首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Adenosine 3′,5′-monophosphate (cAMP), folic acid and pterin are chemoattractants in the cellular slime molds. The cAMP analog, 3′-amino-cAMP, inhibits a chemotactic reaction to cAMP at a concentration at which the analog is chemotactically inactive. The antagonistic effect of 3′-amino-cAMP on the chemotactic activity of cAMP is competitive, which suggests that 3′-amino-cAMP antagonizes cAMP via the chemotactic receptor for cAMP. 3′-Amino-cAMP does not antagonize folic acid or pterin. The binding of folic acid to post-vegetative Dictyostelium discoideum cells is inhibited by low concentrations of 2-deamino-2-hydro folic acid (DAFA [7]). DAFA is neither chemotactically active, nor does it inhibit a chemotactic reaction to folic acid. This questions the involvement of the main folic acid cell surface-binding sites in the chemotactic response to folic acid. The pterin analog, 6-aminopterin, is an antagonist of pterin, but not of cAMP or folic acid. Our results show that cAMP, folic acid and pterin are detected by different receptors. Furthermore, they suggest that the antagonistic action of 3′-amino-cAMP and 6-aminopterin is localized in the signal transduction pathway at a step before the signals from the separate receptors have arrived at a single pathway.  相似文献   

2.
Chemotactic stimulation of post-vegetative Dictyostelium cells with folic acid or aggregative cells with cAMP results in a fast transient cGMP response which peaks at 10 s; basal levels are recovered in about 30–40 s. Stimulation with folic acid or cAMP rapidly desensitizes the cells for equal or lower concentrated stimuli. However, cells remain responsive for stimuli with higher concentration, which indicates that desensitization is caused by an adaptation process. Removal of the stimulus induces deadaptation, which for both cAMP and folic acid has first order kinetics with a half-life of 1.5 min.Cells were prepared which are simultaneously sensitive to folic acid and to cAMP. The cGMP responses to saturated folic acid and cAMP stimuli are not additive, which suggests that the transduction pathways of these signals meet each other at or before the guanylate cyclase. Cells which are adapted to folic acid are not adapted to cAMP and vice versa. This demonstrates that adaptation of Dictyostelium cells to chemotactic stimuli is localized at a step in the transduction chain before the transduced folic acid and cAMP signals combine in one pathway.  相似文献   

3.
The responses of Dictyostelium discoideum amoebae to developing (temporal) and stationary (spatial) gradients of folic acid, cAMP, Ca(2+), and Mg(2+) were studied using the methods of computer-aided image analysis. The results presented demonstrate that the new type of experimental chambers used for the observation of single cells moving within the investigated gradients of chemoattractants permit time lapse recording of single amoebae and determination of the trajectories of moving cells. It was found that, besides folic acid and cAMP (natural chemoattractants for Dictyostelium discoideum amoebae), also extracellular Ca(2+) and Mg(2+) are potent inducers of these cells' chemotaxis, and the amoebae of D. discoideum can respond to various chemoattractants differently. In the positively developing gradients of folic acid, cAMP, Ca(2+), and Mg(2+) oriented locomotion of amoebae directed towards the higher concentration of the tested chemoattractants was observed. However, in the negatively developing (temporal) and stationary linear (spatial) gradients, the univocal chemotaxis of amoebae was recorded only in the case of the Mg(2+) concentration gradient. This demonstrates that amoebae can respond to both developing and stationary gradients, depending upon the nature of the chemoattractant. We also investigated the effects of chosen inhibitors of signalling pathways upon chemotaxis of D. discoideum amoebae in the positively developing (temporal) gradients of tested chemoattractants. Verapamil was found to abolish the chemotaxis of amoebae only in the Ca(2+) gradients. Pertussis toxin suppressed the chemotactic response of cells in the gradients of folic acid and cAMP but did not prevent chemotaxis in those of Ca(2+) and Mg(2+), while quinacrine inhibited chemotaxis in the gradients of folic acid, cAMP, and Ca(2+) but only slightly affected chemotaxis in the Mg(2+) gradient. None of the tested inhibitors causes inhibition of cell random movement, when applied in isotropic solution. Also EDTA and EGTA up to 50 mM concentration did not inhibit locomotion of amoebae in control isotropic solutions.  相似文献   

4.
B Wurster  F Bek    U Butz 《Journal of bacteriology》1981,148(1):183-192
Kinetic data obtained for deamination of pterin by the extracellular fraction from Dictyostelium discoideum yielded apparently linear Lineweaver-Burk plots for pterin. The Michaelis constant for pterin was 30 microM. The data for folic acid deamination yielded convex Lineweaver-Burk plots. Convex Lineweaver-Burk plots could result from the presence of two types of enzymes with different affinities. The data for folic acid deamination were analyzed mathematically for two types of enzymes. This analysis produced Michaelis constants for folic acid of 1.8 and 23 microM competition studies suggested that an enzyme with low affinity nonspecifically catalyzed the deamination of folic acid and pterin, whereas an enzyme with high affinity was a specific folic acid deaminase. A specific folic acid deaminase with high affinity appeared to be present on the surface of D. discoideum cells. The Michaelis constant for this enzyme was 2.6 microM. Cells growing in nutrient broth and cells starved in phosphate buffer released folic acid and pterin deaminases. The quantity of deaminase activities released by the cells appeared to be controlled by chemoattractants. Starving cells that were supplied with folic acid, pterin, or adenosine 3',5'-phosphate increased their extracellular folic acid and pterin deaminase activities to a larger extent than did cell suspensions to which no chemoattractants were added. Administration of folic acid or pterin to starving cells caused increases of the activity of extracellular adenosine 3',5'-phosphate phosphodiesterase and repressed increases of the activity of phosphodiesterase inhibitor.  相似文献   

5.
《The Journal of cell biology》1993,123(6):1453-1462
Folic acid and cAMP are chemoattractants in Dictyostelium discoideum, which bind to different surface receptors. The signal is transduced from the receptors via different G proteins into a common pathway which includes guanylyl cyclase and acto-myosin. To investigate this common pathway, ten mutants which do not react chemotactically to both cAMP and folic acid were isolated with a simple new chemotactic assay. Genetic analysis shows that one of these mutants (KI-10) was dominant; the other nine mutants were recessive, and comprise nine complementation groups. In wild-type cells, the chemoattractants activate adenylyl cyclase, phospholipase C, and guanylyl cyclase in a transient manner. In mutant cells the formation of cAMP and IP3 were generally normal, whereas the cGMP response was altered in most of the ten mutants. Particularly, mutant KI-8 has strongly reduced basal guanylyl cyclase activity; the enzyme is present in mutant KI-10, but can not be activated by cAMP or folic acid. The cGMP response of five other mutants is altered in either magnitude, dose dependency, or kinetics. These observations suggest that the second messenger cGMP plays a key role in chemotaxis in Dictyostelium.  相似文献   

6.
In dictyoselium discoideum, an increase in extracellular cAMP activates adenylate cyclase, leading to an increase in intracellular cAMP and the rate of cAMP secretion. Cells adapt to any constant cAMP stimulus after several minutes, but still respond to an increase in the concentration of the stimulus. We have now characterized the decay of adaptation (deadaptation) after the removal of cAMP stimuli. Levels of adaptation were established by the perfusion of [(3)H]adenosine-labeled amoebae with a defined cAMP stimulus. After a variable recovery period, the magnitude of the signaling response to a second stimulus was measured; its attenuation was taken as a measure of residual adaption to the first stimulus. The level of adaptation established by the first stimulus depended on both its magnitude and duration. Deadaptation began as soon as the first stimulus was removed. The magnitude of the response to the second stimulus increased with the recovery time in a first-order fashion, with a t(1/2)=3-4 min for stimuli of 10(-8) M to 10(-5) M cAMP. Responses to test stimuli, although reduced in magnitude, had an accelerated time-course when they closely followed a prior response that had not completely subsided. This effect is called priming; we believe it reveals a reversible, rate-limiting step that modulates the onset and termination of the signaling responses of amoebae that have not recently responded to a cAMP stimulus. We have suggested that the cAMP signaling response is controlled by two antagonistic cellular processes, excitation and adaptation. The data reported here imply that both the rate of rise in the adaptation process and the final level reached depend on the occupancy of cAMP surface receptors and that the decay of adaptation when external cAMP is removed proceeds with first-order kinetics.  相似文献   

7.
Stimulation of Dictyostelium discoideum amoebae with cAMP was found to induce the specific phosphorylation of a 47,000 molecular weight protein (pP47). This cellular response to cAMP was developmentally regulated. It was first detected in 3 1/2-h starved cells and appeared to persist throughout the aggregation phase of the cells' life cycle. pP47 phosphorylation was specifically induced by cAMP in that amoebae did not respond to stimulation with 5'-AMP, folic acid, Ca2+, and/or the Ca2+ ionophore A23187. cGMP could elicit pP47 phosphorylation but only at high concentrations. Phosphorylation of pP47 in response to cAMP occurred rapidly (within 5 s). The length of time for which it remained phosphorylated depended upon the concentration of the stimulus. With 10(-6) M cAMP, pP47 was phosphorylated for less than 4 min. If amoebae were stimulated with 10(-4) M cAMP, over 30 min were necessary before pP47 was dephosphorylated. Once dephosphorylated, pP47 could again be phosphorylated upon reapplication of the cAMP stimulus.  相似文献   

8.
In Dictyostelium discoideum, binding of cAMP to high affinity surface receptors leads to a rapid activation of adenylate cyclase followed by subsequent adaptation within several minutes. The rate of secretion of [ 3H ]cAMP, which reflects the state of activation of the enzyme, was measured. Caffeine noncompetitively inhibited the response to cAMP. Inhibition was rapidly reversible and pretreatment of cells with caffeine for up to 22 min had little effect on the subsequent responsiveness to cAMP. However, cells pretreated with caffeine plus cAMP for greater than or equal to 8 min did not respond when caffeine was removed and the same concentration of cAMP was applied. The following observations indicate that both adaptation and deadaptation to cAMP occurred to the same extent and at the same rate whether or not cAMP synthesis was inhibited. First, when cells were pretreated with 10(-9)-10(-6) M cAMP in the presence or absence of caffeine and the stimulus was switched to a saturating dose of cAMP, the response to the increment was the same whether or not the initial response was blocked. Second, cells progressively lost responsiveness to 10(-6) M cAMP as pretreatment with 10(-6) M cAMP plus caffeine was extended from 0 to 8 min with the same time course as for those pretreated with 10(-6) M cAMP alone. Third, cells which were adapted in the presence of caffeine and cAMP deadapted within the same time period as controls when cAMP was removed. These observations demonstrate that while some part of the activation process is inhibited by caffeine the adaptation process is unaffected. Our conclusion is that adaptation does not depend on the activation of adenylate cyclase.  相似文献   

9.
Extracellular cAMP induces chemotaxis and cell aggregation in dictyostelium discoideum cells. cAMP added to a cell suspension is rapidly hydrolyzed (half-life of 10 s) and induces a rapid increase of intracellular cGMP levels, which reach a peak at 10 s and recover prestimulated levels at about 30 s. This recovery is not due to removal of the stimulus because the nonhydrolyzable analogue adenosine 3’,5’-monophosphorothioate-Sp- stereoisomer (cAMPS) induced a comparable cGMP response, which peaked at 10 s, even at subsaturating cAMPS concentrations. When cells were stimulated twice with the same cAMP concentration at a 30-s interval, only the first stimulus produced a cGMP response. Cells did respond to the second stimulus when the concentration of the second stimulus was higher than that of the first stimulus. By increasing the interval between two identical stimuli, the response to the second stimulus gradually increased. Recovery from the first stimulus showed first-order kinetics with a half-life of 1-2 min. The stimulation period was shortened by adding phosphodieterase to the cell suspension. The cGMP response was unaltered if the half-life of cAMP was reduced to 2 S. The peak of the transient cGMP accumulation still appeared at 10 s even when the half- life of cAMP was 0.4 s; however, the height of the cGMP peak was reduced. The cGMP response at 10 s after stimulation was diminished by 50 percent when the half-life of 10(-7) M cAMP was 0.5 s or when the half-life of 10(-8) M cAMP was 3.0 s. These results show that the cAMP signal is transduced to two opposing processes: excitation and adaptation. Within 10 s after addition of cAMP to a cell suspension the level of adaptation reaches the level of excitation, which causes the extinction of the transduction of the signal. Deadaptation starts as soon as the signal is removed, and it has first-order kinetics with a half-life of 1-2 min.  相似文献   

10.
In dictyostelium discoideum, extracellular cAMP activates adenylate cyclase, which leads to an increase in intracellular cAMP and the rate of cAMP secretion. The signaling response to a constant cAMP stimulus is terminated after several minutes by an adaptation mechanism. The time- course of adaptation stimuli of 10(-6) or 10(-7) M cAMP was assessed. We used a perfusion technique to deliver defined cAMP stimuli to [(3)H]adenosine-labeled amoebae and monitored their secretion of [(3)H]cAMP. Amoebae were pretreated with 10(-6) or 10(-7) M cAMP to periods of 0.33-12 minutes, and then immediately given test stimuli of 10(-8) M to 2.5 x 10(-7) M cAMP. The response to a given test stimulus was progressively attenuated and finally extinguished as the duration of the pretreatment stimulus increased. During concentration of the test stimulus. The responses to test stimuli of 10(-8), 5 x 10(-8), 10(-7), or 2.5 x 10(-7) M cAMP were extinguished after approximately 1, 2.25,2.5, and 10 min, respectively. 1.5 min of stimulation with 10(-7) M cAMP was necessary to extinguish the response of a test stimulus of 10(-8) M cAMP. Our data suggest that adaptation begins within 20 s of stimulation, rises rapidly for approximately 2.5 min, and reaches a plateau after approximately 10 min. The absolute rate of rise was faster during pretreatment with 10(-6) than with 10(-7) M cAMP. These results support a working hypothesis in which the occupancy of surface cAMP receptors leads to changes in two opposing cellular processes, excitation and adaptation, that control the activity of D. discoideum adenylate cyclase.  相似文献   

11.
The secretion of 3H-cyclic adenosine 3',5'-monophosphate (cAMP) by prelabeled and suitably differentiated Dictyostelium discoideum amoebae was elicited in a perfusion apparatus by 10(-10) to 10(-5) M [14C]cAMP stimuli of defined magnitude and duration. Exogenous stimuli evoked an immediate increase in the rate of [3H]cAMP secretion which accelerated continuously to reach a peak of up to 100 times the unstimulated rate after 2--3 min of stimulation. Withdrawal of the stimulus at any time during the response led to a rapid decline to basal levels. Furthermore, a spontaneous decline in secretion rate was observed during prolonged cAMP stimulation, with a return to basal levels after 3--8 min of stimulation. After the initial secretory event, cells did not respond further to the continued presence of external [14C]cAMP unless (a) it was interrupted by a brief recovery period or (b) the level of the stimulus was increased sufficiently. Since the second increment could follow the first at any time, continuous secretion of [3H]cAMP could be sustained for up to 30 min by progressively increasing the stimulus between 10(-10) and 10(-5) M cAMP. The total magnitude of spontaneously terminated responses depended on the size of the increment in applied cAMP, larger stimuli evoking both a more rapid acceleration and a slower deceleration in [3H]cAMP secretion rate. The integrated response to a given increment in stimulus level was apparently independent of its "shape" - i.e., the duration, magnitude, and number of sub-steps in the increment. These data support two mechanistic inferences: that amoebae respond in proportion to relative increases in extracellular cAMP concentration, but adapt to the concentration of cAMP itself. The data further suggest that the initiation and termination of the response are mediated by cellular component(s) beyond cAMP-occupied receptors.  相似文献   

12.
Adaptation in the motility response to cAMP in Dictyostelium discoideum   总被引:2,自引:0,他引:2  
When developing amebae of Dictyostelium discoideum are treated with constant concentrations of cAMP above 10(-8)M, the average rate of motility is depressed, with maximum inhibition at roughly 10(-6)M. It is demonstrated that shifting the concentration of cAMP from 0 M to concentrations ranging from 10(-8) to 10(-6)M in a perfusion chamber results in the immediate inhibition of motility. After shifting from 0 M to 10(-8) or 10(-7)M, the rate of cell motility remains low, then rebounds to a higher level, exhibiting a standard adaptation response. No adaptation is exhibited after a shift from 0 M to 10(-6)M, a concentration resulting in maximum inhibition. It is demonstrated that the level of inhibition and the extent of the adaptation period are dependent upon the concentration of cAMP after the shift, and that submaximal inhibition is additive. The characteristics of adaptation in this motility response are very similar to the characteristics of adaptation for the relay system and phosphorylation of the putative cAMP receptor.  相似文献   

13.
Biosynthesis of methanopterin   总被引:6,自引:0,他引:6  
R H White 《Biochemistry》1990,29(22):5397-5404
The biosynthetic pathway for the generation of the methylated pterin in methanopterins was determined for the methanogenic bacteria Methanococcus volta and Methanobacterium formicicum. Extracts of M. volta were found to readily cleave L-7,8-dihydroneopterin to 7,8-dihydro-6-(hydroxymethyl)pterin, which was confirmed to be a precursor of the pterin portion of the methanopterin. [methylene-2H]-6-(Hydroxymethyl)pterin was incorporated into methanopterin by growing cells of M. volta to an extent of 30%. Both the C-11 and C-12 methyl groups of methanopterin originate from [methyl-2H3]methionine, as confirmed by the incorporation of two C2H3 groups into 6-ethyl-7-methylpterin, a pterin-containing fragment derived from methanopterin. Cells grown in the presence of [methylene-2H]-6-(hydroxymethyl)pterin, [ethyl-2H4]-6-[1 (RS)-hydroxyethyl]pterin, [methyl-2H3]-6- (hydroxymethyl)-7-methylpterin, [ethyl-2H4, methyl-2H3]-6-[1 (RS)-hydroxyethyl]-7-methylpterin, and [1-ethyl-3H]-6-[1 (RS)-hydroxyethyl]-7-methylpterin showed that only the non-7-methylated pterins were incorporated into methanopterin. Cells extracts of M. formicicum readily condensed synthetic [methylene-3H]-7,8-H2-6-(hydroxymethyl)pterin-PP with methaniline to generate demethylated methanopterin, which is then methylated to methanopterin by the cell extract in the presence of S-adenosylmethionine. These observations indicate that the pterin portion of methanopterin is biosynthetically derived from 7,8-H2-6-(hydroxymethyl)pterin, which is coupled to methaniline by a pathway analogous to the biosynthesis of folic acid. This pathway for the biosynthesis of methanopterin represents the first example of the modification of the specificity of a coenzyme through a methylation reaction.  相似文献   

14.
Chemoresponsiveness to cAMP and to folic acid are monitored in growing, developing, and dedifferentiating amebae of the cellular slime mold Dictyostelium discoideum . Two semiquantitative assays are employed, one measuring the directed movement of cells up a gradient of chemoattractant ('chemotaxis' assay) and the other measuring the outward spreading of cells in response to a chemical stimulant distributed equally throughout the substratum ('spreading' assay). Vegetative amebae possess relatively insignificant levels of chemotactic responsiveness to cAMP. Six h after the initiation of development, at approximately the same time as the onset of aggregation, cells rapidly acquire chemotactic responsiveness to cAMP. During 'erasure', a dedifferentiation induced by resuspending aggregating cells in fresh nutrient medium, chemotactic responsiveness to cAMP is lost just after the erasure event. By the same chemotactic assay, it is demonstrated that vegetative amebae possess a significant level of chemotactic responsiveness to folic acid. Two h after the initiation of development, cells completely lose chemotactic responsiveness to folic acid. During erasure, cells reacquire chemotactic responsiveness to folic acid at approximately the same time that they lose responsiveness to cAMP.
Dramatically different results are obtained by the spreading assay. When cells lose chemotactic responsiveness to folic acid early in development and when erasing cells lose chemotactic responsiveness to cAMP, they retain the spreading response to the two stimulants, respectively. The different results obtained for chemoreception employing the two assays are discussed in terms of molecular mechanisms, and a testable hypothesis is proposed for the possible roles of chemoresponsiveness and erasure in late morphogenesis.  相似文献   

15.
A convenient, sensitive, quantitative assay for the measurement of chemotaxis of populations of D. discoideum vegetative amoebae is presented. A strategy for determining the boundary of the bulk of a population of migrating amoebae was devised and is described. This assay employs a dynamic gradient and is independent of deaminase activity. Measurements of chemoattractant capabilities of various pteridines, folates, and mixtures of folate fragments are reported. 2-Amino 4-quinazolinone, a pterin analog without the pyrazine ring nitrogens, is chemotactic. Lumazine, deaminated pterin, inhibits chemotaxis towards pterin but not towards folic acid. Deaminofolic acid is a chemoattractant as are mixtures of lumazine plus aminobenzoylglutamic acid or deaminopteroic acid plus various amino acids. Separately, the components of these mixtures exhibit no ability to stimulate chemotaxis. These mixtures are of fragments that together comprise most of the folate structure. Our results are in accord with separate receptors for pterin vs. folic acid and with a high stringency for pterin reception but a relative tolerance for folate reception. The possibility of using such mixtures to investigate the requirements of various parts of the folate structure for competent signalling is discussed.  相似文献   

16.
We used a Ca++-sensitive electrode to measure changes in extracellular Ca++ concentration in cell suspensions of Dictyostelium discoideum during differentiation and attractant stimulation. The cells maintained an external level of 3-8 microM Ca++ until the beginning of aggregation and then started to take up Ca++. The attractants, folic acid, cyclic AMP, and cyclic GMP, induced a transient uptake of Ca++ by the cells. The response was detectable within 6 s and peaked at 30 s. Half-maximal uptake occurred at 5 nM cyclic AMP or 0.2 microM folic acid, respectively. The apparent rate of uptake amounted to 2 X 10(7) Ca++ per cell per min. Following uptake, Ca++ was released by the cells with a rate of 5 X 10(6) ions per cell per min. Specificity studies indicated that the induced uptake of Ca++ was mediated by cell surface receptors. The amount of accumulated Ca++ remained constant as long as a constant stimulus was provided. No apparent adaptation occurred. The cyclic AMP-induced uptake of Ca++ increased during differentiation and was dependent on the external Ca++ concentration. Saturation was found above 10 microM external Ca++. The time course and magnitude of the attractant-induced uptake of external Ca++ agree with a role of Ca++ during contraction. During development the extracellular Ca++ level oscillated with a period of 6-11 min. The change of the extracellular Ca++ concentration during one cycle would correspond to a 30-fold change of the cellular free Ca++ concentration.  相似文献   

17.
Chemoresponsiveness to cAMP and to folic acid are monitored in growing, developing, and dedifferentiating amebae of the cellular slime mold Dictyostelium discoideum. Two semiquantitative assays are employed, one measuring the directed movement of cells up a gradient of chemoattractant ('chemotaxis' assay) and the other measuring the outward spreading of cells in response to a chemical stimulant distributed equally throughout the substratum ('spreading' assay). Vegetative amebae possess relatively insignificant levels of chemotactic responsiveness to cAMP. Six h after the initiation of development, at approximately the same time as the onset of aggregation, cells rapidly acquire chemotactic responsiveness to cAMP. During 'erasure', a dedifferentiation induced by resuspending aggregating cells in fresh nutrient medium, chemotactic responsiveness to cAMP is lost just after the erasure event. By the same chemotactic assay, it is demonstrated that vegetative amebae possess a significant level of chemotactic responsiveness to folic acid. Two h after the initiation of development, cells completely lose chemotactic responsiveness to folic acid. During erasure, cells reacquire chemotactic responsiveness to folic acid at approximately the same time that they lose responsiveness to cAMP. Dramatically different results are obtained by the spreading assay. When cells lose chemotactic responsiveness to folic acid early in development and when erasing cells lose chemotactic responsiveness to cAMP, they retain the spreading response to the two stimulants, respectively. The different results obtained for chemoreception employing the two assays are discussed in terms of molecular mechanisms, and a testable hypothesis is proposed for the possible roles of chemoresponsiveness and erasure in late morphogenesis.  相似文献   

18.
Abstract. The aggregation-specific chemoattractant for Polysphondylium violaceum is N-propionyl-γ-L-glutamyl-L-ornithine-δ-lactam ethyl ester, or glorin. Wild-type amoebae allowed to develop in liquid culture acquire increased ability to respond to glorin shortly after starvation, i.e., just prior to the time they become aggregation competent. Similarly, as development proceeds, the amoebae show decreased sensitivity to folic acid, but they show almost no response to cyclic AMP at any time during their development in liquid culture. The optimum concentrations for the chemotactic response are 10-8 M for glorin and 10-5–10-6 M for folic acid. A class of aggregation-defective mutants, aggA , will not aggregate in the absence of an excreted pheromone, D factor. During development in liquid culture in the presence or absence of D factor, these aggA mutants show a chemotactic response similar to that of wild-type amoebae to folic acid and glorin. However, D factor does enhance the chemotactic response of aggA mutants to glorin. In the absence of D factor, mutant amoebae will form fruiting bodies if exposed to a chemotactic gradient of either folic acid or glorin. Under these conditions, the mutant amoebae circumvent the requirement for D factor in order to develop.  相似文献   

19.
Cells of the adrenal medulla release not only catecholamines but also high concentrations of neuropeptides and nucleotides. Chromaffin cells, like many neuronal cells, have a diversity of receptors: adrenergic receptors, peptide receptors, histamine receptors, and dopamine receptors. We recently reported that these cells have nucleotide receptors that can mediate inhibition of the secretory response. The present studies show that adenosine, in the presence of enabling concentrations of forskolin, can potently enhance response to nicotinic stimulation. Neither adenosine nor forskolin alone produces a significant effect. A marked rise in intracellular cyclic AMP (cAMP) concentration is associated with the enhancement of secretion caused by forskolin plus adenosine. A phosphodiesterase inhibitor, Ro 20-1724, used together with forskolin produces significant increases in both cellular cAMP content and catecholamine secretion. However, the adenosine agonist 5'-N-ethylcarboxyadenosine elevates cellular cAMP content in the presence of forskolin without having any positive effect on secretion. This finding suggests that the rise in cAMP level may not be the sole cause of the increase in secretion by adenosine.  相似文献   

20.
The murine B cell line CH12.LX.C4.5F5 (CH12 (5F5) expresses adrenocorticotropin (ACTH) receptors, which can modulate IgM secretion by these cells. Interestingly, the response to ACTH was concentration dependent, inducing IgM secretion at subnanomolar amounts and suppressing secretion at micromolar amounts. With the use of an enzyme-linking immunospot assay it was possible to demonstrate that the ACTH-induced increase in IgM secretion by CH12 (5F5) cells was caused at least in part by an increase in the number of cells secreting IgM. CH12 (5F5) cells activated with suboptimal concentrations of LPS demonstrated a similar biphasic response. ACTH at concentrations of 10(-13) to 10(-9) M augmented IgM secretion in LPS-activated cells as much as sixfold, whereas 10(-6) M ACTH slightly decreased LPS-induced IgM secretion. At the mRNA level, subnanomolar concentrations of ACTH increased microH chain mRNA expression up to twofold in unstimulated or LPS-stimulated CH12 (5F5) cells. Taken together, these studies show that physiologically relevant concentrations of ACTH can interact directly with receptors on these B lymphocytes to enhance IgM secretion and microH chain mRNA expression. Although ACTH does increase intracellular cAMP levels in CH12 (5F5) B cells, it is unlikely that the induction of this second messenger pathway is by itself responsible for the ACTH induced B cell differentiation. The concentration of ACTH necessary to stimulate significant intracellular cAMP increases was 10- to 100-fold higher than that required to increase IgM secretion. Furthermore, CH12 (5F5) cells treated with varying concentrations of 8-bromo cAMP or cholera toxin were inhibited in their ability to secrete IgM. These results strongly suggest that the enhancing effects of ACTH on CH12 (5F5) IgM secretion are via mechanisms independent of those mediated by cAMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号