首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Purinergic pathways are considered important in pain transmission, and P2X receptors are a key part of this system which has received little attention in the horse. The aim of this study was to identify and characterise the distribution of P2X receptor subtypes in the equine digit and associated vasculature and nervous tissue, including peripheral nerves, dorsal root ganglia and cervical spinal cord, using PCR, Western blot analysis and immunohistochemistry. mRNA signal for most of the tested P2X receptor subunits (P2X1–5, 7) was detected in all sampled equine tissues, whereas P2X6 receptor subunit was predominantly expressed in the dorsal root ganglia and spinal cord. Western blot analysis validated the specificity of P2X1–3, 7 antibodies, and these were used in immunohistochemistry studies. P2X1–3, 7 receptor subunits were found in smooth muscle cells in the palmar digital artery and vein with the exception of the P2X3 subunit that was present only in the vein. However, endothelial cells in the palmar digital artery and vein were positive only for P2X2 and P2X3 receptor subunits. Neurons and nerve fibres in the peripheral and central nervous system were positive for P2X1–3 receptor subunits, whereas glial cells were positive for P2X7 and P2X1 and 2 receptor subunits. This previously unreported distribution of P2X subtypes may suggest important tissue specific roles in physiological and pathological processes.  相似文献   

2.
ATP, an intracellular energy source, is released from cells during tissue stress, damage, or inflammation. The P2X subtype of the ATP receptor is expressed in rat dorsal root ganglion (DRG) cells, spinal cord dorsal horn, and axons in peripheral tissues. ATP binding to P2X receptors on nociceptors generates signals that can be interpreted as pain from damaged tissue. We have hypothesized that tissue stress or damage in the uterine cervix during late pregnancy and parturition can lead to ATP release and sensory signaling via P2X receptors. Consequently, we have examined sensory pathways from the cervix in nonpregnant and pregnant rats for the presence of purinoceptors. Antiserum against the P2X3-receptor subtype showed P2X3- receptor immunoreactivity in axon-like structures of the cervix, in small and medium-sized neurons in the L6/S1 DRG, and in lamina II of the L6/S1 spinal cord segments. Retrograde tracing confirmed the projections of axons of P2X3-receptor-immunoreactive DRG neurons to the cervix. Some P2X3-receptor-positive DRG neurons also expressed estrogen receptor- immunoreactivity and expressed the phosphorylated form of cyclic AMP response-element-binding protein at parturition. Western blots showed a trend toward increases of P2X3-receptor protein between pregnancy (day 10) and parturition (day 22–23) in the cervix, but no significant changes in the DRG or spinal cord. Since serum estrogen rises over pregnancy, estrogen may influence purinoceptors in these DRG neurons. We suggest that receptors responsive to ATP are expressed in uterine cervical afferent nerves that transmit sensory information to the spinal cord at parturition.  相似文献   

3.
P2X receptors are ATP-gated cationic channels composed of seven cloned subunits (P2X1 –7). P2X3 homomultimer and P2X2/3 heteromultimer receptors expressed by primary afferent dorsal root ganglion (DRG) neurons are involved in pain processing. The aim of the study was to investigate the expression of the P2X5 receptor subunit in DRG in different species including mouse, rat, cat and guinea pig. Immunohistochemistry showed that P2X5 receptors exhibited low levels of immunostaining in rat DRG, but high levels in mouse and guinea pig. Only a few neurons were immunoreactive for P2X5 receptors in cat. In mouse DRG, the P2X5 receptor was expressed largely by medium-diameter neurons (42.9 %), less in small (29.3 %) and large (27.8 %) neurons. In contrast, in the guinea pig DRG, P2X5 receptor expression was greatest in small-diameter (42.6 %), less in medium- (36.3 %) and large-diameter (21.1 %) neurons. Colocalization experiments revealed that, in mouse DRG, 65.5, 10.9 and 27.1 % of P2X5 receptors were immunoreactive for NF-200, CGRP and calbindin, while only a few P2X5-immunoreactive (IR) neurons were coexpressed with IB4 or with NOS. In guinea pig DRG, a total of 60.5 and 40.5 % of P2X5-IR neurons were coexpressed with IB4 or with CGRP, while 20.3 and 24.5 % of P2X5 receptors were coexpressed with NF-200 or with NOS. Only a few P2X5-IR neurons were coexpressed with calbindin in guinea pig DRG. It will be of great interest to clarify the relative physiological and pathophysiological roles of P2X5 receptors.  相似文献   

4.
Diabetic neuropathic pain (DNP) is highly common in diabetes patients. P2X receptors play critical roles in pain sensitization. We previously showed that elevated P2X3 expression in dorsal root ganglion (DRG) contributes to DNP. However, the role of other P2X receptors in DNP is unclear. Here, we established the DNP model using a single high-dose streptozotocin (STZ) injection and investigated the expression of P2X genes in the DRG. Our data revealed elevated P2X2, P2X4, and P2X7 mRNA levels in DRG of DNP rats. The protein levels of P2X4 and P2X7 in DNP rats increased, but the P2X2 did not change significantly. To study the role of P2X4 and P2X7 in diabetes-induced hyperalgesia, we treated the DNP rats with TNP-ATP (2’,3’-O-(2,4,6-trinitrophenyl)-adenosine 5’-triphosphate), a nonspecific P2X1–7 antagonist, and found that TNP-ATP alleviated thermal hyperalgesia in DNP rats. 2 Hz electroacupuncture is analgesic against DNP and could downregulate P2X4 and P2X7 expression in DRG. Our findings indicate that P2X4 and P2X7 in L4–L6 DRGs contribute to diabetes-induced hyperalgesia, and that EA reduces thermal hyperalgesia and the expression of P2X4 and P2X7.  相似文献   

5.

Background

In addition to their central effects, opioids cause peripheral analgesia. There is evidence showing that peripheral activation of kappa opioid receptors (KORs) inhibits inflammatory pain. Moreover, peripheral ??-opioid receptor (MOR) activation are able to direct block PGE2-induced ongoing hyperalgesia However, this effect was not tested for KOR selective activation. In the present study, the effect of the peripheral activation of KORs on PGE2-induced ongoing hyperalgesia was investigated. The mechanisms involved were also evaluated.

Results

Local (paw) administration of U50488 (a selective KOR agonist) directly blocked, PGE2-induced mechanical hyperalgesia in both rats and mice. This effect was reversed by treating animals with L-NMMA or N-propyl-L-arginine (a selective inhibitor of neuronal nitric oxide synthase, nNOS), suggesting involvement of the nNOS/NO pathway. U50488 peripheral effect was also dependent on stimulation of PI3K??/AKT because inhibitors of these kinases also reduced peripheral antinociception induced by U50488. Furthermore, U50488 lost its peripheral analgesic effect in PI3K?? null mice. Observations made in vivo were confirmed after incubation of dorsal root ganglion cultured neurons with U50488 produced an increase in the activation of AKT as evaluated by western blot analyses of its phosphorylated form. Finally, immunofluorescence of DRG neurons revealed that KOR-expressing neurons also express PI3K?? (? 43%).

Conclusions

The present study indicates that activation of peripheral KORs directly blocks inflammatory hyperalgesia through stimulation of the nNOS/NO signaling pathway which is probably stimulated by PI3K??/AKT signaling. This study extends a previously study of our group suggesting that PI3K??/AKT/nNOS/NO is an important analgesic pathway in primary nociceptive neurons.  相似文献   

6.
The upregulation of nociceptive ion channels expressed in dorsal root ganglia (DRG) contributes to the development and retaining of diabetic pain symptoms. The flavonoid quercetin (3,3′,4′,5,7-pentahydroxyflavone) is a component extracted from various fruits and vegetables and exerts anti-inflammatory, analgesic, anticarcinogenic, antiulcer, and antihypertensive effects. However, the exact mechanism underlying quercetin's analgesic action remains poorly understood. The aim of this study was to investigate the effects of quercetin on diabetic neuropathic pain related to the P2X4 receptor in the DRG of type 2 diabetic rat model. Our data showed that both mechanical withdrawal threshold and thermal withdrawal latency in diabetic rats treated with quercetin were higher compared with those in untreated diabetic rats. The expression levels of P2X4 messenger RNA and protein in the DRG of diabetic rats were increased compared with the control rats, while quercetin treatment significantly inhibited such enhanced P2X4 expression in diabetic rats. The satellite glial cells (SGCs) enwrap the neuronal soma in the DRG. Quercetin treatment also lowered the elevated coexpression of P2X4 and glial fibrillary acidic protein (a marker of SGCs) and decreased the upregulation of phosphorylated p38 mitogen-activated protein kinase (p38MAPK) in the DRG of diabetic rats. Quercetin significantly reduced the P2X4 agonist adenosine triphosphate-activated currents in HEK293 cells transfected with P2X4 receptors. Thus, our data demonstrate that quercetin may decrease the upregulation of the P2X4 receptor in DRG SGCs, and consequently inhibit P2X4 receptor-mediated p38MAPK activation to relieve the mechanical and thermal hyperalgesia in diabetic rats.  相似文献   

7.
Purinergic P2X receptors are ligand-gated ion channels that are activated by extracellular adenosine triphosphate (ATP) and are widely expressed not only in the central and peripheral nervous system but also in tissues throughout the body, playing an important role in the transfer of nociceptive information. Since the influence of barbiturates on P2X receptor subtypes is not known, we studied the effects of pentobarbital sodium (PB) on ATP responses in dorsal root ganglion (DRG) neurons. DRG neurons were dissected from 10- to 14-day-old rats and dissociated after enzyme treatment. Electrical measurements were performed using the nystatin-perforated patch recording mode under voltage-clamp conditions. Drugs were applied using the Y-tube method. ATP evoked three types of inward current at -60 mV: fast desensitizing, slow desensitizing, and mixed. The fast-type current was attributed to activation of P2X3 subtype and the slow type to the P2X2 subtype. PB suppressed the fast-type current in a concentration-dependent manner, while the slow type was slightly reduced. A noncompetitive inhibition was suggested by a downward shift of the ATP concentration-response curves. The current-voltage relationships showed inward rectification, and the extent of suppression was not affected by the holding potential. The reduction was greater in external solutions of higher pH. PB had subtype-specific effects on P2X receptors. The ionized form is likely to be responsible for the suppression of the P2X3 receptor current, which may result in a reduction of the excitability of central and peripheral neurons and may contribute to the anesthetic and analgesic actions of the agent.  相似文献   

8.
The role played by purinergic 2Y receptors in evoking the muscle chemoreflex is not well defined. To shed light on this issue, we compared the pressor responses with popliteal arterial injection of UTP (1 mg/kg), a selective P2Y agonist, with those to popliteal arterial injection of ATP (1 mg/kg), a P2X and P2Y agonist, and to alpha,beta-methylene ATP (50 mug/kg), a selective P2X1 and P2X3 agonist, in decerebrate unanesthetized cats. We found that injection of ATP and alpha,beta-methylene ATP increased mean arterial pressure by 19 +/- 2 and 15 +/- 4 mmHg, whereas UTP had no affect on arterial pressure. In addition, the pressor responses to injection of ATP and alpha,beta-methylene ATP were abolished by section of the sciatic nerve, demonstrating that they were reflex in origin. We conclude that P2Y receptors on thin fiber muscle afferents play no role in evoking the muscle chemoreflex.  相似文献   

9.
Fei  Xueyu  He  Xiaofen  Tai  Zhaoxia  Wang  Hanzhi  Qu  Siying  Chen  Luhang  Hu  Qunqi  Fang  Jianqiao  Jiang  Yongliang 《Purinergic signalling》2020,16(4):491-502

Diabetic neuropathic pain (DNP) is a troublesome diabetes complication all over the world. P2X3 receptor (P2X3R), a purinergic receptor from dorsal root ganglion (DRG), has important roles in neuropathic pain pathology and nociceptive sensations. Here, we investigated the involvement of DRG P2X3R and the effect of 2 Hz electroacupuncture (EA) on DNP. We monitored the rats’ body weight, fasting blood glucose level, paw withdrawal thresholds, and paw withdrawal latency, and evaluated P2X3R expression in DRG. We found that P2X3R expression is upregulated on DNP, while 2 Hz EA is analgesic against DNP and suppresses P2X3R expression in DRG. To evaluate P2X3R involvement in pain modulation, we then treated the animals with A317491, a P2X3R specific antagonist, or α β-me ATP, a P2X3R agonist. We found that A317491 alleviates hyperalgesia, while α β-me ATP blocks EA’s analgesic effects. Our findings indicated that 2 Hz EA alleviates DNP, possibly by suppressing P2X3R upregulation in DRG.

  相似文献   

10.
Functional characterization of P2Y and P2X receptors in human eosinophils   总被引:4,自引:0,他引:4  
Activation of purinoceptor by ATP induces in eosinophils various cell responses including calcium transients, actin polymerization, production of reactive oxygen metabolites, CD11b-expression, and chemotaxis. Here, the effect of ion channel-gated P2X and/or G protein-coupled P2Y receptor agonists ATP, ATPgammaS, alpha,beta-meATP, 2-MeSATP, BzATP, ADP, CTP, and UTP on the intracellular Ca(2+)-mobilization, actin polymerization, production of reactive oxygen metabolites, CD11b expression and chemotaxis of human eosinophils were measured and the biological activity was analyzed. Although all tested nucleotides were able to induce all these cell responses, the biological activity of the analyzed nucleotides were distinct. Agonists of the G protein-coupled P2Y receptors such as 2-MeSATP, UTP, and ADP have a higher biological activity for production of reactive oxygen metabolites, actin polymerization and chemotaxis in comparison to the ion channel-gated P2X agonists alphabeta-meATP, BzATP, and CTP. In contrast, P2Y and P2X agonist showed similar potencies in respect to intracellular calcium transient and CD11b up-regulation. This conclusion was further supported by experiments with receptor iso-type antagonist KN62, EGTA or with the G(i) protein-inactivating pertussis toxin. These findings indicate participation of different purinorecptors in the regulation of cell responses in eosinophils.  相似文献   

11.
Microglial cells are the primary immune effector cells in the brain. Extracellular ATP, e.g., released after brain injury, may initiate microglial activation via stimulation of purinergic receptors. In the rat nucleus accumbens (NAc), the involvement of P2X and P2Y receptors in the generation of microglial reaction in vivo was investigated. A stab wound in the NAc increased immunoreactivity (IR) for P2X1,2,4,7 and P2Y1,2,4,6,12 receptors on microglial cells when visualized with confocal laser scanning microscopy. A prominent immunolabeling of P2X7 receptors with antibodies directed against the ecto- or endodomain was found on Griffonia simplicifolia isolectin-B4-positive cells. Additionally, the P2X7 receptor was colocalized with active caspase 3 but not with the anti-apoptotic marker pAkt. Four days after local application of the agonists α,βmeATP, ADPβS, 2MeSATP, and BzATP, an increase in OX 42- and G. simplicifolia isolectin-IR was observed around the stab wound, quantified both densitometrically and by counting the number of ramified and activated microglial cells, whereas UTPγS appeared to be ineffective. The P2 receptor antagonists PPADS and BBG decreased the injury-induced increase of these IRs when given alone and in addition inhibited the agonist effects. Further, the intra-accumbally applied P2X7 receptor agonist BzATP induced an increase in the number of caspase-3-positive cells. These results indicate that ATP, acting via different P2X and P2Y receptors, is a signaling molecule in microglial cell activation after injury in vivo. The up-regulation of P2X7-IR after injury suggests that this receptor is involved in apoptotic rather than proliferative effects.  相似文献   

12.
Purinoceptor subtypes were localised to various tissue types present within the nasal cavity of the rat, using immunohistochemical methods. P2X3 receptor immunoreactivity was localised in the primary olfactory neurones located both in the olfactory epithelium and vomeronasal organs (VNO) and also on subepithelial nerve fibres in the respiratory region. P2X5 receptor immunoreactivity was found in the squamous, respiratory and olfactory epithelial cells of the rat nasal mucosa. P2X7 receptor immunoreactivity was also expressed in epithelial cells and colocalised with caspase 9 (an apoptotic marker), suggesting an association with apoptosis and epithelial turnover. P2Y1 receptor immunoreactivity was found within the respiratory epithelium and submucosal glandular tissue. P2Y2 receptor immunoreactivity was localised to the mucus-secreting cells within the VNO. The possible functional roles of these receptors are discussed.  相似文献   

13.
The properties of ryanodine receptors (RyRs) from rat dorsal root ganglia (DRGs) have been studied. The density of RyRs (Bmax) determined by [3H]ryanodine binding was 63 fmol/mg protein with a dissociation constant (Kd) of 1.5 nM. [3H]Ryanodine binding increased with caffeine, decreased with ruthenium red and tetracaine, and was insensitive to millimolar concentrations of Mg2+ or Ca2+. DRG RyRs reconstituted in planar lipid bilayers were Ca2+-dependent and displayed the classical long-lived subconductance state in response to ryanodine; however, unlike cardiac and skeletal RyRs, they lacked Ca2+-dependent inactivation. Antibodies against RyR3, but not against RyR1 or RyR2, detected DRG RyRs. Thus, DRG RyRs are immunologically related to RyR3, but their lack of divalent cation inhibition is unique among RyR subtypes.  相似文献   

14.
Diabetic peripheral neuropathy (DPN) is the most common complication of diabetes mellitus (DM). More than 90% of all cases of DM belong to type 2 diabetes mellitus (T2DM). Emodin is the main active component of Radix et rhizoma rhei and has anti-bacterial, anti-viral, anti-ulcerogenic, anti-inflammatory, and anti-cancer effects. Nanoparticle encapsulation of drugs is beneficial for drug targeting and bioavailability as well as for lowering drug toxicity side effects. The aim of this study was to investigate the effects of nanoparticle-encapsulated emodin (nano emodin) on diabetic neuropathic pain (DNP) mediated by the Purin 2X3 (P2X3) receptor in the dorsal root ganglia (DRG). Mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) values in T2DM rats were lower than those of control rats. MWT and TWL in T2DM rats treated with nano emodin were higher compared with those in T2DM rats. Expression levels of P2X3 protein and messenger RNA (mRNA) in the DRG of T2DM rats were higher than those of controls, while levels in T2DM rats treated with nano emodin were significantly lower than those of the T2DM rats. Phosphorylation and activation of ERK1/2 in the T2DM DRG were decreased by nano emodin treatment. Nano emodin significantly inhibited currents activated by the P2X3 agonist α,β-meATP in HEK293 cells transfected with the P2X3 receptor. Therefore, nano emodin treatment may relieve DNP by decreasing excitatory transmission mediated by the DRG P2X3 receptor in T2DM rats.  相似文献   

15.
Peroxisomes in dorsal root ganglia   总被引:2,自引:0,他引:2  
  相似文献   

16.
The broad expression pattern of the G protein-coupled P2Y receptors has demonstrated that these receptors are fundamental determinants in many physiological responses, including neuromodulation, vasodilation, inflammation, and cell migration. P2Y receptors couple either Gq or Gi upon activation, thereby activating different signaling pathways. Ionotropic ATP (P2X) receptors bind extracellular nucleotides, a signal which is transduced within the P2X protein complex into a cation channel opening, which usually leads to intracellular calcium concentration elevation. As such, this family of proteins initiates or shapes several cellular processes including synaptic transmission, gene expression, proliferation, migration, and apoptosis. The ever-growing range of applications for antibodies in the last 30 years attests to their major role in medicine and biological research. Antibodies have been used as therapeutic tools in cancer and inflammatory diseases, as diagnostic reagents (flow cytometry, ELISA, and immunohistochemistry, to name a few applications), and in widespread use in biological research, including Western blot, immunoprecipitation, and ELISPOT. In this article, we will showcase several of the advances that scientists around the world have achieved using the line of antibodies developed at Alomone Labs for P2Y and P2X receptors.  相似文献   

17.

The broad expression pattern of the G protein-coupled P2Y receptors has demonstrated that these receptors are fundamental determinants in many physiological responses, including neuromodulation, vasodilation, inflammation, and cell migration. P2Y receptors couple either Gq or Gi upon activation, thereby activating different signaling pathways. Ionotropic ATP (P2X) receptors bind extracellular nucleotides, a signal which is transduced within the P2X protein complex into a cation channel opening, which usually leads to intracellular calcium concentration elevation. As such, this family of proteins initiates or shapes several cellular processes including synaptic transmission, gene expression, proliferation, migration, and apoptosis. The ever-growing range of applications for antibodies in the last 30 years attests to their major role in medicine and biological research. Antibodies have been used as therapeutic tools in cancer and inflammatory diseases, as diagnostic reagents (flow cytometry, ELISA, and immunohistochemistry, to name a few applications), and in widespread use in biological research, including Western blot, immunoprecipitation, and ELISPOT. In this article, we will showcase several of the advances that scientists around the world have achieved using the line of antibodies developed at Alomone Labs for P2Y and P2X receptors.

  相似文献   

18.
Painful diabetic neuropathy (PDN) is a common and troublesome diabetes complication. Protein kinase C (PKC)-mediated dorsal root ganglia (DRG) P2X3 receptor upregulation is one important mechanism underlying PDN. Accumulating evidence demonstrated that electroacupuncture (EA) at low frequency could effectively attenuate neuropathic pain. Our previous study showed that 2-Hz EA could relieve pain well in PDN. The study aimed to investigate whether 2-Hz EA relieves pain in PDN through suppressing PKC-mediated DRG P2X3 receptor upregulation. A 7-week feeding of high-fat and high-sugar diet plus a single injection of streptozotocin (STZ) in a dose of 35 mg/kg after a 5-week feeding of the diet successfully induced type 2 PDN in rats as revealed by the elevated body weight, fasting blood glucose, fasting insulin and insulin resistance, and the reduced paw withdrawal threshold (PWT), as well as the destructive ultrastructural change of sciatic nerve. DRG plasma membrane P2X3 receptor level and DRG PKC expression were elevated. Two-hertz EA failed to improve peripheral neuropathy; however, it reduced PWT, DRG plasma membrane P2X3 receptor level, and DRG PKC expression in PDN rats. Intraperitoneal administration of P2X3 receptor agonist αβ-meATP or PKC activator phorbol 12-myristate 13-acetate (PMA) blocked 2-Hz EA analgesia. Furthermore, PMA administration increased DRG plasma membrane P2X3 receptor level in PDN rats subject to 2-Hz EA treatment. These findings together indicated that the analgesic effect of EA in PDN is mediated by suppressing PKC-dependent membrane P2X3 upregulation in DRG. EA at low frequency is a valuable approach for PDN control.  相似文献   

19.
The differential distribution of small and large neurons in the sacrococcygeal dorsal root ganglia of the cat was disclosed by measuring the short diameter of the perikarya. The measured values were systematically charted along the rostro-caudal axis of the ganglion. This approach permitted to delineate small and large neurons; the short diameter of the former being less, that of the latter more, than 22 micrometers. Small neurons (69% of the population) are distributed along the entire length of the ganglions, while large neurons are clustered in the distal half. The same histological specimens were appropriate to show that if only every 8th section was used for counting the number of perikarya (the number of the nucleoli was interpreted as that of the perikarya) the result was not significantly different (less than +/- 5%) from that gained by a total count. The significance of the inhomogeneous distribution of ganglion cells was discussed within the emerging concept of the topological arrangement of the perikarya in the ganglion, on the one hand, and the termination of the central branch of the neurons in the spinal cord, on the other.  相似文献   

20.
This review article presents a collection of tool compounds that selectively block and are recommended for studying P2Y and P2X receptor subtypes, investigating their roles in physiology and validating them as future drug targets. Moreover, drug candidates and approved drugs for P2 receptors will be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号