首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
An inexpensive procedure that uses small volumes (5–10 ml) of cell culture for the rapid isolation of restriction enzymes, sufficiently pure to allow preliminary characterisation, is presented. The method was designed initially to screen for Type II restriction enzymes, but different assays can be devised to screen for other types of restriction enzymes. Although initially optimised in Lacotococcus lactis subsp. cremoris LC17-1, this method potentially holds wider applications in other lactococcal species as was shown by its successful application to Lactococcus lactis subp. lactis. Without the necessity for chromatographic techniques that are often expensive and time consuming, the convenience of the technique makes it suitable for rapid, routine screening of a large number of lactic acid bacterial strains, or restriction and modification systems cloned into them, for restriction enzyme activity.  相似文献   

3.
For better exploitation of the red seaweed Grateloupia, enzymatic digestion of the thallus may be a way to increase access to metabolites of industrial interest. With this aim, we have tried to find a method to quantify the efficiency of enzymatic digestion. Vegetative algal material was treated with polysaccharidases (Onozuka R-10 cellulase, agarase, and Ultraflo L mixture). The proportion of degraded surface area was determined by microscopic measurement of the residue surface using imaging software and compared with the analysis of carbohydrates and R-phycoerythrin released in the incubation solution. Both the reducing carbohydrate concentration and percentage of degraded surface area appeared the most reliable methods to study enzymatic efficiency. The amount of solubilized total carbohydrates, and particularly that of R-phycoerythrin, showed non-specific variations, so no conclusions could be drawn. The application of this procedure to the screening of the efficient digestion of Grateloupia material demonstrated that cell walls were only partially digested by polysaccharidase enzymes alone. The Ultraflo L mixture and Onozuka R-10 cellulase produced a greater degradation of Grateloupia tissues and a higher release of reducing carbohydrates, whereas agarase did not display any specific action. Thus, the proposed procedure based on the quantification of residue surface area seems to be an accurate method to analyze enzymatic digestion. Other tests using different concentrations and combinations of enzymes are now required.  相似文献   

4.
The different electrophoretic patterns of dimeric phosphoglucoisomerases extracted from haploid pollen and diploid somatic tissues of plants may be used to distinguish allozymes and isozymes. The analysis depends on the presence of two alleles at each locus in somatic tissues but only one or the other allele in pollen grains. Consequently, in heterozygotes, heterodimeric allozymes can be identified because they are formed in stems and leaves but not in pollen. The procedure is described in enzymes extracted from the diploid annual plant Clarkia dudleyana, which possesses three gene loci for PGI subunits. Comparison of the electrophoretic patterns of stem and pollen extracts makes it possible in many cases to identify allelic state without breeding tests. The technique also is likely to be useful in the interpretation of zymograms of other multimeric enzymes coded by more than one gene locus.  相似文献   

5.
Photoreceptor cells that were mostly free of extracellular material and suitable for most electrophysiological study procedures were dissociated from whole heads of the fruit fly, Drosophila melanogaster, by a simple smash technique employing gentle chopping by a razor blade through Parafilm sheets. A variety of commonly available proteolytic and glycolytic digestion enzymes were tested as additions to the basic dissociation procedure described. With the aid of Nomarski interference contrast optics, periodic acid-Schiff staining, and fluorescent labeling and microscopy methods, it was determined that proteolytic enzymatic digestion does little to enhance the dissociation procedure, and instead, often damages the cells that one is attempting to recover. Unexpectedly, certain glycolytic enzymes, when added to the basic procedure, appear to enhance the recovery of intact viable Drosophila photoreceptors that are stripped of most extracellular material. Based on these results, a hypothesis concerning the biochemical nature of the extracellular matrix of the Drosophila retina is proposed. Drosophila photoreceptors are an interesting model system for the study of invertebrate phototransduction and photoreceptor cell biology because of their many well-characterized mutant strains. The technique described here should produce clean viable photoreceptors or ommatidia that respond to light, and that are suitable for patch clamping or cell culture.  相似文献   

6.
Transglutaminases form a unique family of cross-linking enzymes which may be interesting for pharmaceutical and technical purposes. Bacterial transglutaminase, differing from the eucaryotic counterparts in being independent from Ca2+ ions, is excreted by several Streptomyces species. Until now an endogenous factor regulating activated transglutaminase could not be detected. Here, we investigated whether an inhibitor of transglutaminase is excreted into the culture fluid of Streptomyces mobaraensis. We could demonstrate that heat-resistant inhibitory activity is produced after 24h of growth reaching a maximum after 72h. A two-step ion exchange chromatography purification procedure revealed co-elution of the heat-treated inhibitor with pro-transglutaminase. Experiments with wild-type and recombinant pro-transglutaminase confirmed that the precursor protein indeed inhibits the activity of the mature enzyme.  相似文献   

7.
Two enzymes, one NADPH-dependent and another NADH-dependent which catalyze the reduction of methylglyoxal to acetol have been isolated and substantially purified from crude extracts of Escherichia coli K12 cells. Substrate specificity and formation of acetol as the reaction product by both the enzymes, reversibility of NADH-dependent enzyme with alcohols as substrates and inhibitor study with NADPH-dependent enzyme indicate that NADPH-dependent and NADH-dependent enzymes are identical with an aldehyde reductase (EC 1.1.1.2) and alcohol dehydrogenase (EC 1.1.1.1) respectively. The Km for methylglyoxal have been determined to be 0.77 mM for NADPH-dependent and 3.8 mM for NADH-dependent enzyme. Stoichiometrically equimolar amount of acetol is formed from methylglyoxal by both NADPH- and NADH-dependent enzymes. In phosphate buffer, both the enzymes are active in the pH range of 5.8–6.6 with no sharp pH optimum. Molecular weight of both the enzymes were found to be 100,000 ± 3,000 by gel filtration on a Sephacryl S-200 column. Both NADPH- and NADH-dependent enzymes are sensitive to sulfhydryl group reagents.  相似文献   

8.
Russell Pressey 《Planta》1988,174(1):39-43
A procedure was developed for the differential extraction of polygalacturonases (PG) I and II from tomatoes (Lycopersicon esculentum Mill.). Extraction of pericarp tissue from ripe fruit at conventional conditions of 1.0 M NaCl and pH 6.0 yielded nearly equal amounts of the two enzymes. However, most of the PG activity could be extracted also with water at pH 1.6, and the water extract contained only PG II. Subsequent extraction of the pellet with 1.0 M NaCl at pH 6.0 and 10.0 yielded some PG I and high levels of PG converter, the protein in tomatoes that reacts with PG II to form PG I. Application of this procedure to tomatoes at different stages of ripening showed that PG II appeared as ripening began and then increased during ripening. Much lower levels of PG I than of PG II were extracted at all stages of ripeness. The PG converter was present in unripe fruit and increased during ripening. The results demonstrate that PG I is formed when PG II and PG converter are solubilized simultaneously and that PG II is the only endogenous PG in tomatoes.Abbreviation PG polygalacturonase  相似文献   

9.
Pseudomonas sp. strain CF600 is an efficient degrader of phenol and methylsubstituted phenols. These compounds are degraded by the set of enzymes encoded by the plasmid locateddmpoperon. The sequences of all the fifteen structural genes required to encode the nine enzymes of the catabolic pathway have been determined and the corresponding proteins have been purified. In this review the interplay between the genetic analysis and biochemical characterisation of the catabolic pathway is emphasised. The first step in the pathway, the conversion of phenol to catechol, is catalysed by a novel multicomponent phenol hydroxylase. Here we summarise similarities of this enzyme with other multicomponent oxygenases, particularly methane monooxygenase (EC 1.14.13.25). The other enzymes encoded by the operon are those of the well-knownmeta-cleavage pathway for catechol, and include the recently discoveredmeta-pathway enzyme aldehyde dehydrogenase (acylating) (EC 1.2.1.10). The known properties of thesemeta-pathway enzymes, and isofunctional enzymes from other aromatic degraders, are summarised. Analysis of the sequences of the pathway proteins, many of which are unique to themeta-pathway, suggests new approaches to the study of these generally little-characterised enzymes. Furthermore, biochemical studies of some of these enzymes suggest that physical associations betweenmeta-pathway enzymes play an important role. In addition to the pathway enzymes, the specific regulator of phenol catabolism, DmpR, and its relationship to the XylR regulator of toluene and xylene catabolism is discussed.  相似文献   

10.
In this study, the transglucosylation potential of six sucrose phosphorylase (SP) enzymes has been compared using eighty putative acceptors from different structural classes. To increase the solubility of hydrophobic acceptors, the addition of various co-solvents was first evaluated. All enzymes were found to retain at least 50% of their activity in 25% dimethylsulfoxide, with the enzymes from Bifidobacterium adolescentis and Streptococcus mutans being the most stable. Screening of the enzymes’ specificity then revealed that the vast majority of acceptors are transglucosylated very slowly by SP, at a rate that is comparable to the contaminating hydrolytic reaction. The enzyme from S. mutans displayed the narrowest acceptor specificity and the one from Leuconostoc mesenteroides NRRL B1355 the broadest. However, high activity could only be detected on l-sorbose and l-arabinose, besides the native acceptors d-fructose and phosphate. Improving the affinity for alternative acceptors by means of enzyme engineering will, therefore, be a major challenge for the commercial exploitation of the transglucosylation potential of sucrose phosphorylase.  相似文献   

11.
Summary A method for isolating high quality DNA from wholeEuglena cells is described. The procedure consists in: the weakening of the cell pellicle in glycerol avoiding the mechanical disruption of cells and shearing damage in DNA molecules; the decondensation ofEuglena compact chromatin directly inside the cells; the complete dissociation of cells and nucleoproteins in sarkosyl detergent; the optional digestion of proteins and RNA with DNase-free enzymes and the final purification of DNA by isopycnic banding in CsCl gradients. Degradation of DNA is prevented all along the extraction procedure by glycerol, antioxydants, EDTA and sarkosyl detergent. Using the enzymatic digestion step, DNA containing few single-stranded nicks is obtained with a yield approaching 100%. DNA with no single-stranded nick could be obtained with a 35% yield when the enzymatic digestion step was omitted. In both cases, the double-stranded DNA has an average molecular weight equal or greater than 6×107. It is free of contaminants and could be easily digested with restriction enzymes. After digestion with Eco RI and size-fractionation in agarose gel this DNA has permitted specific hybridization of the rDNA sequences with a radioactive rRNA probe.Abbreviations Kbp kilobasepairs - Kb kilobases  相似文献   

12.
A study was made of some late reactions in the trisporic acid biosynthetic pathway in Mucor mucedo. Trisporic acids induce sexual reproduction in several Mucorales.Two enzymes involved in these reactions, a NADP-dependent dehydrogenase and an esterase, appeared to be highly specific for the minus mating type.The synthesis of these enzymes is stimulated by trisporic acids, indicating a positive control of these hormones upon their own synthesis.The dehydrogenase was histochemically shown to be concentrated in the zygophores of Mucor mucedominus. In the homothallic Zygorhynchus moelleri the copulating main branch (which is known to have a minus character) appeared to be the major site of dehydrogenase activity.  相似文献   

13.
Summary A simple procedure has been developed for the dissociation of active molecules of glutamate oxaloacetate transaminase (GOT: E.C. 2.6.1.1) into protomers and for the reassociation of the subunits into active enzymes. Results of experiments in which the protomers of genetically controlled electrophoretic variants of GOT of Triticum aestivum and of several related species were dissociated and recombined in crude tissue extracts and in partially purified preparations support the hypothesis that the enzyme exists functionally as a dimer in the Triticinae.This paper is Technical Article No. 13157 of the Texas Agricultural Experiment Station.  相似文献   

14.
Carotenoids are indispensable pigments of the photosynthetic apparatus in plants, algae, and cyanobacteria and are produced, as well, by many bacteria and fungi. Elucidation of biochemical pathways leading to the carotenoids that function in the photosynthetic membranes of land plants has been greatly aided by the use of carotenoid-accumulating strains of Escherichia coli as heterologous hosts for functional assays, in vivo, of the otherwise difficult to study membrane-associated pathway enzymes. This same experimental approach is uniquely well-suited to the discovery and characterization of yet-to-be identified enzymes that lead to carotenoids of the photosynthetic membranes in algal cells, to the multitude of carotenoids found in nongreen plant tissues, and to the myriad flavor and aroma compounds that are derived from carotenoids in plant tissues. A portfolio of plasmids suitable for the production in E. coli of a variety of carotenoids is presented herein. The use of these carotenoid-producing E. coli for the identification of cDNAs encoding enzymes of carotenoid and isoprenoid biosynthesis, for characterization of the enzymes these cDNAs encode, and for the production of specific carotenoids for use as enzyme substrates and reference standards, is described using the flowering plant Adonis aestivalis to provide examples. cDNAs encoding nine different A. aestivalis enzymes of carotenoid and isoprenoid synthesis were identified and the enzymatic activity of their products verified. Those cDNAs newly described include ones that encode phytoene synthase, β-carotene hydroxylase, deoxyxylulose-5-phosphate synthase, isopentenyl diphosphate isomerase, and geranylgeranyl diphosphate synthase.  相似文献   

15.
The somatic extract of Zygocotyle lunata (Trematoda: Paramphistomidae) adults collected from experimentally infected mice was investigated using a proteomic approach to separate and identify tryptic peptides from the somatic extract of Z. lunata adult worms. A shot-gun liquid chromatography/tandem mass spectrometry procedure was used. We used the MASCOT search engine (Matrix-Science) and ProteinPilot software v2.0 (Applied Biosystems) for the database search. A total of 36 proteins were accurately identified from the worms. The largest protein family consisted of metabolic enzymes. Structural, motor and receptor binding proteins and proteins related to oxygen transport were identified in the somatic extract of Z. lunata. This is the first study that attempts to identify the proteome of Z. lunata. However, more work is needed to improve our knowledge of trematodiasis in general and more specifically to have a better understanding about host–parasite relationships in infections with paramphistomes.  相似文献   

16.
Mycobacterium tuberculosis is a bacterial pathogen that can persist for decades in an infected patient without causing a disease. In vivo, the tubercle bacillus present in the lungs store triacylglycerols in inclusion bodies. The same process can be observed in vitro when the bacteria infect adipose tissues. Indeed, before entering in the dormant state, bacteria accumulate lipids originating from the host cell membrane degradation and from de novo synthesis. During the reactivation phase, these lipids are hydrolysed and the infection process occurs. The degradation of both extra and intracellular lipids can be directly related to the presence of lipolytic enzymes in mycobacteria, which have been ignored during a long period particularly due to the difficulties to obtain a high expression level of these enzymes in M. tuberculosis. The completion of the M. tuberculosis genome offered new opportunity to this kind of study. The aim of this review is to focus on the recent results obtained in the field of mycobacterium lipolytic enzymes and although no experimental proof has been shown in vivo, it is tempting to speculate that these enzymes could be involved in the virulence and pathogenicity processes.  相似文献   

17.
In environmental toxicology, the most commonly used techniques used to visualise lysosomes in order to determine their responses to pollutants (LSC test: lysosomal structural changes test; LMS test: lysosomal membrane stability test) are based on the histochemical application of lysosomal marker enzymes. In mussel digestive cells, the marker enzymes used are β-glucuronidase (β-Gus) and hexosaminidase (Hex). The present work has been aimed at determining the distribution of these lysosomal marker enzymes in the various compartments of the endo-lysosomal system (ELS) of mussel digestive cells and at exploring whether intercellular transfer of lysosomal enzymes occurs between digestive and basophilic cells. Immunogold cytochemistry has allowed us to conclude that β-Gus is present in every compartment of the digestive cell ELS, whereas Hex is not so widely distributed. Moreover, Hex is intimately linked to the lysosomal membrane, whereas β-Gus appears to be not necessarily membrane-bound. Therefore, two populations of heterolysosomes with different enzyme load and membrane stability have been distinguished in the digestive cell. In addition, heterolysosomes of different electron density have been commonly observed merging together by contact; we suggest that some might act as storage granules for lysosomal enzymes. On the other hand, β-Gus seems to be released to the digestive alveolar lumen in secretory lysosomes produced by basophilic cells and endocytosed by digestive cells. Regarding the implications of the present study on the interpretation of lysosomal biomarkers, we conclude that β-Gus, but not Hex, histochemistry provides an appropriate marker for the LSC test and that, although both lysosomal marker enzymes can be employed in the LMS test, different values would be obtained depending on the marker enzyme employed. This study was funded by the University of the Basque Country through a grant to Consolidated Research Groups. U.I. is a recipient of a pre-doctoral fellowship from the Basque Government.  相似文献   

18.
Isoniazid, a first-line antibiotic used for the treatment of tuberculosis, is a prodrug that requires activation by the Mycobacterium tuberculosis enzyme KatG. The KatG(S315T) mutation causes isoniazid resistance while the KatG(R463L) variation is thought to be a polymorphism. Much of the work to date focused on isoniazid activation by KatG has utilized recombinant enzyme overexpressed in Escherichia coli. In this work, native KatG and KatG(S315T) were purified from M. tuberculosis, and KatG(R463L) was purified from Mycobacterium bovis. The native molecular weight, enzymatic activity, optical, resonance Raman, and EPR spectra, K(D) for isoniazid binding, and isoniazid oxidation rates were measured and compared for each native enzyme. Further, the properties of the native enzymes were compared and contrasted with those reported for recombinant KatG, KatG(S315T), and KatG(R463L) in order to assess the ability of the recombinant enzymes to act as good models for the native enzymes.  相似文献   

19.
Blue-native polyacrylamide gel electrophoresis (BN-PAGE) is a powerful procedure for the separation and characterization of the protein complexes from mitochondria. Membrane proteins are solubilized in the presence of aminocaproic acid and n-dodecylmaltoside and Coomassie-dyes are utilized before electrophoresis to introduce a charge shift on proteins. Here, we report a modification of the procedure for the analysis of chloroplast protein complexes. The two photosystems, the light-harvesting complexes, the ATP synthase, the cytochrome b 6 f complex and the ribulose-bisphosphate carboxylase/oxygenase are well resolved. Analysis of the protein complexes on a second gel dimension under denaturing conditions allows separation of more than 50 different proteins which are part of chloroplast multi-subunit enzymes. The resolution capacity of the blue-native gels is very high if compared to 'native green gel systems' published previously. N-terminal amino acid sequences of single subunits can be directly determined by cyclic Edman degradation as demonstrated for eight proteins. Analysis of chloroplast protein complexes by blue-native gel electrophoresis will allow the generation of 'protein maps' from different species, tissues and developmental stages or from mutant organelles. Further applications of blue-native gel electrophoresis are discussed.  相似文献   

20.
M. J. Emes  S. England 《Planta》1986,168(2):161-166
A procedure is described for the purification of plastids from the roots of Pisum sativum L. The preparations obtained are appreciably free of contamination by other particles as judged by the distribution of organelle-specific marker enzymes and by electron microscopy. Latency of glutamate synthase (EC 2.6.1.53) within these preparations indicates that the plastids obtained are 90–95% intact, whilst the resistance of this enzyme, and glucose-6-phosphogluconate dehydrogenase (EC 1.1.1.43) to tryptic digestion in unlysed organelles indicates that they are at least 70–85% intact and may be suitable for studies of metabolite transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号