首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
hrp genes, encoding type III secretion machinery, have been shown to be key determinants for pathogenicity in the vascular phytopathogenic bacterium Ralstonia solanacearum GMI1000. Here, we show phenotypes of R. solanacearum mutant strains disrupted in the prhJ, hrpG, or hrpB regulatory genes with respect to root infection and vascular colonization in tomato plants. Tests of bacterial colonization and enumeration in tomato plants, together with microscopic observations of tomato root sections, revealed that these strains display different phenotypes in planta. The phenotype of a prhJ mutant resembles that of the wild-type strain. An hrpB mutant shows reduced infection, colonization, and multiplication ability in planta, and induces a defense reaction similar to a vascular hypersensitive response at one protoxylem pole of invaded plants. In contrast, the hrpG mutant exhibited a wild-type level of infection at secondary root axils, but the ability of the infecting bacteria to penetrate into the vascular cylinder was significantly impaired. This indicates that bacterial multiplication at root infection sites and transit through the endodermis constitute critical stages in the infection process, in which hrpB and hrpG genes are involved. Moreover, our results suggest that the hrpG gene might control, in addition to hrp genes, other functions required for vascular colonization.  相似文献   

2.
Although ethylene regulates a wide range of defense-related genes, its role in plant defense varies greatly among different plant-microbe interactions. We compared ethylene's role in plant response to virulent and avirulent strains of Xanthomonas campestris pv. vesicatoria in tomato (Lycopersicon esculentum Mill.). The ethylene-insensitive Never ripe (Nr) mutant displays increased tolerance to the virulent strain, while maintaining resistance to the avirulent strain. Expression of the ethylene receptor genes NR and LeETR4 was induced by infection with both virulent and avirulent strains; however, the induction of LeETR4 expression by the avirulent strain was blocked in the Nr mutant. To determine whether ethylene receptor levels affect symptom development, transgenic plants overexpressing a wild-type NR cDNA were infected with virulent X. campestris pv. vesicatoria. Like the Nr mutant, the NR overexpressors displayed greatly reduced necrosis in response to this pathogen. NR overexpression also reduced ethylene sensitivity in seedlings and mature plants, indicating that, like LeETR4, this receptor is a negative regulator of ethylene response. Therefore, pathogen-induced increases in ethylene receptors may limit the spread of necrosis by reducing ethylene sensitivity.  相似文献   

3.
Beneficial bacteria interact with plants by colonizing the rhizosphere and roots followed by further spread through the inner tissues, resulting in endophytic colonization. The major factors contributing to these interactions are not always well understood for most bacterial and plant species. It is believed that specific bacterial functions are required for plant colonization, but also from the plant side specific features are needed, such as plant genotype (cultivar) and developmental stage. Via multivariate analysis we present a quantification of the roles of these components on the composition of root-associated and endophytic bacterial communities in potato plants, by weighing the effects of bacterial inoculation, plant genotype and developmental stage. Spontaneous rifampicin resistant mutants of two bacterial endophytes, Paenibacillus sp. strain E119 and Methylobacterium mesophilicum strain SR1.6/6, were introduced into potato plants of three different cultivars (Eersteling, Robijn and Karnico). Densities of both strains in, or attached to potato plants were measured by selective plating, while the effects of bacterial inoculation, plant genotype and developmental stage on the composition of bacterial, Alphaproteobacterial and Paenibacillus species were determined by PCR-denaturing gradient gel-electrophoresis (DGGE). Multivariate analyses revealed that the composition of bacterial communities was mainly driven by cultivar type and plant developmental stage, while Alphaproteobacterial and Paenibacillus communities were mainly influenced by bacterial inoculation. These results are important for better understanding the effects of bacterial inoculations to plants and their possible effects on the indigenous bacterial communities in relation with other plant factors such as genotype and growth stage.  相似文献   

4.
Pseudomonas fluorescens J2 can produce 2,4-diacetylphloroglucinol (2,4-DAPG) as the main antibiotic compound and effectively inhibits the wilt pathogens Ralstonia solanacearum and Fusarium oxysporum. The phlF which negatively regulates the 2,4-DAPG synthesis in strain J2 was disrupted by homologous recombination to construct a mutant strain J2-phlF. The mutant J2-phlF produced much more 2,4-DAPG and showed higher inhibitory effect on R. solanacearum than the wild type strain J2 in vitro. The mutant J2-phlF also showed more colonization of tomato roots and higher inhibition to R. solanacearum in soil than wild type strain J2. The biocontrol efficiency of mutant J2-phlF was higher against tomato bacterial wilt than wild type strain J2, but the differences were not significant. However, the application of both strains with organic fertilizer improved the colonization and biocontrol efficiency against tomato bacterial wilt and mutant strain J2-phlF showed higher biocontrol efficiency against tomato bacterial wilt than wild type strain J2. Both strains, J2 and J2-phlF, could also promote the growth of tomato plants.  相似文献   

5.
对番茄内生细菌数量动态及其对青枯病的生物防治研究结果表明:番茄内生细菌可来源于种子内部。番茄不同生育期,内生细菌数量最多在成株期,其中抗病品种根、茎分别为24.3×104CFU/g鲜重和22.9×104CFU/g鲜重,感病品种根、茎分别为9.8×104CFU/g鲜重和13.4×104CFU/g鲜重。抗病品种中具有拮抗青枯菌的内生细菌菌株为17个,感病品种中7个。部分内生细菌具促进番茄种子萌发和防治番茄青枯病的作用,其中5R和3R内生菌株的防病效果分别达91.7%和81.3%。  相似文献   

6.
Tomato plants pre-inoculated with the avirulent strain NCPPB 3123 of Clavibacter michiganensis subsp. michiganensis (Cmm) were protected largely against challenge infection by virulent strains of Cmm. Effectiveness of this protective effect was mainly dependent on the inoculation sites, the bacterial cell concentration used for pre- and challenge inoculations, and the time interval between both inoculations. This defence reaction was systemic and stable throughout the whole growing season. Resistance can also be induced by pre-inoculation of heat-killed bacteria or application of isolated EPS of the strain 3123. Strain 3123 spreads out in tomato plants in the same manner as virulent Cmm isolates, but its colonization of tomato fruits and seeds was substantially lower. Papillary to spherical electron dense particles were observed at the tonoplast in parenchyma cells of the vascular system of tomato plants inoculated with the strain 3123. Numerous investigations carried out to examine the ability of 3123 to induce resistance in other host/pathogen-systems showed that it was only specific for tomato/Cmm.  相似文献   

7.
Pseudomonas fluorescens strain CHA0 and its antibiotic overproducing derivative CHA0/pME3424 repeatedly reduced Meloidogyne incognita galling on tomato, brinjal, mungbean and soya bean roots but not in chilli. An antibiotic‐deficient derivative, CHA89, did not reduce nematode invasion in any of the plant species tested. When plant species were compared, bacterial inoculants afforded better protection to tomato, mungbean and soya bean roots against root‐knot nematodes than to brinjal and chilli. Antibiotic overproducing strain CHA0/pME3424 markedly reduced fresh shoot weights of chilli and mungbean while antibiotic‐deficient strain CHA89 enhanced fresh shoot weights of mungbean. While strains CHA0 had no significant impact on fresh root weights of any of the plant species, strain CHA0/pME3424 consistently reduced fresh root weights of brinjal and mungbean. In none of the plant species the bacterial strains had an influence on protein contents of the leaves. Regardless of the plant species, the three bacterial strains did not differ markedly in their rhizosphere colonization pattern. However, colonization was highest in brinjal rhizosphere and lowest in the mungbean rhizosphere. A slight host genotype effect on the biocontrol performance of the bacterial inoculants was also detected at cultivar level. When five soya bean cultivars were compared, biocontrol bacteria exhibited best suppression of the root‐knot nematode in cv. Ajmeri. Antibiotic overproducing strain CHA0/pME3424 substantially reduced fresh shoot weights of the soya bean cultivars Centuray 84 and NARC‐I while strain CHA89 enhanced shoot weights of the cultivars Ajmeri, William‐82 and NARC‐II. Wild type strain CHA0 had no significant impact on fresh shoot weights of any of the soya bean cultivars. Strain CHA0/pME3424 reduced fresh weights of root of Century 84, NARC‐I and NARC‐II while strain CHA89 increased root weights. Bacterial rhizosphere colonization was highest in variety NARC‐I and lowest in variety Ajmeri. Plant age had a significant impact on the biocontrol performance of bacterial inoculants against nematodes. The biocontrol effect of all bacterial strains was more prominent during early growth stage (7 days after nematode inoculation). A strong negative correlation between bacterial rhizosphere colonization and nematode invasion in soya bean roots was observed.  相似文献   

8.
Ralstonia solanacearum is a soilborne plant pathogen that invades its host via roots. As in many gram-negative bacterial plant pathogens, the R. solanacearum Hrp type III secretion system is essential for interactions of the bacterium with plants; however, the related mechanisms involved in disease expression are largely unknown. In this work, we examined the effects of infection by R. solanacearum GMI1000 and Hrp mutants on the root system of petunia plants. Both the wild-type and mutant strains disturbed the petunia root architecture development by inhibiting lateral root elongation and provoking swelling of the root tips. In addition, GMI100 but not the Hrp mutants induced the formation of new root lateral structures (RLS). This ability is shared by other, but not all, R. solanacearum strains tested. Like lateral roots, these new structures arise from divisions of pericycle founder cells which, nevertheless, exhibit an abnormal morphology. These RLS are efficient colonization sites allowing extensive bacterial multiplication. However, they are not required for the bacterial vascular invasion that leads to the systemic spread of the bacterium through the whole plant, indicating that, instead, they might play a role in the rhizosphere-related stages of the R. solanacearum life cycle.  相似文献   

9.
Abstract Rhodococcus equi is a facultative, intracellular, Gram-positive coccobacillus, increasingly reported in pneumonia of AIDS-infected patients. We investigated killing resistance properties of human R. equi virulent and avirulent human strains. Avirulent β-lactam-susceptible strains had lower intracellular colony forming units after 45 min incubation in murine macrophages J774 and human monocyte-macrophage TPH-1 than those of virulent strains. Only virulent β-lactam-resistant strains persisted within macrophages for at least 18 min only. A β-lactam-resistant mutant was obtained from a β-lactam-susceptible strain after selection in a penicillin G-containing culture medium. This mutant strain, like the natural virulent strains, persisted within macrophages, harboured cell-associated appendages, produced phage-like particles and induced, after its intravenous inoculation, a chronic infection in BALB/c nude mice. Supernatant culture of virulent strains transferred partial macrophage-killing resistance properties to avirulent strains. The same supernatant was toxic for L-929, HeLa and Vero cell cultures. These supernatant effects were heat-inactivated, trypsin-inactivated and did not seem to be linked to phage-like particle presence. These data argue that virulence, β-lactam-resistance, and macrophage-killing resistance are associated in human R. equi isolates. Moreover, only virulent strains produced uncharacterized toxic factors.  相似文献   

10.
Masking of antibiotic-resistance upon recovery of endophytic bacteria   总被引:1,自引:0,他引:1  
During studies on internal plant colonization by rhizosphere bacteria and endophytic bacteria over several years, we frequently observed lack of growth of rifampicin-resistant mutants (rif+) on tryptic soy agar amended with rifampicin (RTSA). Following seed treatment of cucumber with 6 species of rif+ rhizosphere bacteria in one experiment, all strains were recoverable on RTSA when external root colonization was monitored. Following trituration of surface-disinfested roots, only one strain grew directly on RTSA; however colonies isolated on tryptic soy agar (TSA) grew within 18 h after transfer to RTSA. We term this temporary loss of the antibiotic-resistant phenotype ‘antibiotic masking’. Antibiotic masking was also observed with isolation of 7 rif+ endophytic bacterial strains from inside stems of cotton and with isolation of mutants of bacterial endophytes resistant to polymyxin B sulfate from cotton plants. Rifampicin-masking was not accounted for in vitro by inhibitory compounds from cotton plant extracts, by bacterial growth on low nutrient agar, or by competition with other bacteria. Collectively, these results suggest that expression of antibiotic-resistance may be altered in planta, although causes for this antibiotic-masking remain to be elucidated, methods for quantifying internal plant colonization by rif+ bacteria should account for this possibility. ei]Section editor: R O D Dixon  相似文献   

11.
A field survey was conducted to determine the relationship between Ralstonia solanacearum diversity and severity of bacterial wilt disease in tomato plants grown in plastic greenhouses. Both vegetative and reproductive stages of the plants were surveyed, and the symptoms were empirically categorized into five scales: 0 (asymptomatic): 1st, 2nd, 3rd and 4th. The bacterial wilt pathogen was isolated from infected plants at each disease scale; pathogenic characteristics and population densities of the bacterial strains were assessed. Two hundred and eighty‐two isolates were identified as R. solanacearum, which were divided into three pathogenic types, virulent, avirulent and interim, using the attenuation index (AI) method and a plant inoculation bioassay. Ralstonia solanacearum was detected in all asymptomatic and symptomatic tomato plants, with population numbers, ranging from 10.5 to 86.7 × 105 cfu/g. However, asymptomatic plants harboured only avirulent or interim R. solanacearum, whereas tomato plants displaying 1st or 2nd disease degree contained interim and virulent strains. Additionally, 3rd and 4th degree plants harboured only virulent strains. The disease was more severe in vegetative‐stage plants (disease severity index (DSI) 0.20) with higher total numbers of interim and virulent R. solanacearum strains than those in reproductive‐stage plants (DSI 0.12). Three pathotypes of R. solanacearum coexisted in a competitive growth system in the tomato field, and their distribution closely correlated with the severity of tomato bacterial wilt.  相似文献   

12.
A plant growth–promoting Paenibacillus lentimorbus NRRL B-30488 (B-30488) was isolated from cows’ milk. Bacterial colonization and growth responses of different plant species after inoculation with B-30488 were evaluated in a controlled environment and in microplot assays. Survival and colonization of B-30488 in the phytosphere of plants and soil was monitored using a chromosomally located rifampicin-marked mutant B-30488 (B-30488R). The strain showed variable ability to invade plants. The interaction between B-30488R and Fusarium oxysporum f. sp. ciceri was studied by scanning electron microscopy. Chitinase and β-1,3-glucanase enzymes were produced when B-30488R was grown in the presence of colloidal chitin as sole carbon source. Deliberate dilution of B-30488R with field soil offers a reliable process for decreasing the cost of bacterial inoculants in developing countries. Seed treatment of chickpea demonstrated significantly (P = 0.05) greater seedling mortality in nonbacterized compared with bacterized seedlings. Bacterization significantly (P = 0.05) improved seed germination, plant height, number of pods/plant–1, and seed dry weight.  相似文献   

13.
Bacterial wilt, caused by Ralstonia solanacearum , is responsible for severe losses in tomato crops in the world. In the present study, the effect of temperature, cultivars of tomato, injury of root system and inoculums load of R. solanacearum to cause bacterial wilt disease under control conditions was undertaken. Three strains UTT-25, HPT-3 and JHT-5 of R. solanacearum were grown at 5–40?°C in vitro to study, the effect of temperature on the growth of bacteria and maximum growth was found at 30?°C after 72?h in all the strains. Twenty-one days old seedlings of two cultivars of tomato i.e. N-5 (moderately resistant) and Pusa Ruby (highly susceptible) were transplanted into the pots and inoculated with R. solanacearum strain UTT-25 (5 × 108?cfu/ml), mechanically injured and uninjured roots of the plant. The plants were allowed to grow at 20, 25, 30 and 35?°C at National Phytotron Facility, IARI, New Delhi to study the effect of temperature on intensity of bacterial wilt disease. Maximum wilt disease intensity was found 98.73 and 95.9 % in injured roots of Pusa Ruby and N-5 cultivars of tomato at 35?°C on 11th days of inoculation, respectively. However, no wilt disease was observed in both the cultivars at 20?°C up to 60?days. For detection of R. solanacearum from asymptomatic tomato plants, hrpB-based sequence primers (Hrp_rs2F and Hrp_rs2R) amplified at 323?bp was used in bio-PCR to detect R. solanacearum from crown, mid part of stem and upper parts of the plant. Another experiment was conducted to find out the inoculum potential of R. solanacearum strain UTT-25 to cause bacterial wilt in susceptible cultivar Pusa Ruby. The bacteria were inoculated at concentration of bacterial suspension 10 to 1010?cfu/ml in injured and uninjured roots of the plants separately and injured root accelerated wilt incidence and able to cause wilt disease 63.3% by 100?cfu/ml of R. solanacearum, while no disease appeared at 10?cfu/ml on the 11th day of inoculation in injured and uninjured roots of the plant.  相似文献   

14.
15.
Pathogen-induced plant responses include changes in both volatile and non-volatile secondary metabolites. To characterize the role of bacterial pathogenesis in plant volatile emissions, tobacco plants, Nicotiana tabacum L. K326, were inoculated with virulent, avirulent, and mutant strains of Pseudomonas syringae. Volatile compounds released by pathogen-inoculated tobacco plants were collected, identified, and quantified. Tobacco plants infected with the avirulent strains P. syringae pv. maculicola ES4326 (Psm ES4326) or pv. tomato DC3000 (Pst DC3000), emitted quantitatively different, but qualitatively similar volatile blends of (E)-beta-ocimene, linalool, methyl salicylate (MeSA), indole, caryophyllene, beta-elemene, alpha-farnesene, and two unidentified sesquiterpenes. Plants treated with the hrcC mutant of Pst DC3000 (hrcC, deficient in the type-III secretion system) released low levels of many of the same volatile compounds as in Psm ES4326- or Pst DC3000-infected plants, with the exception of MeSA, which occurred only in trace amounts. Interaction of the virulent pathogen P. syringae pv. tabaci (Pstb), with tobacco plants resulted in a different volatile blend, consisting of MeSA and two unidentified sesquiterpenes. Overall, maximum volatile emissions occurred within 36 h post-inoculation in all the treatments except for the Pstb infection that produced peak volatile emissions about 60 h post-inoculation. (E)-beta-Ocimene was released in a diurnal pattern with the greatest emissions during the day and reduced emissions at night. Both avirulent strains, Psm ES4326 and Pst DC3000, induced accumulation of free salicylic acid (SA) within 6 h after inoculation and conjugated SA within 60 h and 36 h respectively. In contrast, SA inductions by the virulent strain Pstb occurred much later and conjugated SA increased slowly for a longer period of time, while the hrcC mutant strain did not trigger free and conjugated SA accumulations in amounts significantly different from control plants. Jasmonic acid, known to induce plant volatile emissions, was not produced in significantly higher levels in inoculated plants compared to the control plants in any treatments, indicating that induced volatile emissions from tobacco plants in response to P. syringae are not linked to changes in jasmonic acid.  相似文献   

16.
There have been many attempts to control bacterial wilt with antagonistic bacteria or spontaneous nonpathogenic mutants of Pseudomonas solanacearum that lack the ability to colonize the host, but they have met with limited success. Since a large gene cluster (hrp) is involved in the pathogenicity of P. solanacearum, we developed a biological control strategy using genetically engineered Hrp mutants of P. solanacearum. Three pathogenic strains collected in Guadeloupe (French West Indies) were rendered nonpathogenic by insertion of an omega-Km interposon within the hrp gene cluster of each strain. The resulting Hrp mutants were tested for their ability to control bacterial wilt in challenge inoculation experiments conducted either under growth chamber conditions or under greenhouse conditions in Guadeloupe. Compared with the colonization by a pathogenic strain which spread throughout the tomato plant, colonization by the mutants was restricted to the roots and the lower part of the stems. The mutants did not reach the fruit. Moreover, the presence of the mutants did not affect fruit production. When the plants were challenge inoculated with a pathogenic strain, the presence of Hrp mutants within the plants was correlated with a reduction in disease severity, although pathogenic bacteria colonized the stem tissue at a higher density than the nonpathogenic bacteria. Challenge inoculation experiments conducted under growth chamber conditions led, in some cases, to exclusion of the pathogenic strain from the aerial part of the plant, resulting in high protection rates. Furthermore, there was evidence that one of the pathogenic strains used for the challenge inoculations produced a bacteriocin that inhibited the in vitro growth of the nonpathogenic mutants.  相似文献   

17.
The effect of cellulase and pectinase on bacterial colonization of wheat was studied by three different experiments. In the first experiment, the root colonization of 3 wheat cultivars (Ghods, Roshan and Omid) by two A. brasilense strains (Sp7 and Dol) was compared using pre-treated roots with cellulase and pectinase, and non-treated with these enzymes (control). Although the root colonization varied greatly among strain-plant combinations in controls, the pre-treatment of roots with polysaccharide degrading enzymes significantly increased the bacterial count in roots, regardless of the strain-plant combination. This might be an indication that cell wall may act as an important factor in plant-Azospirillum interaction. In the second experiment, the root cellulase activity of the same wheat cultivars treated with and without the two Azospirillum brasilense, strains (Sp7 and Dol) was compared. The pre-treatment of wheat roots with Azospirillum enhanced the cellulase activity of wheat root extracts. Thus, the cellulase activity might participate in the initial colonization of wheat roots by Azospirillum. The comparison of the cellulase activity of root extracts within inoculated and non-inoculated seedlings showed that the inoculation had enhanced the cellulase activity in root extracts, but this effect was directly dependent on the strain-plant combination. Strain Sp7 stimulated the highest cellulase activity in cv. Roshan, but strain Dol induced the highest enzyme activity in cv. Ghods. In the third experiment, several growth parameters of those 3 wheat cultivars treated with and without those two bacterial strains (Sp7 and Dol) were compared. The highest magnitude of growth responses caused by Sp7 strain was in the cv Roshan, but Dol strain stimulated the highest growth in cv Ghods. Therefore, effective colonization may contribute to more growth responses.  相似文献   

18.
19.
Strains of Enterobacter cloacae show promise as biocontrol agents for Pythium ultimum-induced damping-off on cucumber and other crops. E. cloacae A145 is a mini-Tn5 Km transposon mutant of strain 501R3 that was significantly reduced in suppression of damping-off on cucumber caused by P. ultimum. Strain A145 was deficient in colonization of cucumber, sunflower, and wheat seeds and significantly reduced in colonization of corn and cowpea seeds relative to strain 501R3. Populations of strain A145 were also significantly lower than those of strain 501R3 at all sampling times in cucumber, wheat, and sunflower rhizosphere. Populations of strain A145 were not detectable in any rhizosphere after 42 days, while populations of strain 501R3 remained at substantial levels throughout all experiments. Molecular characterization of strain A145 indicated mini-Tn5 Km was inserted in a region of the E. cloacae genome with a high degree of DNA and amino acid sequence similarity to rpiA, which encodes ribose-5-phosphate isomerase. In Escherichia coli, RpiA catalyzes the interconversion of ribose-5-phosphate and ribulose-5-phosphate and is a key enzyme in the pentose phosphate pathway. Ribose-5-phosphate isomerase activity in cell lysates from strain A145 was approximately 3.5% of that from strain 501R3. In addition, strain A145 was a ribose auxotroph, as expected for an rpiA mutant. Introduction of a 1.0-kb DNA fragment containing only the rpiA homologue into strain A145 restored ribose phosphate isomerase activity, prototrophy, seedling colonization, and disease suppression to levels similar to those associated with strain 501R3. Experiments reported here indicate a key role for rpiA and possibly the pentose phosphate pathway in suppression of damping-off and colonization of subterranean portions of plants by E. cloacae.  相似文献   

20.
The hypersensitive response (HR) in plants is a programmed cell death that is commonly associated with disease resistance. A novel mutation in Arabidopsis, hlm1, which causes aberrant regulation of cell death, manifested by a lesion-mimic phenotype and an altered HR, segregated as a single recessive allele. Broad-spectrum defense mechanisms remained functional or were constitutive in the mutant plants, which also exhibited increased resistance to a virulent strain of Pseudomonas syringae pv tomato. In response to avirulent strains of the same pathogen, the hlm1 mutant showed differential abilities to restrict bacterial growth, depending on the avirulence gene expressed by the pathogen. The HLM1 gene encodes a cyclic nucleotide-gated channel, CNGC4. Preliminary study of the HLM1/CNGC4 gene pro-duct in Xenopus oocytes (inside-out patch-clamp technique) showed that CNGC4 is permeable to both K(+) and Na(+) and is activated by both cGMP and cAMP. HLM1 gene expression is induced in response to pathogen infection and some pathogen-related signals. Thus, HLM1 might constitute a common downstream component of the signaling pathways leading to HR/resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号