首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Lipopolysaccharides from Pseudomonas syringae pvs atrofaciens 2399. phaseolicola 120a and Pseudomonas holci 8299, belonging to serogroup VI. possess an identical polysaccharide chain composed of D-rhamnose and D-fucose. On the hasis of methylation, partial acid hydrolysis, 1H- and 13C-NMR data, it was concluded that the backbone of the polysaccharide represents D-rhamnan built up of tetrasaccharide repeating units and alpha-D-fucofuranose residues are attached to the backbone as the monosaccharide branches. The following structure of the repeating unit is established: (Formula: see text).  相似文献   

2.
Lipopolysaccharides of serologically related strains of Pseudomonas syringae pv. atrofaciens K-1025 and Pseudomonas holci 90a possess the identical O-specific polysaccharide chains, representing a homopolymer of D-rhamnose. On the basis of methylation, partial and complete Smith degradation, and analysis by 1H- and 13C-NMR-spectroscopy, it was concluded that the repeating unit of the polysaccharide is a branched pentasaccharide of the following structure: (formula; see text)  相似文献   

3.
The structure of the O-specific polysaccharide chain of Pseudomonas syringae pv. tabaci strain 223 (serogroup VII) lipopolysaccharide was established on the basis of one- and two-dimensional 1H NMR analysis, 13C NMR analysis and calculation of optical rotation. The structure determined by the non-destructive way was confirmed by acid hydrolysis and methylation. (Sequence: see text). O-Antigen of the strain studied is similar in structure and serological properties to O-antigens of Pseudomonas syringae strains belonging to serogroup I.  相似文献   

4.
On the basis of non-destructive analysis by means of 1H and 13C NMR spectroscopy and calculation of specific optical rotation, it was concluded that O-specific polysaccharide of Pseudomonas cepacia strain IMV 4207 (serotype A) has the structure (I): (formula; see text) Two structurally different polysaccharides were found in the ratio of approximately 2.5:1 in P. cepacia strain IMV 598/2 which is serologically related to serotype A in Nakamura classification and serotype 2 in Heidt classification. The minor polysaccharide has the structure (I) whereas the major one possesses the structure (II) which is characteristic of the formerly studied O-specific polysaccharide of P. cepacia strain IMV 4137 belonging to serotype 2: ----4)-beta-D-Galp-(1----2)-alpha-L-Rhap-(1----.  相似文献   

5.
Strains of Pseudomonas syringae pv. porri are characterized by a number of pathovar-specific phenotypic and genomic characters and constitute a highly homogeneous group. Using monoclonal antibodies, they all were classified in a novel P. syringae serogroup O9. The O polysaccharides (OPS) isolated from the lipopolysaccharides (LPS) of P. syringae pv. porri NCPPB 3365 and NCPPB 3364T possess multiple oligosaccharide O repeats, some of which are linear and composed of l-rhamnose (l-Rha), whereas the major O repeats are branched with l-rhamnose in the main chain and GlcNAc in side chains (structures 1 and 2). Both branched O repeats, which differ in the position of substitution of one of the Rha residues and in the site of attachment of GlcNAc, were found in the two strains studied, O repeat 1 being major in strain NCPPB 3365 and 2 in strain NCPPB 3364T. [formula: see text]. The relationship between OPS chemotype and serotype on one hand and the genomic characters of P. syringae pv. porri and other pathovars delineated in genomospecies 4 on the other hand is discussed.  相似文献   

6.
On mild acid degradation of the Pseudomonas cepacia serotype 6 lipopolysaccharide, the O-specific polysaccharide was obtained, which contains D-mannose and D-galactose residues in the ratio approximately 1:1, as well as O-acetyl groups. On the basis of 1H and 13C NMR analysis, calculation of specific optical rotation, and methylation, it was concluded that the polysaccharide possesses the following structure: (formula; see text) Regularities in glycosidation effects in 13C NMR spectra of 1,3-linked disaccharides containing furanoside residues are discussed.  相似文献   

7.
O-Specific polysaccharide, consisting of D-rhamnose and L-glycero-D-manno-heptose (LD-Hep) in a 2 : 1 ratio, was obtained on the mild acid degradation of the Pseudomonas cepacia IMV 673/2 lipopolysaccharide; monosaccharide LD-Hep has not previously been found in O-specific chains of lipopolysaccharides. On the basis of methylation and 13C-NMR data, it was concluded that the polysaccharide is composed of trisaccharide repeating units having the following structure: ----3)-alpha-D-Rha-(1----3)-alpha-D-Rha-(1----2)-alpha-LD-Hep-(1----  相似文献   

8.
The following structure of the repeating unit of the Proteus hauseri O-specific polysaccharide was established on the basis of monosaccharide composition and 13C NMR data of the polysaccharide and products of its Smith degradation and partial cleavage with hydrogen fluoride: (Formula: see text).  相似文献   

9.
Anomeric methyl 3-O-(D-mannopyranosyl- and L-rhamnopyranosyl)-beta-D-talopyranosides were synthesised by the stereoselective 1,2-cis- and 1,2-trans manno- and rhamnosylation of methyl 2,4,6-tri-O-acetyl-beta-D-talopyranoside, which has been prepared from methyl beta-D-galactopyranoside by a synthetic scheme including conversion of the C2 configuration. From 13C-NMR spectra of the disaccharides obtained the spectral alpha- and beta-effects of O3-glycosylation of talopyranose were determined.  相似文献   

10.
A collection of strains of Pseudomonas syringae pv. savastanoi was subjected to numeric phenetic analysis of 60 characters using unweighted average linkage on the simple matching coefficient. Most strains recovered by washing random leaves in April and October shared lower similarity values between themselves than with the majority of those isolated from 6-month-old knots in October and April, respectively.  相似文献   

11.
On mild acid degradation on lipopolysaccharides of seven Pseudomonas aeruginosa immunotypes, O-specific polysaccharides were obtained and their structures established. A peculiar feature of the polysaccharides is the presence of various, mostly acidic, mono- and diaminosugars, many of which have not previously been found in nature. The absence of serological cross-reactions (inhibition of passive haemagglutination) between lipopolysaccharides of seven immunotypes correlates with the absence of any common oligosaccharide fragments in their O-specific chains. The data obtained revealed structural and serological interrelations between O-antigens of seven immunotypes and P. aeruginosa O-serotypes, and showed that immunotypes 1 and 7 should be included into the serological classification scheme as individual O-serotypes.  相似文献   

12.
The O-specific polysaccharide chain of the Pseudomonas aurantiaca IMV 31 lipopolysaccharide contains N-acetyl-L-fucosamine (FucNAc) and di-N-acetyl-D-bacillosamine (2,4-diacetamido-2,4,6-trideoxyglucose, Bac(NAc)2) in the ratio 2:1. On the basis of methylation, solvolysis with anhydrous hydrogen fluoride, and computer-assisted analysis of 13C-NMR spectrum, it was concluded that the trisaccharide repeating unit of the polysaccharide possesses the following structure: structure: ----3)-beta-D-Bac(NAc)2-(1----3)-alpha-L-FucNAc-(1----3)-alpha-L- FucNAc-(1----.  相似文献   

13.
Abstract

Fifty-six strains of Pseudomonas syringae pv. tomato (P.s. pv. tomato) were collected from tomato-producing areas in Tanzania and assessed for resistance to copper and antibiotics. The collection was done from three tomato-producing regions (Morogoro, Arusha and Iringa), representing three different ecological conditions in the country. After isolation and identification, the P. s. pv. tomato strains were grown on King's medium B (KB) amended with 20% copper sulphate (w/v). The strains were also assessed for resistance to antibiotics. Results indicated that there was widespread resistance of the P. s. pv. tomato strains to copper sulphate. The highest level of resistance was recorded from the Arusha region (Northern Tanzania), 83.3% of the P. s. pv. tomato strains from that region showed resistance to copper sulphate. This was followed by Iringa region (Southern Tanzania), from where strains of the pathogen were moderately resistant to copper sulphate, such that 54.0% of them were able to grow on the KB medium amended with 20% (w/v) of the copper compound.

Out of seven strains of P. s. pv. tomato from Morogoro region (Central Tanzania) included in the study, five (71.5%) were resistant to copper sulphate. The only strain of P. s. pv. tomato from the Dodoma region (Central Tanzania, but with a different ecological condition from the Morogoro region) included in the study was unable to grow on the medium containing 20% copper sulphate. None of the P. s. pv. tomato strains in the four regions included in the study were resistant to streptomycin sulphate. These results suggest that in the Arusha and Iringa regions of Tanzania, there might be possibilities of excessive use of copper compounds in tomato production, such that strains of P. s. pv. tomato strains in the areas have become resistant to the compounds.  相似文献   

14.
Uroporphyrinogen III synthase (U3S) is one of the key enzymes in the biosynthesis of tetrapyrrole compounds. It catalyzes the cyclization of the linear hydroxymethylbilane (HMB) to uroporphyrinogen III (uro’gen III). We have determined the crystal structure of U3S from Pseudomonas syringae pv. tomato DC3000 (psU3S) at 2.5 Å resolution by the single wavelength anomalous dispersion (SAD) method. Each psU3S molecule consists of two domains interlinked by a two-stranded antiparallel β-sheet. The conformation of psU3S is different from its homologous proteins because of the flexibility of the linker between the two domains, which might be related to this enzyme’s catalytic properties. Based on mutation and activity analysis, a key residue, Arg219, was found to be important for the catalytic activity of psU3S. Mutation of Arg219 to Ala caused a decrease in enzymatic activity to about 25% that of the wild type enzyme. Our results provide the structural basis and biochemical evidence to further elucidate the catalytic mechanism of U3S.  相似文献   

15.
O-Specific polysaccharide composed of L-rhamnose and 2-acetamido-2-deoxy-D-mannose was obtained on mild acid degradation of P. aeruginosa X (Meitert classification) lipopolysaccharide. On the basis of non-destructive analis using 1H, 13C NMR spectroscopy and Klyne's rule calculation, as well as chemical methods (acid hydrolysis, methylation, Smith degradation), it was established that the polysaccharide is built up of disaccharide repeating units of the following structure: ----4)-alpha-L-Rha-(1----3)-beta-D-ManNAc-(1----.  相似文献   

16.
O-Specific polysaccharide built up of trisaccharide repeating units containing 3-acetamidino-2-acetamido-2,3-dideoxy-D-mannuronic acid (ManNAcAmA), 2,3-diacetamido-2,3-dideoxy-D-mannuronic acid (Man(NAc)2A), N-acetyl-D-fucosamine (FucNAc), and O-acetyl group was obtained on mild acid hydrolysis of P. aeruginosa O25 (Wokatsch classification) lipopolysaccharide. Basing on de-O-acetylation of polysaccharide with aqueous triethylamine accompanied by hydrolysis of acetamidino group to acetamido group, as well as on the 1H and 13C NMR data, the following structure of the repeating unit of the polysaccharide was established: (Formula: see text) P. aeruginosa O25 polysaccharide has the same carbohydrate skeleton as that of P. aeruginosa O3a,b (Lányi classification) and differs from the latter only by the presence of the O-acetyl group at position 4 of N-acetylfucosamine.  相似文献   

17.
The paper deals with a comparative analysis of the serological and ecological properties of Pseudomonas syringae pv. atrofaciens strains from the collections of microbial cultures at the Malkov Institute for Plant Genetic Resources and Zabolotny Institute of Microbiology and Virology. All of the strains from the Bulgarian collection, except for one, fall into five serogroups (II through VI) of the classification system of Pastushenko and Simonovich. The P. syringae pv. atrofaciens strains isolated from Bulgarian and Ukrainian wheats belong mainly to serogroups II and IV, respectively. The strains that were isolated from rye plants belong to serogroup I. The strains isolated from sorghum and Sudan grass belong to serogroups II, IV, and VL. Serogroup III includes the P. syringae pv. atrofaciens strains that were isolated from cereals in the United Kingdom but not in Ukraine.  相似文献   

18.
The lipopolysaccharide from Pseudomonas aeruginosa O12 (Lányi classification) gave on mild acid hydrolysis an O-specific polysaccharide built of D-ribose and N-acetyl-D-galactosamine. The disaccharide structure----4)-alpha-GalNAcp-(1----2)-beta-Ribf-(1----for the repeating unit of the polysaccharide was established by nondestructive way involving full interpretation of its 1H- and 13C-NMR-spectra, using homonuclear and selective heteronuclear 13C[1H] double resonances.  相似文献   

19.
The sidechain of the lipopolysaccharide from the phytopathogen Pseudomonas syringae pv. morsprunorum C28 was shown to be composed of D-rhamnose. Using 1H and 13C-NMR spectroscopy, methylation analysis, Smith degradation and optical rotation data, the repeat unit was found to have the structure: ----3)-D-Rhap-(alpha 1----3)-D-Rhap-(alpha 1----2)-D-Rhap-(alpha 1---- and a degree of polymerization of approximately 70. Attention is drawn to the possible prevalence of D-6-deoxyhexoses in the lipopolysaccharides of plant pathogenic bacteria.  相似文献   

20.
On the basis of acid hydrolysis, methylation, 1H and 13C NMR analysis, and calculation of specific optical rotation, the following structures were established for O-specific polysaccharides of Pseudomonas cepacia serotypes B and E: ----3)-beta-D-Galf-(1----3)-alpha-D-Fucp-(1----serotype B ----3)-beta-D-GlcpNAc-(1----3)-alpha-D-Fucp-(1----serotype E A characteristic feature of the polysaccharides is the presence of D-fucose, rather rare for bacterial antigens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号