首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previously, we used the human methionine tRNA promoter as an expression cassette for hammerhead ribozymes. The tRNA promoter driven ribozyme was targeted against the LTR portion of the HIV-1 NL4-3 strain. We constructed VSV-G-pseudotyped MuLV-based vectors expressing the ribozyme. The ribozyme expressing retrovirus vector strongly suppressed gag p24 antigen production in freshly HIV-1 infected MT-4 cells. In this study, the potential of such a molecular genetic intervention was examined by using the Cre-loxP recombination system. Site-specific excision of HIV-1 was achieved by using this model system with an acute infection. These studies represent one step toward the development of a novel antiviral strategy for the treatment of AIDS.  相似文献   

2.
S F Ding  J Noronha    S Joshi 《Nucleic acids research》1998,26(13):3270-3278
Retroviral vectors were engineered to express either sense (MoTiN-TRPsie+) or sense and antisense (MoTN-TRPsie+/-) RNAs containing the human immunodeficiency virus type-1 (HIV-1) trans -activation response (TAR) element and the extended packaging (Psie) signal. The Psie signal includes the dimer linkage structure (DLS) and the Rev response element (RRE). Amphotropic vector particles were used to transduce a human CD4+ T-lymphoid (MT4) cell line. Stable transductants were then tested for sense and antisense RNA production and susceptibility to HIV-1 infection. HIV-1 production was significantly decreased in cells transduced with MoTiN-TRPsie+ and MoTN-TRPsie+/-vectors. Efficient packaging of sense and most remarkably of antisense RNA was observed within the virus progeny. Infectivity of this virus was significantly decreased in both cases, suggesting that the interfering RNAs were co-packaged with HIV-1 RNA. Vector transduction was not expected to occur and was not observed. Inhibition of HIV-1 replication was also demonstrated in human peripheral blood lymphocytes transduced with retroviral vectors expressing antisense RNA. These results suggest that (i) both sense and antisense RNAs were co-packaged with HIV-1 RNA, (ii) the co-packaged sense and antisense RNAs inhibited virus infectivity and (iii) the co-packaged sense and antisense RNAs were not transduced. Sense and antisense RNA-based strategies may also be used to co-package other interfering RNAs (e.g. ribozymes) to cleave HIV-1 virion RNA.  相似文献   

3.
Human immunodeficiency virus type 1 (HIV-1) primarily infects CD4+ lymphocytes and macrophages and causes AIDS in humans. Retroviral vectors allowing neomycin phosphotransferase (npt) gene expression were engineered to express 5' sequences of HIV-1 RNA in the antisense or sense orientation and used to transform the human CD4+ lymphocyte-derived MT4 cell line. Cells expressing antisense or sense RNA to the HIV-1 tat mRNA leader sequence, as part of the 3' untranslated region of the npt mRNA, remained sensitive to HIV-1 infection. In contrast, resistance to HIV-1 infection was observed in cells expressing antisense RNA to the HIV-1 primer-binding site or to the region 5' to the primer-binding site as part of the 3' region of the npt mRNA. Cells expressing the tat mRNA leader sequence in the sense orientation as a precise replacement of the 5' untranslated region of npt mRNA were also resistant to HIV-1. These results indicate that sense and antisense approaches can be used to interfere with HIV-1 multiplication.  相似文献   

4.
The baculovirus has recently emerged as a promising vector for in vivo gene therapy. To investigate its potential as a delivery vector for an anti-virus ribozyme targeting HIV-1, we constructed recombinant baculovirus vectors bearing a ribozyme-synthesizing cassette driven by the tRNA(i)(Met) promoter with enhanced transduction efficiency by displaying vesicular stomatitis virus glycoprotein (VSV-G) on the viral envelope. Transduction of HeLa CD4(+) cells with a recombinant baculovirus delivering the HIV-1 U5 gene-specific ribozyme dramatically suppressed HIV-1 expression in this cell line. The VSV-G pseudotyped baculovirus vector-transduced ribozyme potently inhibited HIV-1 replication compared to a recombinant baculovirus vector-transduced ribozyme lacking VSV-G. The use of a baculovirus vector might be beneficial for application in gene therapy.  相似文献   

5.
We have constructed stable human immunodeficiency virus (HIV) packaging cell lines that when transfected with an HIV-based retroviral vector produce packaged vectors capable of transducing susceptible CD4+ cells. This HIV-1-based retroviral vector system has the potential for providing targeted delivery and regulated expression of immunogens or antiviral agents in CD4+ cells.  相似文献   

6.
7.
8.
Novel viral vectors that are able to induce both strong and long-lasting immune responses may be required as effective vaccines for human immunodeficiency virus type 1 (HIV-1) infection. Our previous experiments with a replication-competent vaccine strain-based rabies virus (RV) expressing HIV-1 envelope protein from a laboratory-adapted HIV-1 strain (NL4-3) and a primary HIV-1 isolate (89.6) showed that RV-based vectors are excellent for B-cell priming. Here we report that cytotoxic T-lymphocyte (CTL) responses against HIV-1 gp160 are induced by recombinant RVs. Our results indicated that a single inoculation of mice with an RV expressing HIV-1 gp160 induced a solid and long-lasting memory CTL response specific for HIV-1 envelope protein. Moreover, CTLs from immunized mice were not restricted to the homologous HIV-1 envelope protein and were able to cross-kill target cells expressing HIV-1 gp160 from heterologous HIV-1 strains. These studies further suggest promise for RV-based vectors to elicit a persistent immune response against HIV-1 and their potential utility as efficacious anti-HIV-1 vaccines.  相似文献   

9.
10.
Currently, amphotropic retroviral vectors are widely used for gene transfer into CD34+ hematopoietic progenitor cells. The relatively low levels of transduction efficiency associated with these vectors in human cells is due to low viral titers and limitations in concentrating the virus because of the inherent fragility of retroviral envelopes. Here we show that a human immunodeficiency virus type 1 (HIV-1)-based retroviral vector containing the firefly luciferase reporter gene can be pseudotyped with a broad-host-range vesicular stomatitis virus envelope glycoprotein G (VSV-G). Higher-efficiency gene transfer into CD34+ cells was achieved with a VSV-G-pseudotyped HIV-1 vector than with a vector packaged in an amphotropic envelope. Concentration of virus without loss of viral infectivity permitted a higher multiplicity of infection, with a consequent higher efficiency of gene transfer, reaching 2.8 copies per cell. These vectors also showed remarkable stability during storage at 4 degrees C for a week. In addition, there was no significant loss of titer after freezing and thawing of the stock virus. The ability of VSV-G-pseudotyped retroviral vectors to achieve a severalfold increase in levels of transduction into CD34+ cells will allow high-efficiency gene transfer into hematopoietic progenitor cells for gene therapy purposes. Furthermore, since it has now become possible to infect CD34+ cells with pseudotyped HIV-1 with a high level of efficiency in vitro, many important questions regarding the effect of HIV-1 on lineage-specific differentiation of hematopoietic progenitors can now be addressed.  相似文献   

11.
12.
Jurkat T-cell clones, stably expressing the human immunodeficiency virus type 1 (HIV-1) Vpr protein, exhibited an impaired susceptibility to HIV-1 infection. A marked down-modulation of surface CD4 receptors was detected in Vpr-expressing clones with respect to control cells. Likewise, a reduced CD4 expression was also observed in parental Jurkat cells infected with wild-type but not with Vpr-mutant HIV-1. Notably, Vpr-expressing clones were fully susceptible to infection with a vesicular stomatitis virus G protein-pseudotyped HIV-1 virus, indicating that a block at the level of viral entry was responsible for the inhibition of viral replication. The effect exerted by Vpr on HIV replication and CD4 expression suggests that this protein can regulate both the establishment of a productive HIV-1 infection and CD4-mediated T-cell functions.  相似文献   

13.
14.
Continuous high-titer HIV-1 vector production   总被引:14,自引:0,他引:14  
Human immunodeficiency virus type 1 (HIV-1)-based vectors are currently made by transient transfection, or using packaging cell lines in which expression of HIV-1 Gag and Pol proteins is induced. Continuous vector production by cells in which HIV-1 Gag-Pol is stably expressed would allow rapid and reproducible generation of large vector batches. However, attempts to make stable HIV-1 packaging cells by transfection of plasmids encoding HIV-1 Gag-Pol have resulted in cells which secrete only low levels of p24 antigen (20-80 ng/ml), possibly because of the cytotoxicity of HIV-1 protease. Infection of cells with HIV-1 can result in stable virus production; cell clones that produce up to 1,000 ng/ml secreted p24 antigen have been described. Here we report that expression of HIV-1 Gag-Pol by a murine leukemia virus (MLV) vector allows constitutive, long-term, high-level (up to 850 ng/ml p24) expression of HIV-1 Gag. Stable packaging cells were constructed using codon-optimized HIV-1 Gag-Pol and envelope proteins of gammaretroviruses; these producer cells could make up to 10(7) 293T infectious units (i.u.)/ml (20 293T i.u./cell/day) for at least three months in culture.  相似文献   

15.
We describe replication-competent, vaccine strain-based rabies viruses (RVs) that lack their own single glycoprotein and express, instead, a chimeric RV-human immunodeficiency virus type 1 (HIV-1) envelope protein composed of the ectodomain and transmembrane domains of HIV-1 gp160 and the cytoplasmic domain of RV G. The envelope proteins from both X4 (NL4-3)- and R5X4 (89.6)-tropic HIV-1 strains were utilized. These recombinant viruses very closely mimicked an HIV-1- like tropism, as indicated by blocking experiments. Infection was inhibited by SDF-1 on cells expressing CD4 and CXCR4 for both viruses, whereas RANTES abolished infection of cells expressing CCR5 in addition to CD4 in studies of the RV expressing HIV-1(89.6) Env. In addition, preincubation with soluble CD4 or monoclonal antibodies directed against HIV-1 gp160 blocked the infectivity of both G-deficient viruses but did not affect the G-containing RVs. Our results also indicated that the G-deficient viruses expressing HIV-1 envelope protein, in contrast to wild-type RV but similar to HIV-1, enter cells by a pH-independent pathway. As observed for HIV-1, the surrogate viruses were able to target human peripheral blood mononuclear cells, macrophages, and immature and mature human dendritic cells (DC). Moreover, G-containing RV-based vectors also infected mature human DC, indicating that infection of these cells is also supported by RV G. The ability of RV-based vectors to infect professional antigen-presenting cells efficiently further emphasizes the potential use of recombinant RVs as vaccines.  相似文献   

16.
17.
We report the generation of retroviral vectors based on Moloney murine leukemia virus that specifically transduce cells infected with T-cell-tropic human immunodeficiency virus type 1 (HIV-1). This vector was pseudotyped with T-cell-tropic HIV-1 receptors CD4 and CXCR4. We demonstrate that transduction is contingent upon HIV-1 gp120 and gp41 expression.  相似文献   

18.
Gene therapy may be of benefit in human immunodeficiency virus type 1 (HIV-1)-infected individuals by virtue of its ability to inhibit virus replication and prevent viral gene expression. It is not known whether anti-HIV-1 gene therapy strategies based on antisense or transdominant HIV-1 mutant proteins can inhibit the replication and expression of clinical HIV-1 isolates in primary CD4+ T lymphocytes. We therefore transduced CD4+ T lymphocytes from uninfected individuals with retroviral vectors expressing either HIV-1-specific antisense-TAR or antisense-Tat/Rev RNA, transdominant HIV-1 Rev protein, and a combination of antisense-TAR and transdominant Rev. The engineered CD4+ T lymphocytes were then infected with four different clinical HIV-1 isolates. We found that replication of all HIV-1 isolates was inhibited by all the anti-HIV vectors tested. Greater inhibition of HIV-1 was observed with transdominant Rev than with antisense RNA. We hereby demonstrated effective protection by antisense RNA or transdominant mutant proteins against HIV-1 infection in primary CD4+ T lymphocytes using clinical HIV-1 isolates, and this represents an essential step toward clinical anti-HIV-1 gene therapy.  相似文献   

19.
Two strains of human immunodeficiency virus type 1 (HIV-1) expressing different reporters, human placental alkaline phosphatase (PLAP) and murine heat stable antigen (HSA, CD24), were used for dual infection. Flow cytometric analysis enabled us to distinguish cells not only infected with individual reporter virus but also superinfected with both reporter viruses. When the CD4 positive T cell line, PM1, was dually infected by both reporter viruses with different coreceptor utilization, coinfection with CXCR4-tropic HIV-1 (X4 HIV-1) expressing one reporter increased the rate of cells infected with HIV-1 expressing another reporter. This enhancement was accompanied by an increased level of p24 antigen Gag in culture supernatant, indicating that infectivity of HIV-1 was augmented by X4 HIV-1 coinfection. The CXCR4 antagonist, T140 eliminated this enhancement, suggesting the role of X4 envelope via CXCR4. These results imply the role of X4 HIV-1 at the late stage of infection.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号