首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The nodFEL and nodMNT operons in Rhizobium leguminosarum biovar viciae are transcribed in the same orientation and induced by NodD in response to flavonoids secreted by legumes. In the narrow intergenic region between nodFEL and nodMNT, we identified a small gene divergently transcribed from nodM to the 3' end of nodL. Unlike the promoters upstream of nodF and nodM, the promoter of this gene is constitutively expressed. It appeared that its promoter might partially overlap with that of nodM and its expression was repressed by nodD. A deletion mutation was made and proteins produced by the mutant were compared with those by wild-type using 2D gel electrophoresis. Several protein differences were identified suggesting that this small gene influences the expression or stability of these proteins. However, the mutant nodulated its host plant (pea) normally.  相似文献   

2.
3.
4.
The lipid A and core regions of the lipopolysaccharide in Rhizobium leguminosarum, a nitrogen-fixing plant endosymbiont, are strikingly different from those of Escherichia coli. In R. leguminosarum lipopolysaccharide, the inner core is modified with three galacturonic acid (GalA) moieties, two on the distal 3-deoxy-D-manno-octulosonic acid (Kdo) unit and one on the mannose residue. Here we describe the expression cloning of three novel GalA transferases from a 22-kb R. leguminosarum genomic DNA insert-containing cosmid (pSGAT). Two of these enzymes modify the substrate, Kdo2-[4'-(32)P]lipid IV(A) and its 1-dephosphorylated derivative on the distal Kdo residue, as indicated by mild acid hydrolysis. The third enzyme modifies the mannose unit of the substrate mannosyl-Kdo2-1-dephospho-[4'-(32)P]lipid IV(A). Sequencing of a 7-kb subclone derived from pSGAT revealed three putative membrane-bound glycosyltransferases, now designated RgtA, RgtB, and RgtC. Transfer by tri-parental mating of these genes into Sinorhizobium meliloti 1021, a strain that lacks these particular GalA residues, results in the heterologous expression of the GalA transferase activities seen in membranes of cells expressing pSGAT. Reconstitution experiments with the individual genes demonstrated that the activity of RgtA precedes and is necessary for the subsequent activity of RgtB, which is followed by the activity of RgtC. Electrospray ionization-tandem mass spectrometry and gas-liquid chromatography of the product generated in vitro by RgtA confirmed the presence of a GalA moiety. No in vitro activity was detected when RgtA was expressed in Escherichia coli unless Rhizobiaceae membranes were also included.  相似文献   

5.
Summary RP4-trp hybrid plasmid containing Escherichia coli whole tryptophan operon was conjugatively transferred from E. coli to Rhizobium leguminosarum strains carrying mutations in different trp genes, converting their Trp phenotype to Trp+. That the phenotype change of the R. leguminosarum cells was due to the presence of the E. coli tryptophan operon was verified by the isolation of RP4-trp hybrid plasmid from the R. leguminosarum conjugant cells, and by re-transfer of RP4-trp plasmid by conjugation back to E. coli trp and Pseudomonas putida trp strains. Enzymatic activities of anthranilate synthetase and subunit of tryptophan synthetase in crude extracts of R. leguminosarum cells containing RP4-trp plasmid were much higher than that of the wild-type cells and were not repressed by the presence of tryptophan in the culture medium.  相似文献   

6.
7.
Isolated plasmid DNA from Rhizobium leguminosarum was hybridised with cellular RNA from broth-cultured bacteria and endosymbiotic bacteroids. From these hybridisation, experiments it is concluded that plasmid genes are strongly expressed in bacteroids and only weakly or not at all in bacteria. From the hybridisation of plasmid DNA with the cloned structural nif genes of Klebsiella pneumoniae it is shown that at least part of the nif genes are located on a plasmid.  相似文献   

8.
Summary The degradation of tryptophan (Try) and some of its potential intermediates has been studied in nodule bacteria (Rhizobium leguminosarum Frank, ATCC 10324). In feeding experiments with washed suspensions the following degradation products of Try could be identified by thin-layer chromatography: indolyl-3-pyruvic acid (IBS); indolyl-3-acetic acid (IES); -(indolyl-3)-lactic acid (IMS); indole-carboxylic acid-(3) (ICS); -(indolyl-3)-ethanol (-IÄ); indole-aldehyde-(3) (IAld); indolyl-3-acetaldehyde (IAAld); N-acetyl-tryptophan (Ac-Try).An active Try-transaminase leading to the formation of IBS has been demonstrated. Phenylpyruvic acid as well as -ketoglutaric acid served as amino group acceptors.The breakdown of Try was followed quantitatively by using C-14(2-alanyl-) D,L-tryptophan. After 16 hrs nearly 16% of the original radioactivity was found in the ether-extractable material. IES and IMS were formed in much the highest concentrations.Indole-3-acetonitrile (IAN), although not a Try-metabolite in Rhizobium leguminosarum was converted to IES via indole-3-acetamide (IAAm). The following physiological pathways in the breakdown of Try in Rhizobium leguminosarum have been confirmed: Try Ac-Try and IBS; IBS IAAld; IAAld -IÄ and IES; no further degradation of IES was observed.  相似文献   

9.
The chromium (CrIII and CrVI) removal capability of Rhizobium leguminosarum was checked by estimating the amount of chromium in the medium before and after inoculation. To determine the efficiency of R. leguminosarum in removal of chromium, the influence of physical and chemical parameters such as temperature, pH and different concentrations (0.1–1.0 mM) of trivalent (CrIII) and hexavalent (CrVI) chromium were studied. The chromium removal in aqueous solution by different size of active and inactivated biomass and immobilized cells of R. leguminosarum in a packed-bed column was also carried out. Results showed that in a medium containing up to 0.5 mM concentration of both CrIII and CrVI, R. leguminosarum showed optimal growth. The maximum chromium removal was at pH 7.0 and 35°C. Active biomass removed 84.4 ± 3.6% of CrIII and 77.3 ± 4.3% of CrVI in 24 h of incubation time. However, inactivated biomass removed maximum chromium after 36 h of incubation. Immobilized bacterial cells in a packed-bed column removed 86.4 ± 1.7% of CrIII and 83.8 ± 2.2% of CrVI in 16 and 20 h of incubation time, respectively.  相似文献   

10.
11.
Lipid A of Rhizobium leguminosarum, a nitrogen-fixing plant endosymbiont, displays several significant structural differences when compared with Escherichia coli. An especially striking feature of R. leguminosarum lipid A is that it lacks both the 1- and 4'-phosphate groups. Distinct lipid A phosphatases that attack either the 1 or the 4' positions have previously been identified in extracts of R. leguminosarum and Rhizobium etli but not Sinorhizobium meliloti or E. coli. Here we describe the identification of a hybrid cosmid (pMJK-1) containing a 25-kb R. leguminosarum 3841 DNA insert that directs the overexpression of the lipid A 1-phosphatase. Transfer of pMJK-1 into S. meliloti 1021 results in heterologous expression of 1-phosphatase activity, which is normally absent in extracts of strain 1021, and confers resistance to polymyxin. Sequencing of a 7-kb DNA fragment derived from the insert of pMJK-1 revealed the presence of a lipid phosphatase ortholog (designated LpxE). Expression of lpxE in E. coli behind the T7lac promoter results in the appearance of robust 1-phosphatase activity, which is normally absent in E. coli membranes. Matrix-assisted laser-desorption/time of flight and radiochemical analysis of the product generated in vitro from the model substrate lipid IVA confirms the selective removal of the 1-phosphate group. These findings show that lpxE is the structural gene for the 1-phosphatase. The availability of lpxE may facilitate the re-engineering of lipid A structures in diverse Gram-negative bacteria and allow assessment of the role of the 1-phosphatase in R. leguminosarum symbiosis with plants. Possible orthologs of LpxE are present in some intracellular human pathogens, including Francisella tularensis, Brucella melitensis, and Legionella pneumophila.  相似文献   

12.
Gram-negative, rod-shaped bacteria from the soil of white clover-ryegrass pastures were screened for their ability to nodulate white clover (Trifolium repens) cultivar Grasslands Huia and for DNA homology with genomic DNA from Rhizobium leguminosarum biovar trifolii ICMP2668 (NZP582). Of these strains, 3.2% were able to hybridize with strain ICMP2668 and nodulate white clover and approximately 19% hybridized but were unable to nodulate. Strains which nodulated but did not hybridize with strain ICMP2668 were not detected. DNA from R. leguminosarum biovar trifolii (strain PN165) cured of its symbiotic (Sym) plasmid and a specific nod probe were used to show that the relationship observed was usually due to chromosomal homology. Plasmid pPN1, a cointegrate of the broad-host-range plasmid R68.45 and a symbiotic plasmid pRtr514a, was transferred by conjugation to representative strains of nonnodulating, gram-negative, rod-shaped soil bacteria. Transconjugants which formed nodules were obtained from 6 of 18 (33%) strains whose DNA hybridized with that of PN165 and 1 of 9 (11%) strains containing DNA which did not hybridize with that of PN165. The presence and location of R68.45 and nod genes was confirmed in transconjugants from three of the strains which formed nodules. Similarly, a pLAFR1 cosmid containing nod genes from a derivative of R. leguminosarum biovar trifolii NZP514 formed nodules when transferred to soil bacteria.  相似文献   

13.
14.
Congo Red Absorption by Rhizobium leguminosarum   总被引:1,自引:0,他引:1       下载免费PDF全文
Congo red absorption is generally considered a contraindication of Rhizobium. However, R. leguminosarum takes up the dye on yeast extract-mannitol agar. The uptake of congo red varies among strains of R. leguminosarum, as shown elsewhere with strains of R. trifolii and R. meliloti. Congo red absorption does not distinguish rhizobia from other bacteria, but may be useful as a strain marker.  相似文献   

15.
16.
R factor transfer in Rhizobium leguminosarum   总被引:191,自引:0,他引:191  
  相似文献   

17.
Succinate transport in Rhizobium leguminosarum.   总被引:6,自引:13,他引:6       下载免费PDF全文
The transport of succinate was studied in an effective streptomycin-resistant strain of Rhizobium leguminosarum. High levels of succinate transport occurred when cells were grown on succinate, fumarate, or malate, whereas low activity was found when cells were grown on glucose, sucrose, arabinose, or pyruvate as the sole carbon source. Because of the rapid metabolism of succinate after transport into the cells, a succinate dehydrogenase-deficient mutant was isolated in which intracellular succinate accumulated to over 400 times the external concentration. Succinate transport was completely abolished in the presence of metabolic uncouplers but was relatively insensitive to sodium arsenate. Succinate transport was a saturable function of the succinate concentration, and the apparent Km and Vmax values for transport were determined in both the parent and the succinate dehydrogenase mutant. Malate and fumarate competitively inhibited succinate transport, whereas citrate and malonate had no effect. Succinate transport mutants were isolated by transposon (Tn5) mutagenesis. These mutants were unable to transport succinate or malate and were unable to grow on succinate, malate, or fumarate as the sole carbon source. The mutants grew normally on pyruvate, oxaloacetate, citrate, or arabinose, and revertants isolated on succinate minimal medium had regained the ability to grow on malate and fumarate. From these data, we conclude that R. leguminosarum possesses a C4-dicarboxylic acid transport system which is inducible and mediates the active transport of succinate, fumarate, and malate into the cell.  相似文献   

18.
Response of Rhizobium leguminosarum to nickel stress   总被引:2,自引:0,他引:2  
Rhizobium leguminosarum strain P-5 biovar viciae was sensitive to Ni2+ (MIC, 75 M) and showed concentration-dependent Ni2+ uptake in a wide concentration range (50–500 M). Ni2+ uptake up to a certain threshold limit also increased thiol content (66 nmol mg–1 protein), proline content (10.85 nmol mg–1 protein) and urease specific activity (500 nmol min–1 mg–1 protein) maximum corresponding to 100 M Ni2+ as the external concentration or 151 nmol Ni2+ mg–1 protein as the intracellular buildup. Proline synthesis was stimulated most even at much lower Ni2+ concentration (25 M). Higher intracellular Ni2+ load neither favoured thiol nor proline biosynthesis nor urease activity. Ni2+ requirement of urease was ascertained by using EDTA-grown cells and the addition of bicarbonate (NaHCO3, 100 mM) to the crude extract. The induction of thiol or proline by Ni2+, therefore, reflects the possible strategies adopted by bacterial cells to overcome the environmental stress.  相似文献   

19.
Two mutant derivatives of Rhizobium leguminosarum ANU843 defective in lipopolysaccharide (LPS) were isolated. The LPS of both mutants lacked O antigen and some sugar residues of the LPS core oligosaccharides. Genetic regions previously cloned from another Rhizobium leguminosarum wild-type isolate, strain CFN42, were used to complement these mutants. One mutant was complemented to give LPS that was apparently identical to the LPS of strain ANU843 in antigenicity, electrophoretic mobility, and sugar composition. The other mutant was complemented by a second CFN42 lps genetic region. In this case the resulting LPS contained O-antigen sugars characteristic of donor strain CFN42 and reacted weakly with antiserum against CFN42 cells, but did not react detectably with antiserum against ANU843 cells. Therefore, one of the CFN42 lps genetic regions specifies a function that is conserved between the two R. leguminosarum wild-type isolates, whereas the other region, at least in part, specifies a strain-specific LPS structure. Transfer of these two genetic regions into wild-type strains derived from R. leguminosarum ANU843 and 128C53 gave results consistent with this conclusion. The mutants derived from strain ANU843 elicited incompletely developed clover nodules that exhibited low bacterial populations and very low nitrogenase activity. Both mutants elicited normally developed, nitrogen-fixing clover nodules when they carried CFN42 lps DNA that permitted synthesis of O-antigen-containing LPS, regardless of whether the O antigen was the one originally made by strain ANU843.  相似文献   

20.
Abstract All transposon-induced symbiotic mutants of Rhizobium described so far have been obtained using Tn 5 , which codes for kanamycin resistance (KmR). To enable genetic complementation studies, we tried to find an effective transposon carrying another resistance marker. We report here a method for the apparent random transposition in Rhizobium of Tn 1831 , which codes for resistance against spectinomycin (Sp), streptomycin (Sm) and mercury chloride. When the suicide plasmid pMP12 (RP4::Tn 1831 , Km::Mu) was transferred to Rhizobium , in almost all cases the exconjugants harbour a deleted transfer-deficient R plasmid. From this deleted R plasmid transposition occurred to self-transmissible Sym-plasmids of R. leguminosarum and R. trifolii . Using this method a number of Tn 1831 -induced symbiotic mutants of pRL1JI were isolated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号