首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soluble mitochondrial ATPase (F1) from beef heart prepared in this laboratory contained approximately 1.8 mol of ADP and 0 mol of ATP/mol of F1 which were not removed by repeated precipitation of the enzyme with ammonium sulfate solution or by gel filtration in low ionic strength buffer containing EDTA. This enzyme had full coupling activity. Treatment of the enzyme with trypsin (5 mug/mg of F1 for 3 min) reduced the "tightly bound" ADP to zero, abolished coupling activity, but had no effect on the ATPase activity, stability, or membrane-binding capability of the F1. When the trypsin concentration was varied between 0 and 5 mug/mg of F1, tightly bound ADP was removed to varying degrees, and a correlation was seen between amount of residual tightly bound ADP and residual coupling activity. Gel filtration of the native F1 in high ionic strength buffer containing EDTA also caused complete loss of tightly bound ADP and coupling ability, whereas ATPase activity, stability, and membrane-binding capability were retained. The ADP-depleted F1 preparations were unable to rebind normal amounts of ADP or any ATP in simple reloading experiments. The results strongly suggest that tightly bound ADP is required for ATP synthesis and for energy-coupled ATP hydrolysis on F1. The results also suggest that ATP synthesis and energy-linked ATP hydrolysis rather than involving one nucleotide binding site on F1, involve a series or "cluster" of sites. The ATP hydrolysis site may represent one component of this cluster. The results show that nonenergy-coupled ATP hydrolysis on F1 can occur in the absence of tightly bound ADP or ATP.  相似文献   

2.
The role of tightly bound ADP on chloroplast ATPase   总被引:1,自引:0,他引:1  
Isolated chloroplast coupling factor 1 ATPase is known to retain about 1 mol of tightly bound ADP/mol of enzyme. Some experimental results have given evidence that the bound ADP is at catalytic sites, but this view has not been supported by observations of a slow replacement of the bound ADP when CaATP or MgATP is added. The experiments reported in this paper show why a slow replacement of ADP bound at a catalytic site can occur. When coupling factor 1, labeled with tightly bound [3H]ADP, is exposed to Mg2+ or Ca2+ prior to the addition of MgATP or CaATP, a pronounced lag in the onset of ATP hydrolysis is observed, and only slow replacement of the [3H]ADP occurs. Mg2+ or Ca2+ can induce inhibition very rapidly, as if an inhibited form of the enzyme results whenever the enzyme with tightly bound ADP encounters Mg2+ or Ca2+ prior to ATP. The inhibited form can be slowly reactivated by incubation with EDTA, although some irreversible loss in activity is encountered. In contrast, when MgATP or CaATP is added to enzyme depleted of Mg2+ and Ca2+ by incubation with EDTA, a rapid onset of ATP hydrolysis occurs and most of the tightly bound [3H]ADP is released within a few seconds, as expected for binding at a catalytic site. The Mg2+-induced inhibition of both the ATPase activity and the lack of replacement of tightly bound [3H] ADP can be largely prevented by incubation with Pi under conditions favoring Pi addition to the site containing the tightly bound ADP. Our and other results can be explained if enzyme catalysis is greatly hindered when MgADP or CaADP without accompanying Pi is tightly bound at one of the three catalytic sites on the enzyme in a high affinity conformation.  相似文献   

3.
The covalent binding of dialdehyde derivatives of ATP and ADP (o-ATP and o-ADP) results in inactivation of chloroplast CF1-ATPase, the degree of inactivation being increased at a rise in temperature and pH. o-ADP causes predominant inhibition of the Mg2+-dependent, while o-ATP--of both Mg2+- and Ca2+-dependent activities of CF1-ATPase. The substrates and reaction products prevent the enzyme inactivation, whereas the stimulators of the Mg2+-dependent ATPase activity enhance it. The effect of these stimulators is correlated with predominant incorporation of [3H] o-nucleotide into the beta-subunit of CF1. In the absence of the stimulators o-ADP is predominantly bound to the alpha-subunit of CF1. The binding of o-ADP and o-ATP to the beta-subunit is increased in the presence of Mg2+. A comparative analysis of the labelled nucleotides incorporation into individual subunits and the changes in the catalytic and regulatory properties of the enzyme demonstrated that the catalytic and stimulator-sensitive "regulatory" sites of the enzyme are located on the beta-subunits.  相似文献   

4.
The reaction of a photoaffinity analog, 3'-O-(4-benzoyl)-benzoic-adenosine 5'-triphosphate (BZ2ATP) with gizzard myosin is described. The incorporation of BZ2ATP into myosin is both specific and stoichiometric. About 2.2 mol BZ2ATP are incorporated/mol myosin resulting in the significant loss of EDTA(K+) ATPase activity. The Mg2+ and actin-activated ATPase activities are slightly inhibited. Addition of ATP (millimolar) during the photolysis reaction significantly inhibits incorporation of BZ2ATP into myosin. Our data show that the label is mainly incorporated into the heavy chain of myosin with some label in the 20-kDa light chain. Limited proteolysis of radioactively labeled myosin subfragment 1 with trypsin reveals the presence of radioactivity mainly in the 50-kDa fragment and some in the 29-kDa and 25-kDa fragments. However, our data on the ATP-sensitive incorporation of BZ2ATP into the tryptic fragments suggest that the 50-kDa peptide, not the 29-kDa peptide, may be located at or around the active site.  相似文献   

5.
The protein ATPase inhibitor entraps about five nucleotides in pig heart mitochondrial F1, one at least being a triphosphate [Di Pietro, A., Penin, F., Julliard, J.H., Godinot, C., & Gautheron, D.C. (1988) Biochem. Biophys. Res. Commun. 152, 1319-1325]. The fate of these nucleotides was studied during ATP synthesis driven by NADH oxidation in reconstituted inverted submitochondrial particles. Iodinated F1, containing 0.7 mol of endogenous nucleotides/mol, was first loaded with tritiated adenine nucleotides in the presence or absence of the protein inhibitor and then reassociated with F1-depleted submitochondrial particles (ASU particles) to reconstitute an efficient NADH-driven ATP synthesis. In the absence of the protein inhibitor, 1.7 mol of labeled nucleotides remained bound per mole of reassociated F1, 0.8-0.9 mol being rapidly exchangeable against medium ADP or ATP, as measured after rapid filtration through nitrocellulose filters. In the presence of the protein inhibitor, as many as 3.25 mol of labeled nucleotides remained bound per mole of reassociated F1. Under hydrolysis conditions where ATPase activity was highly inhibited, no release of tritiated nucleotide occurred. In contrast, under ATP synthesis conditions where the protonmotive force was generated by NADH oxidation, the progressive reversal of inhibition by the protein inhibitor was correlated to a concomitant release of tritiated nucleotide. When ATP synthesis became fully active, about one nucleotide was completely exchanged whereas more than three nucleotides remained tightly bound and did not appear to be directly involved in ATP synthesis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The Neurospora crassa plasma membrane H+-ATPase is inactivated by the periodate-oxidized nucleotides, oATP, oADP, and oAMP, with oAMP the most effective. Inhibition of the ATPase is essentially irreversible, because Sephadex G-50 column chromatography of the oAMP-treated ATPase does not result in a reversal of the inhibition. Inhibition of the ATPase by oAMP is protected against by the H+-ATPase substrate ATP, the product ADP, and the competitive inhibitors TNP (2',3'-O-(2,4,6-trinitrocyclohexadienylidine)-ATP and TNP-ADP, suggesting that oAMP inhibition occurs at the nucleotide binding site of the enzyme. The rate of inactivation of the ATPase by oAMP is only slightly affected by EDTA, indicating that the oAMP interaction with the nucleotide binding site of the H+-ATPase occurs in the absence of a divalent cation. The protection against oAMP inhibition by ADP is likewise unaffected by EDTA. The inhibition of the ATPase by oAMP is absolutely dependent on the presence of acidic phospholipids or acidic lysophospholipids known to be required for H+-ATPase activity, suggesting that these lipids either aid in the formation of the nucleotide binding site or render it accessible. Incubation of the ATPase with Mg2+ plus vanadate, which locks the enzyme in a conformation resembling the transition state of the enzyme dephosphorylation reaction, completely protects against inhibition by oAMP, suggesting that in this transition state conformation the nucleotide site either does not exist, or is inaccessible to oAMP. Labeling studies with [14C] oAMP indicate that the incorporation of 1 mol of oAMP is sufficient to cause complete inactivation of the ATPase.  相似文献   

7.
D Wu  P D Boyer 《Biochemistry》1986,25(11):3390-3396
When the heat-activated chloroplast F1 ATPase hydrolyzes [3H, gamma-32P]ATP, followed by the removal of medium ATP, ADP, and Pi, the enzyme has labeled ATP, ADP, and Pi bound to it in about equal amounts. The total of the bound [3H]ADP and [3H]ATP approaches 1 mol/mol of enzyme. Over a 30-min period, most of the bound [32P]Pi falls off, and the bound [3H]ATP is converted to bound [3H]ADP. Enzyme with such remaining tightly bound ADP will form bound ATP from relatively high concentrations of medium Pi with either Mg2+ or Ca2+ present. The tightly bound ADP is thus at a site that retains a catalytic capacity for slow single-site ATP hydrolysis (or synthesis) and is likely the site that participates in cooperative rapid net ATP hydrolysis. During hydrolysis of 50 microM [3H]ATP in the presence of either Mg2+ or Ca2+, the enzyme has a steady-state level of about one bound [3H]ADP per mole of enzyme. Because bound [3H]ATP is also present, the [3H]ADP is regarded as being present on two cooperating catalytic sites. The formation and levels of bound ATP, ADP, and Pi show that reversal of bound ATP hydrolysis can occur with either Ca2+ or Mg2+ present. They do not reveal why no phosphate oxygen exchange accompanies cleavage of low ATP concentrations with Ca2+ in contrast to Mg2+ with the heat-activated enzyme. Phosphate oxygen exchange does occur with either Mg2+ or Ca2+ present when low ATP concentrations are hydrolyzed with the octyl glucoside activated ATPase. Ligand binding properties of Ca2+ at the catalytic site rather than lack of reversible cleavage of bound ATP may underlie lack of oxygen exchange under some conditions.  相似文献   

8.
P D Wagner  R G Yount 《Biochemistry》1975,14(23):5156-5162
A purine disulfide analog of ATP, 6,6'-dithiobis(inosinyl imidodiphosphate), forms mixed disulfide bonds between the 6 thiol group on the purine ring and certain key cysteines on myosin, heavy meromyosin, and subfragment one. The EDTA ATPase activities of myosin and heavy meromyosin were completely inactivated when 4 mol of thiopurine nucleotide was bound. When similarly inactivated, subfragment one, depending on its method of preparation, incorporated either 1 or 2 mol of thiopurine nucleotide. Modification of a single cysteine on subfragment one resulted in an inhibition of both the Ca2+ and the EDTA ATPase activities, but the latter always to a greater extent. Modification of two cysteines per head of heavy meromyosin had the same effect suggesting that the active sites were not blocked by the thiopurine nucleotides. Direct evidence for this suggestion was provided by equilibrium dialysis experiments. Heavy meromyosin and subfragment one bound 1.9 and 0.8 mol of [8-3H]adenylyl imidodiphosphate per mol of enzyme, respectively, with an average dissociation constant of 5 X 10(-7) M. Heavy meromyosin with four thiopurine nucleotides bound or subfragment one with two thiopurine nucleotides bound retained 65-80% of these tight adenylyl imidodiphosphate binding sites confirming the above suggestion. Thus previous work assuming reaction of thiopurine nucleotide analogs at the active site of myosin must be reevaluated. Ultracentrifugation studies showed that heavy meromyosin which had incorporated four thiopurine nucleotides did not bind to F-actin while subfragment one with one thiopurine nucleotide bound interacted only very weakly with F-actin. Thus reaction of 6,6'-dithiobis(inosinyl imidodiphosphate) at nucleotide binding sites other than the active sites reduces the rate of ATP hydrolysis and inhibits actin binding. It is suggested that these second sites may function as regulatory sites on myosin.  相似文献   

9.
We have investigated the steps in the actomyosin ATPase cycle that determine the maximum ATPase rate (Vmax) and the binding between myosin subfragment one (S-1) and actin which occurs when the ATPase activity is close to Vmax. We find that the forward rate constant of the initial ATP hydrolysis (initial Pi burst) is about 5 times faster than the maximum turnover rate of the actin S-1 ATPase. Thus, another step in the cycle must be considerably slower than the forward rate of the initial Pi burst. If this slower step occurs only when S-1 is complexed with actin, as originally predicted by the Lymn-Taylor model, the ATPase activity and the fraction of S-1 bound to actin in the steady state should increase almost in parallel as the actin concentration is increased. As measured by turbidity determined in the stopped-flow apparatus, the fraction of S-1 bound to actin, like the ATPase activity, shows a hyperbolic dependence on actin concentration, approaching 100% asymptotically. However, the actin concentration required so that 50% of the S-1 is bound to actin is about 4 times greater than the actin concentration required for half-maximal ATPase activity. Thus, as previously found at 0 degrees C, at 15 degrees C much of the S-1 is dissociated from actin when the ATPase is close to Vmax, showing that a slow first-order transition which follows the initial Pi burst (the transition from the refractory to the nonrefractory state) must be the slowest step in the ATPase cycle. Stopped-flow studies also reveal that the steady-state turbidity level is reached almost instantaneously after the S-1, actin, and ATP are mixed, regardless of the order of mixing. Thus, the binding between S-1 and actin which is observed in the steady state is due to a rapid equilibrium between S-1--ATP and acto--S-1--ATP which is shifted toward acto-S-1--ATP at high actin concentration. Furthermore, both S-1--ATP and S-1--ADP.Pi (the state occurring immediately after the initial Pi burst) appear to have the same binding constant to actin. Thus, at high actin concentration both S-1--ATP and S-1--ADP.Pi are in rapid equilibrium with their respective actin complexes. Although at very high actin concentration almost complete binding of S-1--ATP and S-1--ADP.Pi to actin occurs, there is no inhibition of the ATPase activity at high actin concentration. This strongly suggests that both the initial Pi burst and the slow rate-limiting transition which follows (the transition from the refractory to the nonrefractory state) occur at about the same rates whether the S-1 is bound to or dissociated from actin. We, therefore, conclude that S-1 does not have to dissociate from actin each time an ATP molecule is hydrolyzed.  相似文献   

10.
Highly purified 3'-arylazido-ATP (aATP) was obtained by high performance liquid chromatography. In the dark, this photoactivatable ATP analog was a competitive inhibitor of ATP hydrolysis catalyzed by purified sarcoplasmic reticulum (SR) ATPase with a Ki of 10 microM. The analog itself was hydrolyzed by the enzyme in the dark. A biphasic curve of velocity of hydrolysis of the analog versus aATP concentration was obtained, indicating the presence of high and low affinity sites with K0.5 of approximately 10 microM and 300 microM, respectively. Upon irradiation with visible light, a biphasic curve was obtained for the level of covalent photolabeling of the enzyme versus [beta-32P]aATP concentrations. Levels of 6.5-9 nmol of analog/mg of protein and 20-22 nmol of analog/mg of protein were obtained when labeling with 20-30 or with 400 microM aATP, respectively, showing the existence of 1 mol of high affinity sites/mol of ATPase and 1-1.5 mol of low affinity sites/mol of enzyme. The rate of light-dependent incorporation of [beta-32P]aATP was decreased by the presence of ATP, Pi, 2',3'-O-(2,4,6-trinitrocyclohexadienylidene-ATP, or Ca2+ in the illumination media. Photolabeling of the high affinity sites had little effect on the velocity of ATP hydrolysis but significantly inhibited the splitting of additional aATP added in the dark. Photolabeling the low affinity sites caused irreversible inhibition of the ATPase activity. The inhibition was prevented by having ATP in the illumination medium, which protected it from labeling. Gel filtration chromatography in the presence of detergent showed that radioactive photolabel was incorporated in the SR ATPase protein. The results indicate that aATP is a useful tool for stoichiometrically labeling and probing the nucleotide binding domains of the SR ATPase.  相似文献   

11.
Incubation of [gamma-32P]ATP with a molar excess of the membrane-bound form of mitochondrial ATPase (F1) results in binding of the bulk of the radioactive nucleotide in high affinity catalytic sites (Ka = 10(12) M-1). Subsequent initiation of respiration by addition of succinate or NADH is accompanied by a profound decrease in the affinity for ATP. About one-third of the bound radioactive ATP appears to dissociate, that is, the [gamma-32P]ATP becomes accessible to hexokinase. The NADH-stimulated dissociation of [gamma-32P]ATP is energy-dependent since the stimulation is inhibited by uncouplers of oxidative phosphorylation and is prevented by respiratory chain inhibitors. The rate of the energy-dependent dissociation of ATP that occurs in the presence of NADH, ADP, and Pi is commensurate with the measured initial rate of ATP synthesis in NADH-supported oxidative phosphorylation catalyzed by the same submitochondrial particles. Thus, the rate of dissociation of ATP from the high affinity catalytic site of submitochondrial particles meets the criterion of kinetic competency under the conditions of oxidative phosphorylation. These experiments provide evidence in support of the argument that energy conserved during the oxidation of substrates by the respiratory chain can be utilized to reduce the very tight binding of product ATP in high affinity catalytic sites and to promote dissociation of the nucleotide.  相似文献   

12.
Pyridoxal phosphate (PLP) and adenosine diphospho (AP2-PL)-, triphospho (AP3-PL)-, and tetraphospho (AP4-PL)-pyridoxals (Tagaya, M., and Fukui, T. (1986) Biochemistry 25, 2958-2964) were tested as potential affinity probes for F1 ATPase of Escherichia coli. Both AP3-PL and AP4-PL bound and inhibited F1 ATPase, whereas PLP and AP2-PL were weak inhibitors. The concentrations of AP3-PL and AP4-PL for half-maximal inactivations of the multisite (steady state) ATPase activity were both 18 microM. The binding of these reagents to a reactive lysyl residue(s) was confirmed from the difference absorption spectra, and the stoichiometry of binding of [3H]AP3-PL to F1 at the saturating level was about 1 mol/mol F1. The analogue bound to both the alpha subunit (about two-thirds of the radioactivity) and the beta subunit (about one-third of the radioactivity). No inactivation of multisite ATPase activity or binding of AP3-PL was observed in the presence of ATP. F1 modified with about one mol of AP3-PL had essentially no uni- and multisite hydrolysis of ATP. The rate of binding of ATP decreased to 10(-2) of that of unmodified F1, and the rate of release of ATP was about two times faster. The equilibrium F1 X ATP in equilibrium F1 X ADP X Pi was shifted toward F1 X ATP, and no promotion of ATP hydrolysis at unisite was observed with excess ATP. These results suggest that the AP3-PL or AP4-PL bound to an active site, and catalysis by the two remaining sites was completely abolished.  相似文献   

13.
The 2′,3′-dialdehydes of ADP and ATP (oADP and oATP), obtained by periodate oxidation of ADP and ATP, inhibited the hydrolytic activity of the purified Ca2+.Mg2+-activated ATPase of Escherichia coli. Nonspecific labeling of amino groups by these dialdehydes was corrected by carrying out the reactions in the presence of 15 mm ATP. Two types of modification of “ATP-protectable” binding sites by oATP could be detected. The binding of 2 mol “ATP-protectable” oATP/mol ATPase was without affect on ATPase activity and still occurred in the hydrolytically inactive ATPase of an unc A mutant. The binding of a further 3 mol “ATP-protectable” oATP/mol ATPase resulted in almost complete loss of ATPase activity although much of the loss occurred during the binding of the first additional molecule of oATP. This additional ATP-protectable oATP binding did not occur in the unc A mutant and so resembled both the inhibitory effect of oADP on the ATPase activity of normal strains and its lack of binding to the unc A ATPase (P. D. Bragg and C. Hou, 1980, Biochem. Biophys. Res. Commun.95, 952–957). The “ATP-protectable” binding sites for oADP and oATP were located on the α subunit of the ATPase. Binding of oADP or oATP did not result in release of the tightly bound ADP and ATP from the enzyme. We conclude that separate binding sites for oADP and oATP occur on the α subunits of the E. coli ATPase and that the former may be the active site(s) for ATP hydrolysis while the latter are involved in regulation of the ATPase complex.  相似文献   

14.
M B Cable  J J Feher  F N Briggs 《Biochemistry》1985,24(20):5612-5619
Four mechanisms for the allosteric regulation of the calcium and magnesium ion activated adenosinetriphosphatase (Ca,Mg-ATPase) of sarcoplasmic reticulum were examined. Negative cooperativity in substrate binding was not supported by 3H-labeled 5'-adenylyl methylenediphosphate (AMPPCP) binding, which was best fit by a single class of sites. Although calcium had no effect on the absence of cooperativity, it did increase the affinity of the enzyme for AMPPCP. Allosteric regulation via an effector site for AMPPCP or ATP on the same ATPase chain was eliminated by the stoichiometry of ATP and AMPPCP binding, 1 mol of site per mole of enzyme. The possibility that AMPPCP acts at an effector site was eliminated by showing that it competitively inhibits the rate of phosphoenzyme formation. Allosteric regulation of kinetics via site-site interaction in an oligomer was eliminated by showing that the inhibition of ATPase activity by fluorescein isothiocyanate is linearly dependent upon its incorporation into the sarcoplasmic reticulum. The fourth mechanism considered was stimulation of ATPase activity by the binding of ATP or AMPPCP at the active site after departure of ADP but before the departure of inorganic phosphate. This hypothesis was supported by site stoichiometry and by the observation that AMPPCP or ATP stimulates v/EP, the rate of ATP hydrolysis for a given level of phosphoenzyme. Computer simulation of this branched monomeric model could duplicate all experimental observations made with AMPPCP and ATP as allosteric regulators. The condition that the affinity of ATP binding to the enzyme be reduced when it is phosphorylated, which is required by the computer model, was confirmed experimentally.  相似文献   

15.
1. Beef heart mitochondrial ATPase, in both the membrane-bound and isolated form, contains tightly bound ATP and ADP. Each mol of ATPase contains about 2.2 mol ATP and 1.3 mol ADP. 2. In the absence of ATPase activity, these nucleotides exchange only slowly with nucleotides in solution. The exchange rate is increased during coupled ATPase activity, but not when the ATPase is uncoupled. 3. Oligomycin and dicyclohexylcarbodiimide inhibit exchange of the bound nucleotides, as does the ATPase inhibitor protein, although in each case some residual exchange occurs. Aurovertin, although inhibiting phosphorylation, does not inhibit the exchange. This is discussed in terms of the reversibility of these inhibitors. 4. The stimulation of exchange seen during coupled ATPase activity requires energisation of the ATPase molecule. Using the exchange reaction as a probe of energisation, it is deduced that energy can be transferred between different ATPase molecules. 5. It is proposed that coupled ATPase activity and phosphorylation in submitochondrial particles involve the tight nucleotide binding sites and the (weak) ATPase site, while uncoupled ATPase activity involves only the weak site.  相似文献   

16.
The binding of CTP and ATP to aspartate transcarbamylase at pH 7.8 and 8.5 at 25 degrees has been investigated by equilibrium dialysis and flow microcalorimetry. The binding isotherms for CTP at both pH 7.8 and 8.5 and ATP AT PH 8.5 can be fit by a model which assumes three tight, three moderately tight, and six weak binding sites. The binding isotherms for ATP at pH 7.8 are best fit by a model which assumes six tight and six weaker sites. Both finite differenceH binding and finite differenceS binding are negative for both nucleotides at both pH values, so that the binding is enthalpy driven. For both nucleotides, finite differenceH is the same for the first two classes of binding sites, implying that the difference in the dissociation constants of these two classes of sites is the result of entropic effects. Direct pH measurements and calorimetric measurements in two buffers with very different heats of ionization (Tris and Hepes) indicate that the binding of both nucleotides is accompanied by the binding of protons. In the pH range 6.7-8.4, the number of moles of protons bound per mole of nucleotide increases as the pH decreases.  相似文献   

17.
1. Beef heart mitochondrial ATPase, in both the membrane-bound and isolated form, contains tightly bound ATP and ADP. Each mol of ATPase contains about 2.2 mol ATP and 1.3 mol ADP.2. In the absence of ATPase activity, these nucleotides exchange only slowly with nucleotides in solution. The exchange rate is increased during coupled ATPase activity, but not when the ATPase is uncoupled.3. Oligomycin and dicyclohexylcarbodiimide inhibit exchange of the bound nucleotides, as does the ATPase inhibitor protein, although in each case some residual exchange occurs. Aurovertin, although inhibiting phosphorylation, does not inhibit the exchange. This is discussed in terms of the reversibility of these inhibitors.4. The stimulation of exchange seen during coupled ATPase activity requires energisation of the ATPase molecule. Using the exchange reaction as a probe of energisation, it is deduced that energy can be transferred between different ATPase molecules.5. It is proposed that coupled ATPase activity and phosphorylation in submitochondrial particles involve the tight nucleotide binding sites and the (weak) ATPase site, while uncoupled ATPase activity involves only the weak site.  相似文献   

18.
Incubation of the recA protein of Escherichia coli with the ATP analog adenosine 5'-O-(3-thiotriphosphate) (ATP(gamma S)) in the presence of DNA produces an irreversible inhibition of ATPase activity, although in the presence of ATP, ATP(gamma S) shows an initial competitive inhibition. ATP(gamma S) is not appreciably hydrolyzed by recA protein and the inhibition of ATPase activity is due to the formation of stable complexes which contain equimolar amounts of ATP(gamma S) and recA protein. Formation of stable complexes requires DNA, which is also stably bound to recA protein in the presence of ATP(gammaS), at a ratio of 5 to 10 nucleotides/recA protein monomer. The DNA requirement is satisfied by either single-or double-stranded DNA, and in the latter case, the pH dependence is comparable to that observed for ATP hydrolysis. Binding of ATP(gamma S) is inhibited by other nucleoside di- and triphosphates with efficiencies corresponding to their inhibitory effects on the ATPase activity of recA protein.  相似文献   

19.
S C Kowalczykowski 《Biochemistry》1986,25(20):5872-5881
The binding and cross-linking of the ATP photoaffinity analogue 8-azidoadenosine 5'-triphosphate (azido-ATP) with recA protein have been investigated, and through cross-linking inhibition studies, the binding of other nucleotide cofactors to recA protein has also been studied. The azido-ATP molecule was shown to be a good ATP analogue with regard to recA protein binding and enzymatic function by three criteria: first, the cross-linking follows a simple hyperbolic binding curve with a Kd of 4 microM and a cross-linking efficiency ranging from 10% to 70% depending on conditions; second, ATP, dATP, and adenosine 5'-O-(3-thiotriphosphate) (ATP-gamma-S) specifically inhibit the cross-linking of azido-ATP to recA protein; third, azido-ATP is a substrate for recA protein ATPase activity. Quantitative analysis of the cross-linking inhibition studies using a variety of nucleotide cofactors as competitors has shown that the binding affinity of adenine-containing nucleotides for recA protein decreases in the following order: ATP-gamma-S greater than dATP greater than ATP greater than adenylyl beta,gamma-imidodiphosphate (AMP-PNP) much greater than adenylyl beta,gamma-methylenediphosphate (AMP-PCP) approximately adenine. Similar competition studies also showed that nearly all of the other nucleotide triphosphates also bind to recA protein, with the affinity decreasing in the following order: UTP greater than GTP approximately equal to dCTP greater than dGTP greater than CTP. In addition, studies performed in the presence of single-stranded DNA demonstrated that the affinity of ATP, dATP, ATP-gamma-S, and AMP-PNP for recA protein is significantly increased. These results are discussed in terms of the reciprocal effects that nucleotide cofactors have on the modulation of recA protein--single-stranded DNA binding affinity and vice versa. In addition, it is demonstrated that nucleotide and DNA binding are necessary though not sufficient conditions for ATPase activity. The significance of this result in terms of the possible requirement of critically sized clusters of 15 or more recA protein molecules contiguously bound to DNA for ATPase activity is discussed.  相似文献   

20.
(1) Periodate oxidation of ATP yields a single product which has been purified and characterised. Periodate-oxidised ATP (o-ATP) behaves as a single compound during TLC analysis, but NMR spectral studies show that it exists in aqueous solution as an equilibrium mixture of three dialdehyde monohydrates and a dihydrate. Little free aldehyde is present. The dialdehyde monohydrates are in the form of diastereomeric cyclic hemiacetals. (2) The dialdehyde grouping of o-ATP can be reduced with sodium borohydride, producing a dialcohol. (3) o-ATP has been frequently used in attempts to affinity label nucleotide-binding sites on proteins. The proposed structure of o-ATP is discussed in relation to this use for o-ATP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号