, showed a homogeneous protein that is homologous with that described by Scott et al. (Scott, R. W., Bergman, B. L., Bajpai, A., Hersh, R. T., Rodriguez, H., Jones, B. N., Barreda, C., Watts, S., and Baker, J. B. (1985) J. Biol. Chem. 260, 7029-7034). An analysis of the biosynthesis of the PN-I revealed that a lower Mr precursor exists intracellularly. This apparent rough endoplasmic reticulum form appears as a doublet on sodium dodecyl sulfate gels, as does mature PN-I. The PN-I precursor was also sensitive to endoglycosidase H, suggesting that it contains N-linked carbohydrates of the high mannose form. Mature PN-I is not sensitive to endoglycosidase H, but does contain 3 kDa of N-linked carbohydrate. PN-I appears to be constitutively secreted by fibroblasts. PN-I levels in conditioned media reach a steady state within 48 h, although PN-I synthesis maintains a constant rate. This steady state is due to the continuous uptake of PN-I from medium, presumably through a specific receptor.  相似文献   

5.
Dictyostelium aggregation streams break up into groups of 10(3) to 2 x 10(4) cells. The cells sense the number of cells in a stream or group by the level of a secreted counting factor (CF). CF is a complex of at least 5 polypeptides. When the gene encoding countin (one of the CF polypeptides) was disrupted, the cells could not sense each other's presence, resulting in non-breaking streams that coalesced into abnormally large groups. To understand the function of the components of CF, we have isolated cDNA sequences encoding a second component of CF, CF50. CF50 is 30% identical to lysozyme (but has very little lysozyme activity) and contains distinctive serine-glycine motifs. Transformants with a disrupted cf50 gene, like countin(-) cells, form abnormally large groups. Addition of recombinant CF50 protein to developing cf50(-) cells rescues their phenotype by decreasing group size. Abnormalities seen in aggregating countin(-) cells (such as high cell-cell adhesion and low motility) are also observed in the cf50(-) cells. Western blot analysis of conditioned medium sieve column fractions showed that the CF50 protein is present in the same fraction as the 450 kDa CF complex. In the absence of CF50, secreted countin is degraded, suggesting that one function of CF50 may be to protect countin from degradation. However, unlike countin(-) cells, cf50(-) cells differentiate into an abnormally high percentage of cells expressing SP70 (a marker expressed in a subset of prespore cells), and this difference can be rescued by exposing cells to recombinant CF50. These observations indicate that unlike other known multisubunit factors, CF contains subunits with both overlapping and unique properties.  相似文献   

6.
Cathepsin L [EC 3.4.22.15] is secreted via lysosomal exocytosis by several types of cancer cells, including prostate and breast cancer cells. We previously reported that human cultured fibrosarcoma (HT 1080) cells secrete cathepsin L into the medium; this secreted cathepsin is 10-times more active than intracellular cathepsin. This increased activity was attributed to the presence of a 32-kDa cathepsin L in the medium. The aim of this study was to examine how this active 32-kDa cathepsin L is secreted into the medium. To this end, we compared the secreted active 32-kDa cathepsin L with lysosomal cathepsin L by using a novel gelatin zymography technique that employs leupeptin. We also examined the glycosylation and phosphorylation status of the proteins by using the enzymes endoglycosidase H [EC 3.2.1.96] and alkaline phosphatase [EC 3.1.3.1]. Strong active bands corresponding to the 32-kDa and 34-kDa cathepsin L forms were detected in the medium and lysosomes, respectively. The cell extract exhibited strong active bands for both forms. Moreover, both forms were adsorbed onto a concanavalin A-agarose column. The core protein domain of both forms had the same molecular mass of 30 kDa. The 32-kDa cathepsin L was phosphorylated, while the 34-kDa lysosomal form was dephosphorylated, perhaps because of the lysosomal marker enzyme, acid phosphatase. These results suggest that the active 32-kDa form does not enter the lysosomes. In conclusion, our results indicate that the active 32-kDa cathepsin L is secreted directly from the HT 1080 cells and not via lysosomal exocytosis.  相似文献   

7.
The 180- and 190-kDa isoforms of CD45 are preferentially expressed on the helper inducer (memory) subset of CD4 cells. In order to generate monoclonal antibodies against the extracellular domains of these isoforms and determine whether they could regulate the function and activation of these cells, we developed a mAb, anti-4H2D, by immunizing Balb/c mice with an isogenic mouse pre-B cell line expressing the human 190-kDa CD45 isoform. Anti-4H2D reacts with approximately 60% of T cells, 70% of CD4 cells, and 60% of CD8 cells. The CD4 cell population defined by this mAb corresponds functionally and phenotypically to that defined by the CD45RO+CD29+ subset. Western blotting demonstrated that anti-4H2D reacts primarily with the 190-kDa isoform of CD45 and to a minor extent, the 205- and 180-kDa CD45 isoforms. Interestingly, this mAb reacted with only a subpopulation of mature thymocytes and peripheral T cells, despite the fact that the 190-kDa CD45 isoform, as well as CD45RO and CD29, is more widely distributed on cells of hematopoietic origin. The 4H2D epitope was neuraminidase sensitive, indicating that anti-4H2D reacts with a carbohydrate epitope which is present on only a subset of the T cells containing the 190-kDa CD45 isoform epitopes. Functional studies showed that soluble anti-4H2D augmented T cell proliferation induced by the CD2 and CD3 pathways, and treatment of T cells with this mAb up-regulated [Ca2+]i flux induced by both anti-CD2 and anti-CD3 mAbs. These results suggest that the 190-kDa CD45 isoform on human CD4 cells is heterogeneous and that the 190-kDa isoform recognized by anti-4H2D regulates the function and activation of CD4 helper T cells.  相似文献   

8.
A remarkable aspect of Dictyostelium development is that cells form evenly sized groups of approximately 2 x 10(4) cells. A secreted 450 kDa protein complex called counting factor (CF) regulates the number of cells per group. We find that CF regulates group size by repressing cell-cell adhesion. In both experiments and computer simulations, high levels of CF (and thus low adhesion) result in aggregation streams breaking up into small groups, while no CF (and thus high adhesion) results in no stream breakup and large groups. These results suggest that in Dictyostelium and possibly other systems a secreted factor regulating cell-cell adhesion can regulate the size of a group of cells.  相似文献   

9.
Developing Dictyostelium cells form aggregation streams that break into groups of approximately 2 x 10(4) cells. The breakup and subsequent group size are regulated by a secreted multisubunit counting factor (CF). To elucidate how CF regulates group size, we isolated second-site suppressors of smlA(-), a transformant that forms small groups due to oversecretion of CF. smlA(-) sslA1(CR11) cells form roughly wild-type-size groups due to an insertion in the beginning of the coding region of sslA1, one of two highly similar genes encoding a novel protein. The insertion increases levels of SslA. In wild-type cells, the sslA1(CR11) mutation forms abnormally large groups. Reducing SslA levels by antisense causes the formation of smaller groups. The sslA(CR11) mutation does not affect the extracellular accumulation of CF activity or the CF components countin and CF50, suggesting that SslA does not regulate CF secretion. However, CF represses levels of SslA. Wild-type cells starved in the presence of smlA(-) cells, recombinant countin, or recombinant CF50 form smaller groups, whereas sslA1(CR11) cells appear to be insensitive to the presence of smlA(-) cells, countin, or CF50, suggesting that the sslA1(CR11) insertion affects CF signal transduction. We previously found that CF reduces intracellular glucose levels. sslA(CR11) does not significantly affect glucose levels, while glucose increases SslA levels. Together, the data suggest that SslA is a novel protein involved in part of a signal transduction pathway regulating group size.  相似文献   

10.
Antibodies against a lysosomal membrane antigen (A-Ly-M) have recently been obtained and characterized (Reggio, H., D. Bainton, E. Harms, E. Coudrier, and D. Louvard, 1984, J. Cell Biol., 99:1511-1526). They recognize a 100,000-mol-wt antigen immunologically related to a purified [H+,K+]ATPase from pig gastric mucosa. In the present study, we have localized this antigen during adsorptive endocytosis in rat prolactin cells in culture using cationized ferritin (CF) as a tracer. CF was rapidly internalized (after 5 min) in coated pits and vesicles that were labeled by antibodies against clathrin. The tracer was then delivered (after 15 min) to vacuoles and multivesicular bodies. These structures were labeled with A-Ly-M. These organelles were devoid of acid phosphatase activity. At later stages (after 30 min) CF was observed within larger structures that were strongly stained by A-Ly-M and displayed a strong acid phosphatase activity. These findings clearly indicate that A-Ly-M react with prelysosomal and lysosomal compartments involved in the endocytic pathway in cultured prolactin cells. The membrane of these structures therefore contains antigenic determinant(s) related to the 100,000-mol-wt polypeptide. Our results suggest that the prelysosomal structure stained by A-Ly-M may represent in GH3 cells the acidic prelysosomal compartment recently described in the early steps of endocytosis in other cell types (Tycko, B., and F. R. Maxfield, 1982, Cell, 28:643-651).  相似文献   

11.
Using a reverse genetic approach, we have demonstrated that the product of the B5R open reading frame (ORF), which has homology with members of the family of complement control proteins, is a membrane glycoprotein present in the extracellular enveloped (EEV) form of vaccinia virus but absent from the intracellular naked (INV) form. An antibody (C'-B5R) raised to a 15-amino-acid peptide from the translated B5R ORF reacted with a 42-kDa protein (gp42) found in vaccinia virus-infected cells and cesium chloride-banded EEV but not INV. Under nonreducing conditions, an 85-kDa component, possibly representing a hetero- or homodimeric form of gp42, was detected by both immunoprecipitation and Western immunoblot analysis. Metabolic labeling with [3H]glucosamine and [3H]palmitate revealed that the B5R product is glycosylated and acylated. The C-terminal transmembrane domain of the protein was identified by constructing a recombinant vaccinia virus that overexpressed a truncated, secreted form of the B5R ORF product. By N-terminal sequence analysis of this secreted protein, the site of signal peptide cleavage of gp42 was determined. A previously described monoclonal antibody (MAb 20) raised to EEV, which immunoprecipitated a protein with biochemical characteristics similar to those of wild-type gp42, reacted with the recombinant, secreted product of the B5R ORF. Immunofluorescence of wild-type vaccinia virus-infected cells by using either MAb 20 or C'-B5R revealed that the protein is expressed on the cell surface and within the cytoplasm. Immunogold labeling of EEV and INV with MAb 20 demonstrated that the protein was found exclusively on the EEV membrane.  相似文献   

12.
G G Chiang  D C Wooten  R A Dilley 《Biochemistry》1992,31(25):5808-5819
Earlier work suggested that Ca2+ ions in the chloroplast thylakoid lumen interact with thylakoid membrane proteins to produce a proton flux gating structure which functions to regulate the expression of the energy-coupling H+ gradient between localized and delocalized modes [Chiang, G., & Dilley, R. A. (1987) Biochemistry 26, 4911-4916]. In this work, one of the phenothiazine Ca2+ antagonists, chlorpromazine, was used as a photoaffinity probe to test for Ca(2+)-dependent binding of the probe to thylakoid proteins. [3H]Chlorpromazine photoaffinity-labels thylakoid polypeptides of Mr 8K and 6K, with generally much less label occurring in other proteins (some experiments showed labeled proteins at Mr 13K-15K). More label was incorporated in circumstances where it is expected that Ca2+ occupies the putative H+ flux gating site, compared to when the gating site is not occupied by calcium. The photoaffinity labeling of the 8-kDa protein was also influenced by the energization level of the thylakoids (less labeling under H+ uptake energization). The 8-kDa protein was identified by partial amino acid sequence data as subunit III of the thylakoid CF0 H+ channel complex. The partial amino acid sequence of the 6-kDa protein (19 residues were determined with some uncertainties) was compared to data in the GCG sequence analysis data base, and no clear identity to a known sequence was revealed. Neither the exact site of putative Ca2+ binding to the CF0 proteolipid nor the site of covalent attachment of the chlorpromazine to the CF0 component has been identified. Evidence for gating of energy-linked H+ fluxes by the hypothesized Ca(2+)-CF0 gating site came from the correlation between Ca(2+)-dependent binding of chlorpromazine to the CF0 8-kDa protein with inhibition of light-driven H+ uptake into the lumen but no inhibition of H+ uptake into sequestered membrane domains. When conditions favored a delocalized delta mu H+ coupling mode, less chlorpromazine was bound to the CF0 structure, and much larger amounts of H+ ions were accumulated in the lumen. The data support the hypothesis that Ca2+ ions act in concert with the 8-kDa CF0 protein (and perhaps another protein, the 6-kDa polypeptide?) in a gating mechanism for regulating the expression of the energy-coupling H+ gradient between localized or delocalized coupling modes.  相似文献   

13.
A ribosomal calmodulin-binding protein from Dictyostelium.   总被引:1,自引:0,他引:1  
Using 125I-calmodulin as a probe, we have recently identified specific Ca2+/calmodulin-binding proteins in cell extracts from the cellular slime mold, Dictyostelium discoideum: a major 22-kDa activity, a soluble 78/80-kDa protein, and several membrane-associated high Mr proteins (Winckler, T., Dammann, H., and Mutzel, R. (1991) Res. Microbiol. 142, 509-519). cDNA clones for at least two of these proteins have been isolated by ligand screening of a lambda gt11 prophage expression library. Antibodies directed against the lacZ-cDNA-encoded fusion protein from one of the clones recognized a single 22-kDa component in D. discoideum extracts which comigrated with the endogenous 22-kDa calmodulin-binding protein. The cDNA-derived nucleotide sequence predicts a protein of Mr 21,659 with 56% sequence identity (69% homology) with rat ribosomal protein L19. The endogenous 22-kDa calmodulin-binding activity was associated with ribosomes. It was found to be an integral constituent of the large ribosomal subunit, since it cosedimented with 60 S ribosomal subunits in sucrose density gradients in the presence of 0.5 M NH4Cl. Our observations point to a physiological role for calmodulin in the Ca2+ regulation of eukaryotic protein synthesis. Support for this comes from recent studies showing inhibition of protein synthesis by calmodulin antagonists in Ehrlich ascites tumor cells (Kumar, R. V., Panniers, R., Wolfman, A., and Henshaw, E.C. (1991) Eur. J. Biochem. 195, 313-319).  相似文献   

14.
A truncated soluble form of the human interleukin-2 receptor p55 chain (T-S-IL-2R) was expressed to high levels in RODENT (mammalian) cells and affinity-purified. Its biochemical behavior was analyzed by polyacrylamide gel electrophoresis (PAGE), gel filtration, and sucrose gradient centrifugation. It migrated as a single 40-kDa band on sodium dodecyl sulfate-PAGE (reducing or nonreducing conditions), whereas it ran as a 80-kDa component on native PAGE or as a 86-kDa component on gel filtration. The combination of gel filtration and density gradient sedimentation gave a Stokes radius of 4.0 nm and a sedimentation coefficient of 3.72 S. The deduced molecular mass was 67 kDa, and the fractional ratio was 1.516. These data therefore indicated that the T-S-IL-2R was secreted as an homodimer of two noncovalently associated 40-kDa subunits. Cross-linking experiments using bifunctional reagents enabled the materialization of the dimeric structure on sodium dodecyl sulfate-PAGE. Stoichiometric binding studies using two monoclonal antibodies (mAbs 33B3.1 and 11H2) reacting with separate epitopes on the p55 chain also strongly supported the dimeric structure. Indeed, there was one binding site for the 33B3.1 mAb (and Fab fragment) per T-S-IL-2R 40-kDa subunit, whereas the 11H2 mAb (or Fab fragment) could bind only half a site per subunit, a result which could only be explained when assuming more than one subunit for the native T-S-IL-2R. Soluble interleukin-2 receptor species were also purified from culture supernatants of either L cells transfected with the full-length p55 cDNA or a normal alloreactive T cell clone. Similar biochemical behavior and reactivities with the two mAbs were found. Finally, cell-surface p55 chains expressed either by pgL21 or 4AS cells bound the 33B3.1 and 11H2 mAbs in a 2:1 ratio, suggesting that the p55 chains are also associated as homodimers when imbedded in the membrane.  相似文献   

15.
Developing Dictyostelium cells aggregate to form fruiting bodies containing typically 2 × 104 cells. To prevent the formation of an excessively large fruiting body, streams of aggregating cells break up into groups if there are too many cells. The breakup is regulated by a secreted complex of polypeptides called counting factor (CF). Countin and CF50 are two of the components of CF. Disrupting the expression of either of these proteins results in cells secreting very little detectable CF activity, and as a result, aggregation streams remain intact and form large fruiting bodies, which invariably collapse. We find that disrupting the gene encoding a third protein present in crude CF, CF45-1, also results in the formation of large groups when cells are grown with bacteria on agar plates and then starve. However, unlike countin and cf50 cells, cf45-1 cells sometimes form smaller groups than wild-type cells when the cells are starved on filter pads. The predicted amino acid sequence of CF45-1 has some similarity to that of lysozyme, but recombinant CF45-1 has no detectable lysozyme activity. In the exudates from starved cells, CF45-1 is present in a ~450-kDa fraction that also contains countin and CF50, suggesting that it is part of a complex. Recombinant CF45-1 decreases group size in colonies of cf45-1 cells with a 50% effective concentration (EC50) of ~8 ng/ml and in colonies of wild-type and cf50 cells with an EC50 of ~40 ng/ml. Like countin and cf50 cells, cf45-1 cells have high levels of cytosolic glucose, high cell-cell adhesion, and low cell motility. Together, the data suggest that CF45-1 participates in group size regulation in Dictyostelium.  相似文献   

16.
The proteins secreted by Mycobacterium tuberculosis are an important target for vaccine development. To identify the antigens from M. tuberculosis culture filtrate (CF) that strongly stimulate T-cells, the CF was fractionated by ion-exchange chromatography and then non-reducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis with mini-whole gel elution. Each fraction was screened for its ability to induce interferon-gamma (IFN-gamma) production in peripheral blood mononuclear cells isolated from healthy tuberculin reactors. The protein bands that strongly induced IFN-gamma production were subjected to N-terminal sequencing. Two new proteins, a 17-kDa protein (Rv0164, MTSP17) and an 11-kDa (Rv3204, MTSP11) protein, were identified. The recombinant MTSP17 (rMTSP17) and rMTSP11 induced significant production of IFN-gamma and interleukin (IL)-12p40 in peripheral blood mononuclear cells from healthy tuberculin reactors. Interestingly, IL-12p40 production in response to rMTSP11 was significantly higher than that in response to rMTSP17 or the three components of the antigen 85 complex. These results suggest that MTSP11 antigen should be further evaluated as a component of a subunit vaccine.  相似文献   

17.
Calvasculin, an EF-hand protein with a molecular mass of 11 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, is present abundantly in bovine aorta (Watanabe, Y., Kobayashi, R., Ishikawa, T., and Hidaka, H. (1992) Arch. Biochem. Biophys. 292, 563-569). This protein is synthesized constitutively by bovine aortic smooth muscle (BASM) cells and rat embryo fibroblast 3Y1 cells in culture. We discovered that calvasculin was secreted by BASM cells and 3Y1 cells. Immunofluorescence staining of BASM cells showed a granular distribution for calvasculin that was typical of a secreted protein. This protein bound with an extracellular matrix protein, 36-kDa microfibril-associated glycoprotein (36-kDa MAP), in a Ca(2+)-dependent manner in vitro. A stoichiometry analysis showed that the 36-kDa MAP bound 2.2 calvasculin eq/mol of protein. Solid-phase binding assays indicated a preferential affinity of native calvasculin for 36-kDa MAP among the extracellular matrices in a Ca(2+)-dependent manner. These results suggest that calvasculin, intracellular Ca(2+)-binding protein, is released to the extracellular space and binds with 36-kDa MAP.  相似文献   

18.
Abstract An acid phosphatase containing a 27-kDa polypeptide component has been identified in Escherichia coli by means of a zymogram technique. The enzyme is secreted in the periplasmic space and is able to hydrolyze several organic phosphate esters, but not diesters, showing preferential activity on p -nitrophenyl phosphate and other phenolic phosphate esters. Production of the enzyme apparently occurs only in cells growing on carbon sources other than glucose.  相似文献   

19.
We had earlier identified a 110/120-kDa protein specific to nuclear matrix of rat pachytene spermatocytes (Behal, A., Prakash, K., and Rao, M.R.S. (1987) J. Biol. Chem. 262, 10898-10902). This protein is now shown to be a disulfide-linked homodimer of a 60-kDa polypeptide. Indirect immunofluorescence and Western blot analyses using anti-120-kDa polyclonal antibodies have shown that this protein is a component of the pore-complex lamina structure of spermatogonia. As germ cells enter meiotic prophase and the lamina structure disassembles, this polypeptide is redistributed in the nucleus and can be isolated as a component of synaptonemal complexes. Following meiotic division, this 60-kDa protein is relocalized in the lamina, then representing the sole major component of the lamina structure of round spermatids. The identity of the 60-kDa protein in the pore-complex lamina fraction and synaptonemal complexes was further confirmed by two-dimensional analysis of iodinated tryptic peptides. Such an analysis has also shown that the germ cell-specific 60-kDa protein is related but not identical to somatic lamin B.  相似文献   

20.
The development of Dictyostelium discoideum is a model for tissue size regulation, as these cells form groups of approximately 2 x 10(4) cells. The group size is regulated in part by a negative feedback pathway mediated by a secreted multipolypeptide complex called counting factor (CF). CF signal transduction involves decreasing intracellular CF glucose levels. A component of CF, countin, has the bioactivity of the entire CF complex, and an 8-min exposure of cells to recombinant countin decreases intracellular glucose levels. To understand how CF regulates intracellular glucose, we examined the effect of CF on enzymes involved in glucose metabolism. Exposure of cells to CF has little effect on amylase or glycogen phosphorylase, enzymes involved in glucose production from glycogen. Glucokinase activity (the first specific step of glycolysis) is inhibited by high levels of CF but is not affected by an 8-min exposure to countin. The second enzyme specific for glycolysis, phosphofructokinase, is not regulated by CF. There are two corresponding enzymes in the gluconeogenesis pathway, fructose-1,6-bisphosphatase and glucose-6-phosphatase. The first is not regulated by CF or countin, whereas glucose-6-phosphatase is regulated by both CF and an 8-min exposure to countin. The countin-induced changes in the Km and Vmax of glucose-6-phosphatase cause a decrease in glucose production that can account for the countin-induced decrease in intracellular glucose levels. It thus appears that part of the CF signal transduction pathway involves inhibiting the activity of glucose-6-phosphatase, decreasing intracellular glucose levels and affecting the levels of other metabolites, to regulate group size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号