首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The cyanobacterium Synechocystis sp. PCC 6803 is an ideal model organism for the proteome study of light-induced gene expression because the whole genomic sequence has been determined. The soluble proteins extracted from light- and dark-cultured cells were separated by two-dimensional polyacrylamide gel electrophoresis. Light-induced protein spots electroblotted on a polyvinyldiene difluoride membrane were analyzed by N-terminal Edman sequence determination and followed by CyanoBase. The tryptic digests of some proteins were also confirmed by matrix-assisted laser desorption ionization/time-of-flight (MALDI-TOF) and MS-Fit search. Interestingly, eight proteins were related to photosynthesis and respiration (RbcS/L, CbbA, Gap2, AtpB, CpcB, PsbO, and PsbU). Four proteins (SodB, DnaK, GroEL2, and Tig) were involved in cellular processes and the functions of another two proteins (rehydrin and membrane protein) were unknown. The proteome analysis by N-terminal Edman sequencing and MALDI-TOF enabled us to characterize one-shot protein profiles expressed under different physiological conditions.  相似文献   

2.
Cph2 from the cyanobacterium Synechocystis sp. PCC 6803 is a hybrid photoreceptor that comprises an N-terminal module for red/far-red light reception and a C-terminal module switching between a blue- and a green-receptive state. This unusual photoreceptor exerts complex, light quality-dependent control of the motility of Synechocystis sp. PCC 6803 cells by inhibiting phototaxis towards blue light. Cph2 perceives blue light by its third GAF domain that bears all characteristics of a cyanobacteriochrome (CBCR) including photoconversion between green- and blue-absorbing states as well as formation of a bilin species simultaneously tethered to two cysteines, C994 and C1022. Upon blue light illumination the CBCR domain activates the subsequent C-terminal GGDEF domain, which catalyses formation of the second messenger c-di-GMP. Accordingly, expression of the CBCR-GGDEF module in Δcph2 mutant cells restores the blue light-dependent inhibition of motility. Additional expression of the N-terminal Cph2 fragment harbouring a red/far-red interconverting phytochrome fused to a c-di-GMP degrading EAL domain restores the complex behaviour of the intact Cph2 photosensor. c-di-GMP was shown to regulate flagellar and pili-based motility in several bacteria. Here we provide the first evidence that this universal bacterial second messenger is directly involved in the light-dependent regulation of cyanobacterial phototaxis.  相似文献   

3.
We found that a 65-kDa protein (p65) of Synechocystis sp. PCC 6803 is dephosphorylated in a light-dependent manner. In darkness, p65 was specifically phosphorylated and then completely dephosphorylated within 2 min upon exposure to high-intensity light. The phosphorylation of p65 recurred after 8 hours incubated in the dark following light exposure. Green (540-560 nm) and red (660 nm) light dephosphorylated p65 efficiently, with the efficiency being greater with green light. These results suggest that p65 is a novel substrate involved in the quantity and quality of light-dependent dephosphorylation in cyanobacteria.  相似文献   

4.
5.
Precipitation of calcite induced by Synechocystis sp. PCC6803   总被引:1,自引:0,他引:1  
Calcite with laminate structure was successfully prepared by culturing Synechocystis sp. PCC6803 with different concentrations of calcium chloride (CaCl2) in BG11 media. S. PCC6803 was examined by scanning electron microscopy (SEM), transmission electron microscopy (TEM), laser confocal scanning microscope (LCSM) and energy dispersive spectroscopy (EDS). The effects of Ca2+ concentrations and pH values on calcification were investigated and the micro morphs of the CaCO3 crystals were observed by means of SEM. These results showed that CaCO3 crystals could be more easily formed with increasing the concentration of CaCl2 in S. PCC6803 culture solution. S. PCC6803 could largely bind calcium ions, most of which were present in extracellular polymeric substances and on the cell wall. Inside the cells there were a lot of circular areas rich in calcium ions without the crystallization of calcium. Some cells produced a thicker gelatinous sheath outside of the translucent organic thin layer. And the cells inside also produced major changes that the original chloroplasts were almost transformed into starch grains whose sizes were from 0.5 to 1 μm with relatively uniform in sizes. At the same time the cell sizes significantly reduced to only about 8–9 μm almost changing to half of its original diameters. The calcite crystals with a highly preferred orientation induced by S. PCC6803 were observed with X-ray diffraction (XRD). A critical implication was that S. PCC6803 could induce bio-calcification and then mediate the further growth of CaCO3 crystals in the biological system.  相似文献   

6.
Band 7 proteins, which encompass members of the stomatin, prohibitin, flotillin, and HflK/C protein families, are integral membrane proteins that play important physiological roles in eukaryotes but are poorly characterized in bacteria. We have studied the band 7 proteins encoded by the cyanobacterium Synechocystis sp. strain PCC 6803, with emphasis on their structure and proposed role in the assembly and maintenance of the photosynthetic apparatus. Mutagenesis revealed that none of the five band 7 proteins (Slr1106, Slr1128, Slr1768, Sll0815, and Sll1021) was essential for growth under a range of conditions (including high light, salt, oxidative, and temperature stresses), although motility was compromised in an Slr1768 inactivation mutant. Accumulation of the major photosynthetic complexes in the thylakoid membrane and repair of the photosystem II complex following light damage were similar in the wild type and a quadruple mutant. Cellular fractionation experiments indicated that three of the band 7 proteins (Slr1106, Slr1768, and Slr1128) were associated with the cytoplasmic membrane, whereas Slr1106, a prohibitin homologue, was also found in the thylakoid membrane fraction. Blue native gel electrophoresis indicated that these three proteins, plus Sll0815, formed large (>669-kDa) independent complexes. Slr1128, a stomatin homologue, has a ring-like structure with an approximate diameter of 16 nm when visualized by negative stain electron microscopy. No evidence for band 7/FtsH supercomplexes was found. Overall, our results indicate that the band 7 proteins form large homo-oligomeric complexes but do not play a crucial role in the biogenesis of the photosynthetic apparatus in Synechocystis sp. strain PCC 6803.Members of the band 7 superfamily of proteins are found throughout nature and are defined by a characteristic sequence motif, termed the SPFH domain, after the initials of the various subfamilies: the stomatins, the prohibitins, the flotillins (also known as “reggies”), and the HflK/C proteins (12, 49). The stomatins and prohibitins and to a lesser extent flotillins are highly conserved protein families and are found in a variety of organisms ranging from prokaryotes to higher eukaryotes (29, 34, 49), whereas HflK and HflC homologues are only present in bacteria.In eukaryotes band 7 proteins are linked with a variety of disease states consistent with important cellular functions (6). In general the eukaryotic band 7 proteins tend to be oligomeric and are involved in membrane-associated processes: for example, prohibitins are involved in modulating the activity of a membrane-bound FtsH protease (17, 46) and the assembly of mitochondrial respiratory complexes (30), stomatins are involved in ion channel function (47), and flotillins are involved in signal transduction and vesicle trafficking (25).In the case of prokaryotes, most work so far has focused on the roles of the HflK/C and YbbK (also known as QmcA, a stomatin homologue) band 7 proteins of Escherichia coli (7, 16, 17, 36) and the structure of a stomatin homologue in the archaeon Pyrococcus horikoshii (57). Much less is known about the structure, function, and physiological importance of band 7 proteins in other prokaryotes, especially the cyanobacteria (12).The unicellular cyanobacterium Synechocystis sp. strain PCC 6803 is a widely used model organism for studying various aspects of cyanobacterial physiology and, in particular, oxygenic photosynthesis. One of the main areas of our research is to understand the mechanism by which the oxygen-evolving photosystem II (PSII) complex found in the thylakoid membrane of Synechocystis sp. strain PCC 6803 is repaired following light damage. Recent work has identified an important role for FtsH proteases in PSII repair (19, 41). Given that FtsH is known to form large supercomplexes with HflK/C in E. coli (36) and with prohibitins in Saccharomyces cerevisiae mitochondria (46), we hypothesized that one or more band 7 proteins might interact with FtsH in cyanobacteria and play a role in the selective turnover of the D1 reaction center polypeptide during PSII repair and so provide resistance to high light stress (40). This idea was given early support by the detection of both FtsH and Slr1106, a prohibitin homologue, in a His-tagged PSII preparation isolated from Synechocystis sp. strain PCC 6803 (40) and the detection of Slr1128 (a stomatin homologue), Sll1021 (a possible flotillin homologue), and FtsH in a His-tagged preparation of ScpD, a small chlorophyll a/b-like-binding protein that associates with PSII (56). Recent mutagenesis experiments have also suggested a role for Slr1128 in maintaining growth at high light intensities (53).In this paper we have used targeted gene disruption mutagenesis and various biochemical approaches to investigate the structure and function of band 7 proteins in Synechocystis sp. strain PCC 6803, with particular emphasis on PSII function. We provide evidence that four predicted band 7 proteins in Synechocystis sp. strain PCC 6803 (Slr1106, Slr1768, Slr1128, and Sll8015) form large independent complexes, which in the case of Slr1128 forms a ring-like structure. No evidence was found for the formation of supercomplexes with FtsH. Importantly, single and multiple insertion mutants lacking up to four of the five band 7 proteins are able to grow as well as the wild type (WT) under a range of growth conditions, including high light stress. Our results suggest that band 7 proteins are not essential in Synechocystis sp. strain PCC 6803 and are not required for efficient PSII repair. Possible functions of the cyanobacterial band 7 proteins are discussed in the light of recent results from other systems.  相似文献   

7.
Retinal-based photosynthesis may contribute to the free energy conversion needed for growth of an organism carrying out oxygenic photosynthesis, like a cyanobacterium. After optimization, this may even enhance the overall efficiency of phototrophic growth of such organisms in sustainability applications. As a first step towards this, we here report on functional expression of the archetype proteorhodopsin in Synechocystis sp. PCC 6803. Upon use of the moderate-strength psbA2 promoter, holo-proteorhodopsin is expressed in this cyanobacterium, at a level of up to 105 molecules per cell, presumably in a hexameric quaternary structure, and with approximately equal distribution (on a protein-content basis) over the thylakoid and the cytoplasmic membrane fraction. These results also demonstrate that Synechocystis sp. PCC 6803 has the capacity to synthesize all-trans-retinal. Expressing a substantial amount of a heterologous opsin membrane protein causes a substantial growth retardation Synechocystis, as is clear from a strain expressing PROPS, a non-pumping mutant derivative of proteorhodopsin. Relative to this latter strain, proteorhodopsin expression, however, measurably stimulates its growth.  相似文献   

8.
Cyanobacteria are photoautotrophic prokaryotes with a plant-like photosynthetic machinery. Because of their short generation times, the ease of their genetic manipulation, and the limited size of their genome and proteome, cyanobacteria are popular model organisms for photosynthetic research. Although the principal mechanisms of photosynthesis are well-known, much less is known about the biogenesis of the thylakoid membrane, hosting the components of the photosynthetic, and respiratory electron transport chain in cyanobacteria. Here we present a detailed proteome analysis of the important model and host organism Synechocystis sp. PCC 6803 under light-activated heterotrophic growth conditions. Because of the mechanistic importance and severe changes in thylakoid membrane morphology under light-activated heterotrophic growth conditions, a focus was put on the analysis of the membrane proteome, which was supported by a targeted lipidome analysis. In total, 1528 proteins (24.5% membrane integral) were identified in our analysis. For 641 of these proteins quantitative information was obtained by spectral counting. Prominent changes were observed for proteins associated with oxidative stress response and protein folding. Because of the heterotrophic growth conditions, also proteins involved in carbon metabolism and C/N-balance were severely affected. Although intracellular thylakoid membranes were significantly reduced, only minor changes were observed in their protein composition. The increased proportion of the membrane-stabilizing sulfoqinovosyl diacyl lipids found in the lipidome analysis, as well as the increased content of lipids with more saturated acyl chains, are clear indications for a coordinated synthesis of proteins and lipids, resulting in stabilization of intracellular thylakoid membranes under stress conditions.Cyanobacteria are a widespread group of photoautotrophic organisms, which significantly contribute to global carbon fixation. Cyanobacteria and plant chloroplasts share a common ancestor, and thus cyanobacteria have a plant-like photosynthetic metabolism (1, 2). Consequently, they are established model organisms for studies, aiming to elucidate photosynthetic mechanisms. Both, chloroplasts and cyanobacteria, have two internal membrane systems, that is, the inner envelope and the cytoplasmic membrane (CM)1 in chloroplasts or cyanobacteria, respectively, as well as the thylakoid membrane (TM) system, which harbors the complexes of the photosynthetic electron transfer chain (3, 4). The photosynthetic electron transfer chain typically consists of the three membrane integral protein complexes: photosystem I (PS I), photosystem II (PS II), and the cytochrome b6f complex, as well as of the soluble electron carriers plastoquinone and plastocyanin (5, 6). In the end, reduction equivalents are produced, which are used for CO2-fixation (7). However, besides the ability to grow photoautotrophically, some cyanobacteria are also capable to grow photoheterotrophically, where they use reduced organic compounds as carbon source, or even completely heterotrophically by using reduced organic compounds as carbon and energy source (8). The well-characterized cyanobacterium Synechocystis sp. PCC 6803 (9) (hereafter: Synechocystis) can grow in darkness under light-activated heterotrophic growth (LAHG) conditions by using glucose as carbon and energy source (10). Enhanced sugar catabolism in LAHG cultures is, for example, reflected by increased activities of enzymes involved in sugar catabolism, such as glucokinase and pyruvate kinase (11). The effects of LAHG conditions on the abundance of soluble Synechocystis proteins have been analyzed previously, although only 23 proteins with a significantly altered expression level (LAHG versus autotrophic growth) have been described. This study has e.g. indicated that under LAHG conditions glucose is mainly degraded by the oxidative pentose phosphate (OPP) pathway (12). The histidine kinase 8 (Hik8) as well as the sigma factor E (SigE), regulating the expression of sugar-degrading genes, were shown to be essential for LAHG (13, 14).Although readjustments of the cellular energy metabolism are important, the impact on the cellular membrane architecture is more striking. The ability of Synechocystis to grow under LAHG conditions has been used recently to analyze TM formation within cyanobacterial cells (15). Although dark-adapted Synechocystis cells have no active PS II complex, complete photosynthetic activity is regained within 24 h after transferring dark-adapted cells into the light. Furthermore, reappearance of photosynthetic electron transfer processes is coupled to the formation of internal TMs. However, it is essentially still completely enigmatic how the formation of internal TM is controlled, although some proteins have been suggested to be involved. These proteins include the vesicle inducing protein in plastids 1 (Vipp1), DnaK proteins, a prohibitin-like protein, as well as the YidC protein, a membrane protein integrase (1619). Nevertheless, although some proteins have been suggested to be more directly involved in TM formation, the stability of the TM is also globally affected indirectly by pathways, which control the biogenesis of lipids and/or cofactors, and mutants defective in synthesis of chlorophyll or of the membrane lipid phosphatidylglycerol (PG) have severely reduced TM systems (20, 21).In the present work, we combined prefractioning of Synechocystis cellular membranes with a global proteome and lipidome analysis, to shift the analytical focus toward the rearrangement of the internal thylakoid membrane system observed in Synechocystis cells under LAHG conditions, with a significantly larger coverage of the proteome than in former studies. Furthermore, also the effect on Synechocystis lipids was analyzed in a targeted mass spectrometric approach, revealing significant adjustment of fatty acid saturation in response to the LAHG conditions.  相似文献   

9.
We investigated the spectrum of secreted proteins in the cyanobacterium Synechocystis, and identified these proteins by amino-terminal sequencing. In total, seven sequences have been determined that corresponded to the proteins Sll0044, Sll1694, Sll1891, Slr0924, Slr0841, Slr0168, and Slr1855. The protein Sll1694 of 18 kDa that formed one of two major bands on SDS-PAGE was identified as cyanobacterial pilin, PilA. The amino-terminal sequence of another protein that formed a second major band was blocked. The analysis of the data revealed that five of seven proteins had distinct putative leader sequences for secretion.  相似文献   

10.
The cyanobacterium, Synechocystis sp. PCC 6803, was the first photosynthetic organism whose genome sequence was determined in 1996 (Kazusa strain). It thus plays an important role in basic research on the mechanism, evolution, and molecular genetics of the photosynthetic machinery. There are many substrains or laboratory strains derived from the original Berkeley strain including glucose-tolerant (GT) strains. To establish reliable genomic sequence data of this cyanobacterium, we performed resequencing of the genomes of three substrains (GT-I, PCC-P, and PCC-N) and compared the data obtained with those of the original Kazusa strain stored in the public database. We found that each substrain has sequence differences some of which are likely to reflect specific mutations that may contribute to its altered phenotype. Our resequence data of the PCC substrains along with the proposed corrections/refinements of the sequence data for the Kazusa strain and its derivatives are expected to contribute to investigations of the evolutionary events in the photosynthetic and related systems that have occurred in Synechocystis as well as in other cyanobacteria.  相似文献   

11.
Accumulation of poly-beta-hydroxybutyrate (PHB) by photoautotrophic microorganisms makes it possible to reduce the production cost of PHB. The Synechocystis sp. PCC6803 cells grown in BG11 medium under balanced, nitrogen-starved or phosphorus-starved conditions were observed by transmission electron microscope. Many electron-transparent granules in the nitrogen-starved cells had a diameter up to 0.8 micron. In contrast, the number of granules in the normally cultured cells decreased obviously and only zero to three much smaller granules were in each cell. These granules were similar to those in bacteria capable of synthesizing PHB. They were proved to be PHB by gas chromatography after subjecting the cells to methanolysis. Effects of glucose as carbon source and light intensity on PHB accumulation in Synechocystis sp. PCC6803 under nitrogen-starved cultivation were further studied. Glucose and illumination promoted cell growth but did not favor PHB synthesis. After 7 days of growth under nitrogen-starved photoautotrophic conditions, the intracellular level of PHB was up to 4.1% of cellular dry weight and the PHB concentration in the culture broth was 27 mg/l.  相似文献   

12.
As phylogenetic ancestors of plant chloroplasts cyanobacteria resemble plastids with respect to lipid and fatty acid composition. These membrane lipids show the typical prokaryotic fatty acid pattern in which the sn-2 position is exclusively esterified by C(16) acyl groups. In the course of de novo glycerolipid biosynthesis this prokaryotic fatty acid pattern is established by the sequential acylation of glycerol-3-phosphate with acyl-ACPs by the activity of different acyltransferases. In silico approaches allowed the identification of putative Synechocystis acyltransferases involved in glycerolipid metabolism. Functional expression studies in Escherichia coli showed that sll1848 codes for a lysophosphatidic acid acyltransferase with a high specificity for 16:0-ACP, whereas slr2060 encodes a lysophospholipid acyltransferase, with a broad acyl-ACP specificity but a strong preference for lysophosphatidyglycerol especially its sn-2 acyl isomer as acyl-acceptor. The generation and analysis of the corresponding Synechocystis knockout mutants revealed that lysophosphatidic acid acyltransferase unlike the lysophospholipid acyltransferase is essential for the vital functions of the cells.  相似文献   

13.
14.
15.
Kurian D  Jansèn T  Mäenpää P 《Proteomics》2006,6(5):1483-1494
To provide an insight into the heterotrophic metabolism of cyanobacteria, a proteomic approach has been employed with the model organism Synechocystis sp. PCC 6803. The soluble proteins from Synechocystis grown under photoautotrophic and light-activated heterotrophic conditions were separated by 2-DE and identified by MALDI-MS or LC-MS/MS analysis. 2-DE gels made using narrow- and micro-range IPG strips allowed quantitative comparison of more than 900 spots. Out of 67 abundant protein spots identified, 13 spots were increased and 9 decreased under heterotrophy, representing all the major fold changes. Proteomic alterations and activity levels of selected enzymes indicate a shift in the central carbon metabolism in response to trophic change. The significant reduction in light-saturated rate of photosynthesis as well as in the expression levels of rubisco and CO(2)-concentrating mechanism proteins under heterotrophy indicates the down-regulation of the photosynthetic machinery. Alterations in the expression level of proteins involved in carbon utilization pathways refer to enhanced glycolysis, oxidative pentose phosphate pathway as well as tricarboxylic acid cycle under heterotrophy. Proteomic evidences also suggest an enhanced biosynthesis of amino acids such as histidine and serine during heterotrophic growth.  相似文献   

16.
Transmission electron microscopy has been used to identify poly-3-hydroxybutyrate (PHB) granules in cyanobacteria for over 40 years. Spherical inclusions inside the cell that are electron-transparent and/or slightly electron-dense and that are found in transmission electron micrographs of cyanobacteria are generally assumed to be PHB granules. The aim of this study was to test this assumption in different strains of the cyanobacterium Synechocystis sp. PCC 6803. Inclusions that resemble PHB granules were present in strains lacking a pair of genes essential for PHB synthesis and in wild-type cells under conditions that no PHB granules could be detected by fluorescence staining of PHB. Indeed, in these cells PHB could not be demonstrated chemically by GC/MS either. Based on the results gathered, it is concluded that not all the slightly electron-dense spherical inclusions are PHB granules in Synechocystis sp. PCC 6803. This result is potentially applicable to other cyanobacteria. Alternate assignments for these inclusions are discussed.  相似文献   

17.
We used differential scanning calorimetry (DSC) as a technique capable of identifying photosynthetic complexes on the basis of their calorimetric transitions. Annotation of thermal transitions was carried out with thylakoid membranes isolated from various photosynthetic mutants of Synechocystis sp. PCC6803. The thylakoid membranes exhibited seven major DSC bands between 40 and 85°C. The heat sorption curves were analyzed both by mathematical deconvolution of the overall endotherms and by a subsequent annealing procedure. The successive annealing procedure proved to be more reliable technique than mathematical deconvolution in assigning thermal transitions. The main DSC band, around 47°C, resulting from the high enthalpy change that corresponds to non-interacting complex of PSII, was assigned using the PSI-less/apcE(-) mutant cells. Another band around 68-70°C relates to the denaturation of PSII surrounded by other proteins of the photosynthetic complexes in wild type and PSI-less/apcE(-) cells. A further major transition found at 82-84°C corresponds to the PSI core complex of wild type and PSII-deficient BE cells. Other transition bands between 50-67 and 65-75°C are believed to relate to ATP synthase and cytochrome b(6)f, respectively. These thermal transitions were obtained with thylakoids isolated from PSI(-)/PSII(-) mutant cells. Some minor bands determined at 59 and 83-84°C correspond to an unknown complex and NADH dehydrogenase, respectively. These annotations were done by PSI-less/apcE(-) and PSI(-)/PSII(-) mutants.  相似文献   

18.
19.
20.
The transport of putrescine into a moderately salt tolerant cyanobacterium Synechocystis sp. PCC 6803 was characterized by measuring the uptake of radioactively-labeled putrescine. Putrescine transport showed saturation kinetics with an apparent K(m) of 92 +/- 10 microM and V(max) of 0.33 +/- 0.05 nmol/min/mg protein. The transport of putrescine was pH-dependent with highest activity at pH 7.0. Strong inhibition of putrescine transport was caused by spermine and spermidine whereas only slight inhibition was observed by the addition of various amino acids. These results suggest that the transport system in Synechocystis sp. PCC 6803 is highly specific for polyamines. Putrescine transport is energy-dependent as evidenced by the inhibition by various metabolic inhibitors and ionophores. Slow growth was observed in cells grown under salt stress. Addition of low concentration of putrescine could restore growth almost to the level observed in the absence of salt stress. Upshift of the external osmolality generated by either NaCl or sorbitol caused an increased putrescine transport with an optimum 2-fold increase at 20 mosmol/kg. The stimulation of putrescine transport mediated by osmotic upshift was abolished in chloramphenicol-treated cells, suggesting possible involvement of an inducible transport system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号