首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 604 毫秒
1.
A spliced leader contributes the mature 5'ends of many mRNAs in trans-splicing organisms. Trans-spliced metazoan mRNAs acquire an m3(2,2,7)GpppN cap from the added spliced leader exon. The presence of these caps, along with the typical m7GpppN cap on non-trans-spliced mRNAs, requires that cellular mRNA cap-binding proteins and mRNA metabolism deal with different cap structures. We have developed and used an in vitro system to examine mRNA degradation and decapping activities in nematode embryo extracts. The predominant pathway of mRNA decay is a 3' to 5' pathway with exoribonuclease degradation of the RNA followed by hydrolysis of resulting mRNA cap by a scavenger (DcpS-like) decapping activity. Direct decapping of mRNA by a Dcp1/Dcp2-like activity does occur, but is approximately 15-fold less active than the 3' to 5' pathway. The DcpS-like activity in nematode embryo extracts hydrolyzes both m7GpppG and m3(2,2,7)GpppG dinucleoside triphosphates. The Dcp1/Dcp2-like activity in extracts also hydrolyzes these two cap structures at the 5' ends of RNAs. Interestingly, recombinant nematode DcpS differs from its human ortholog in its substrate length requirement and in its capacity to hydrolyze m3(2,2,7)GpppG.  相似文献   

2.
mRNA degradation occurs through distinct pathways, one primarily from the 5' end of the mRNA and the second from the 3' end. Decay from the 3' end generates the m7GpppN cap dinucleotide, which is subsequently hydrolyzed to m7Gp and ppN in Saccharomyces cerevisiae by a scavenger decapping activity termed Dcs1p. Although Dcs1p functions in the last step of mRNA turnover, we demonstrate that its activity modulates earlier steps of mRNA decay. Disruption of the DCS1 gene manifests a threefold increase of the TIF51A mRNA half-life. Interestingly, the hydrolytic activity of Dcs1p was essential for the altered mRNA turnover, as Dcs1p, but not a catalytically inactive Dcs1p mutant, complemented the increased mRNA stability. Mechanistic analysis revealed that 5' to 3' exoribonucleolytic activity was impeded in the dcs1Delta strain, resulting in the accumulation of uncapped mRNA. These data define a new role for the Dcs1p scavenger decapping enzyme and demonstrate a novel mechanism whereby the final step in the 3' mRNA decay pathway can influence 5' to 3' exoribonucleolytic activity.  相似文献   

3.
Liu H  Rodgers ND  Jiao X  Kiledjian M 《The EMBO journal》2002,21(17):4699-4708
We recently demonstrated that the major decapping activity in mammalian cells involves DcpS, a scavenger pyrophosphatase that hydrolyzes the residual cap structure following 3' to 5' decay of an mRNA. The association of DcpS with 3' to 5' exonuclease exosome components suggests that these two activities are linked and there is a coupled exonucleolytic decay-dependent decapping pathway. We purified DcpS from mammalian cells and identified the cDNA encoding a novel 40 kDa protein possessing DcpS activity. Consistent with purified DcpS, the recombinant protein specifically hydrolyzed methylated cap analog but did not hydrolyze unmethylated cap analog nor did it function on intact capped RNA. Sequence alignments of DcpS from different organisms revealed the presence of a conserved hexapeptide, containing a histidine triad (HIT) sequence with three histidines separated by hydrophobic residues. Mutagenesis analysis revealed that the central histidine within the DcpS HIT motif is critical for decapping activity and defines the HIT motif as a new mRNA decapping domain, making DcpS the first member of the HIT family of proteins with a defined biological function.  相似文献   

4.
The DEAD box protein Dhh1 stimulates the decapping enzyme Dcp1   总被引:4,自引:0,他引:4  
Fischer N  Weis K 《The EMBO journal》2002,21(11):2788-2797
An important control step in the regulation of cytoplasmic mRNA turnover is the removal of the m(7)G cap structure at the 5' end of the message. Here, we describe the functional characterization of Dhh1, a highly conserved member of the family of DEAD box-containing proteins, as a regulator of mRNA decapping in Saccharomyces cerevisiae. Dhh1 is a cytoplasmic protein and is shown to be in a complex with the mRNA degradation factor Pat1/Mtr1 and with the 5'-3' exoribonuclease Xrn1. Dhh1 specifically affects mRNA turnover in the deadenylation-dependent decay pathway, but does not act on the degradation of nonsense-containing mRNAs. Cells that lack dhh1 accumulate degradation intermediates that have lost their poly(A) tail but contain an intact 5' cap structure, suggesting that Dhh1 is required for efficient decapping in vivo. Furthermore, recombinant Dhh1 is able to stimulate the activity of the purified decapping enzyme Dcp1 in an in vitro decapping assay. We propose that the DEAD box protein Dhh1 regulates the access of the decapping enzyme to the m(7)G cap by modulating the structure at the 5' end of mRNAs.  相似文献   

5.
Decapping is a central step in eukaryotic mRNA turnover. Recent studies have identified several factors involved in catalysis and regulation of decapping. These include the following: an mRNA decapping complex containing the proteins Dcp1 and Dcp2; a nucleolar decapping enzyme, X29, involved in the degradation of U8 snoRNA and perhaps of other capped nuclear RNAs; and a decapping 'scavenger' enzyme, DcpS, that hydrolyzes the cap structure resulting from complete 3'-to-5' degradation of mRNAs by the exosome. Several proteins that stimulate mRNA decapping by the Dcp1:Dcp2 complex co-localize with Dcp1 and Dcp2, together with Xrn1, a 5'-to-3' exonuclease, to structures in the cytoplasm called processing bodies. Recent evidence suggests that the processing bodies may constitute specialized cellular compartments of mRNA turnover, which suggests that mRNA and protein localization may be integral to mRNA decay.  相似文献   

6.
7.
8.
Analysis of mutations in the yeast mRNA decapping enzyme   总被引:4,自引:0,他引:4  
Tharun S  Parker R 《Genetics》1999,151(4):1273-1285
  相似文献   

9.
The majority of mRNA turnover is mediated either by mRNA decapping/5'-to-3' decay or exosome-mediated 3'-to-5' exonucleolytic decay. Current assays to assess mRNA decapping in vitro using cap-labeled RNA substrates rely on one-dimensional thin layer chromatography. This approach does not, however, resolve free phosphate from 7meGDP, the product of Dcp1p-mediated mRNA decapping. This can result in misinterpretation of the levels of mRNA decapping due to the generation of free phosphate following the action of the unrelated scavenger decapping activity on the products of exosome-mediated decay. In this report, we describe a simple denaturing acrylamide gel-based assay that faithfully resolves all of the possible products that can be generated from cap-labeled RNA substrates by turnover enzymes present in cell extracts. This approach allows a one-step assay to quantitatively assess the contributions of the exosome and DCP-1-type decapping on turnover of an RNA substrate in vitro. We have applied this assay to recalculate the effect of competition of cap-binding proteins on decapping in yeast. In addition, we have used the assay to confirm observations made on regulated mRNA decapping in mammalian extracts that contain much higher levels of exosome activity than yeast extracts.  相似文献   

10.
11.
12.
Eukaryotic cells utilize scavenger decapping enzymes to degrade cap structure following 3'-5' mRNA decay. Human DcpS recently has been described as a highly specific hydrolase (a member of the HIT family) that catalyses the cleavage of m(7)GpppG and short capped oligoribonucleotides. We have demonstrated here that cap-1 (m(7)GpppGm) is a preferred substrate among several investigated dinucleotide cap analogues m(7)Gp(n)N (n = 3-5, N is a purine or pyrimidine base) and m(7)GMP is always one of the reaction product. Cap analogues containing pyrimidine base instead of guanine or diphosphate chain are resistant to hydrolysis catalyzed by human scavenger. Contrary to the other enzymes of HIT family, hDcpS activity is not stimulated by Mg(2+).  相似文献   

13.
14.
15.
16.
The regulation of mRNA degradation is critical for proper gene expression. Many major pathways for mRNA decay involve the removal of the 5′ 7-methyl guanosine (m7G) cap in the cytoplasm to allow for 5′-to-3′ exonucleolytic decay. The most well studied and conserved eukaryotic decapping enzyme is Dcp2, and its function is aided by co-factors and decapping enhancers. A subset of these factors can act to enhance the catalytic activity of Dcp2, while others might stimulate the remodeling of proteins bound to the mRNA substrate that may otherwise inhibit decapping. Structural studies have provided major insights into the mechanisms by which Dcp2 and decapping co-factors activate decapping. Additional mRNA decay factors can function by recruiting components of the decapping machinery to target mRNAs. mRNA decay factors, decapping factors, and mRNA substrates can be found in cytoplasmic foci named P bodies that are conserved in eukaryotes, though their function remains unknown. In addition to Dcp2, other decapping enzymes have been identified, which may serve to supplement the function of Dcp2 or act in independent decay or quality control pathways. This article is part of a Special Issue entitled: RNA Decay mechanisms.  相似文献   

17.
18.
MicroRNA (miRNA)-induced silencing complexes (miRISCs) repress translation and promote degradation of miRNA targets. Target degradation occurs through the 5′-to-3′ messenger RNA (mRNA) decay pathway, wherein, after shortening of the mRNA poly(A) tail, the removal of the 5′ cap structure by decapping triggers irreversible decay of the mRNA body. Here, we demonstrate that miRISC enhances the association of the decapping activators DCP1, Me31B and HPat with deadenylated miRNA targets that accumulate when decapping is blocked. DCP1 and Me31B recruitment by miRISC occurs before the completion of deadenylation. Remarkably, miRISC recruits DCP1, Me31B and HPat to engineered miRNA targets transcribed by RNA polymerase III, which lack a cap structure, a protein-coding region and a poly(A) tail. Furthermore, miRISC can trigger decapping and the subsequent degradation of mRNA targets independently of ongoing deadenylation. Thus, miRISC increases the local concentration of the decapping machinery on miRNA targets to facilitate decapping and irreversibly shut down their translation.  相似文献   

19.
20.
Decapping is an important process in the control of eukaryotic mRNA degradation. The scavenger decapping enzyme DcpS functions to clear the cell of cap structure following decay of the RNA body by catalyzing the hydrolysis of m(7)GpppN to m(7)Gp and ppN. Structural analysis has revealed that DcpS is a dimeric protein with a domain-swapped amino terminus. The protein dimer contains two cap binding/hydrolysis sites and displays a symmetric structure with both binding sites in the open conformation in the ligand-free state and an asymmetric conformation with one site open and one site closed in the ligand-bound state. The structural data are suggestive of a dynamic decapping mechanism where each monomer could alternate between an open and closed state. Using transient state kinetic studies, we show that both the rate-limiting step and rate of decapping are regulated by cap substrate. A regulatory mechanism is established by the intrinsic domain-swapped structure of the DcpS dimer such that the decapping reaction is very efficient at low cap substrate concentrations yet regulated with excess cap substrate. These data provide biochemical evidence to verify experimentally a dynamic and mutually exclusive cap hydrolysis activity of the two cap binding sites of DcpS and provide key insights into its regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号