首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Gene therapy may be of benefit in human immunodeficiency virus type 1 (HIV-1)-infected individuals by virtue of its ability to inhibit virus replication and prevent viral gene expression. It is not known whether anti-HIV-1 gene therapy strategies based on antisense or transdominant HIV-1 mutant proteins can inhibit the replication and expression of clinical HIV-1 isolates in primary CD4+ T lymphocytes. We therefore transduced CD4+ T lymphocytes from uninfected individuals with retroviral vectors expressing either HIV-1-specific antisense-TAR or antisense-Tat/Rev RNA, transdominant HIV-1 Rev protein, and a combination of antisense-TAR and transdominant Rev. The engineered CD4+ T lymphocytes were then infected with four different clinical HIV-1 isolates. We found that replication of all HIV-1 isolates was inhibited by all the anti-HIV vectors tested. Greater inhibition of HIV-1 was observed with transdominant Rev than with antisense RNA. We hereby demonstrated effective protection by antisense RNA or transdominant mutant proteins against HIV-1 infection in primary CD4+ T lymphocytes using clinical HIV-1 isolates, and this represents an essential step toward clinical anti-HIV-1 gene therapy.  相似文献   

2.
We have constructed stable human immunodeficiency virus (HIV) packaging cell lines that when transfected with an HIV-based retroviral vector produce packaged vectors capable of transducing susceptible CD4+ cells. This HIV-1-based retroviral vector system has the potential for providing targeted delivery and regulated expression of immunogens or antiviral agents in CD4+ cells.  相似文献   

3.
4.
Human immunodeficiency virus type 1 (HIV-1)-specific CD8+ T cells in early infection are associated with the dramatic decline of peak viremia, whereas their antiviral activity in chronic infection is less apparent. The functional properties accounting for the antiviral activity of HIV-1-specific CD8+ T cells during early infection are unclear. Using cytokine secretion and tetramer decay assays, we demonstrated in intraindividual comparisons that the functional avidity of HIV-1-specific CD8+ T cells was consistently higher in early infection than in chronic infection in the presence of high-level viral replication. This change of HIV-1-specific CD8+ T-cell avidity between early and chronic infections was linked to a substantial switch in the clonotypic composition of epitope-specific CD8+ T cells, resulting from the preferential loss of high-avidity CD8+ T-cell clones. In contrast, the maintenance of the initially recruited clonotypic pattern of HIV-1-specific CD8+ T cells was associated with low-level set point HIV-1 viremia. These data suggest that high-avidity HIV-1-specific CD8+ T-cell clones are recruited during early infection but are subsequently lost in the presence of persistent high-level viral replication.  相似文献   

5.
Vaccination for human immunodeficiency virus type 1 (HIV-1) remains an elusive goal. Whether an unsuccessful vaccine might not only fail to provoke detectable immune responses but also could actually interfere with subsequent natural immunity upon HIV-1 infection is unknown. We performed detailed assessment of an HIV-1 gag DNA vaccine recipient (subject 00015) who was previously uninfected but sustained HIV-1 infection before completing a vaccination trial and another contemporaneously acutely infected individual (subject 00016) with the same strain of HIV-1. Subject 00015 received the vaccine at weeks 0, 4, and 8 and was found to have been acutely HIV-1 infected around the time of the third vaccination. Subject 00016 was a previously HIV-1-seronegative sexual contact who had symptoms of acute HIV-1 infection approximately 2 weeks earlier than subject 00015 and demonstrated subsequent seroconversion. Both individuals reached an unusually low level of chronic viremia (<1,000 copies/ml) without treatment. Subject 00015 had no detectable HIV-1-specific cytotoxic T-lymphocyte (CTL) responses until a borderline response was noted at the time of the third vaccination. The magnitude and breadth of Gag-specific CTL responses in subject 00015 were similar to those of subject 00016 during early chronic infection. Viral sequences from gag, pol, and nef confirmed the common source of HIV-1 between these individuals. The diversity and divergence of sequences in subjects 00015 and 00016 were similar, indicating similar immune pressure on these proteins (including Gag). As a whole, the data suggested that while the gag DNA vaccine did not prime detectable early CTL responses in subject 00015, vaccination did not appreciably impair his ability to contain viremia at levels similar to those in subject 00016.  相似文献   

6.
Five hepatoma cell lines, including CZHC/8571, PLC/PRF/5, Hep3B, HepG2, and HUH7, were inoculated with three diverse isolates of human immunodeficiency virus type 1 (HIV-1). Productive infection was noted in all hepatoma cell lines, and expression of viral p24 antigen lasted for over 3 months, but its level decreased in proportion to the number of viable cells. HIV-1 antigens were also found in the cells by immunohistochemical staining and radioimmunoprecipitation assay, as were viral RNA by in situ hybridization and HIV-1-like particles by electron microscopy. Virus yield assays were also positive on supernatant fluids collected from hepatoma cultures inoculated with HIV-1. Despite their susceptibility to infection, all five hepatoma cell lines were negative for CD4 by immunofluorescence and for CD4 mRNA by slot-blot hybridization. In addition, HIV-1 infection of hepatoma cell lines was not blocked by anti-CD4 monoclonal antibody or soluble CD4. Together, these findings clearly demonstrate that all five hepatoma cell lines were susceptible to productive infection by HIV-1 in vitro via a CD4-independent mechanism.  相似文献   

7.
Interactions between the viral envelope glycoprotein gp120 and the cell surface receptor CD4 are responsible for the entry of human immunodeficiency virus type 1 (HIV-1) into host cells in the vast majority of cases. HIV-1 replication is commonly followed by the disappearance or receptor downmodulation of cell surface CD4. This potentially renders cells nonsusceptible to subsequent infection by HIV-1, as well as by other viruses that use CD4 as a portal of entry. Disappearance of CD4 from the cell surface is mediated by several different viral proteins that act at various stages through the course of the viral life cycle, and it occurs in T-cell lines, peripheral blood CD4+ lymphocytes, and monocytes of both primary and cell line origin. At the cell surface, gp120 itself and in the form of antigen-antibody complexes can trigger cellular pathways leading to CD4 internalization. Intracellularly, the mechanisms leading to CD4 downmodulation by HIV-1 are multiple and complex; these include degradation of CD4 by Vpu, formation of intracellular complexes between CD4 and the envelope precursor gp160, and internalization by the Nef protein. Each of the above doubtless contributes to the ultimate depletion of cell surface CD4, although the relative contribution of each mechanism and the manner in which they interact remain to be definitively established.  相似文献   

8.
In this report, we present evidence that R5 human immunodeficiency virus type 1 (HIV-1) replicates more efficiently in primary CD4+ T cells than X4 HIV-1. By comparing CD3/CD28-costimulated CD4+ T-cell cultures infected by several X4 and R5 HIV-1 strains, we determined that R5-infected CD4+ T cells produce more virus over time than X4-infected CD4+ T cells. In the first comparison, we found that more cells were infected by the X4-tropic strain LAI than by the R5-tropic strain JR-CSF and yet that higher levels of viral production were detected in the R5-infected cultures. The differential viral production was partially due to the severe cytopathic effects of the X4 virus. We also compared cultures infected with the isogenic HIV-1 strains NL4-3 (X4) and 49.5 (R5). We found that fewer cells were infected by the R5 strain, and yet similar levels of viral production were detected in both infected cultures. Cell death played less of a role in the differential viral production of these strains, as the cell viability remained comparable in both X4- and R5-infected cultures over time. The final comparison involved the primary R5-tropic isolate KP1 and the primary dual-tropic isolate KP2. Although both strains infected similar numbers of cells and induced comparable levels of cytopathicity, viral production was considerably higher in the R5-infected culture. In summary, these data demonstrate that R5 HIV-1 has an increased capacity to replicate in costimulated CD4+ T cells compared to X4 HIV-1.  相似文献   

9.
Human immunodeficiency virus type 1 (HIV-1)-specific CD8(+) T cells provide an important defense in controlling HIV-1 replication, particularly following acquisition of infection. To delineate the breadth and potency of these responses in patients upon initial presentation and before treatment, we determined the fine specificities and frequencies of gamma interferon (IFN-gamma)-secreting CD8(+) T cells recognizing all HIV-1 proteins in patients with primary infection. In these subjects, the earliest detected responses were directed predominantly against Nef, Tat, Vpr, and Env. Tat- and Vpr-specific CD8(+) T cells accounted for the greatest frequencies of mean IFN-gamma spot-forming cells (SFC). Nef-specific responses (10 of 21) were more commonly detected. A mean of 2.3 epitopes were recognized with various avidities per subject, and the number increased with the duration of infection (R = 0.47, P = 0.031). The mean frequency of CD8(+) T cells (985 SFC/10(6) peripheral blood mononuclear cells) correlated with the number of epitopes recognized (R = 0.84, P < 0.0001) and the number of HLA-restricting alleles (R = 0.79, P < 0.0001). Neither the total SFC frequencies nor the number of epitopes recognized correlated with the concurrent plasma viral load. Seventeen novel epitopes were identified, four of which were restricted to HLA alleles (A23 and B72) that are common among African descendents. Thus, primary HIV-1 infection induces strong CD8(+)-T-cell immunity whose specificities broaden over time, but their frequencies and breadth do not correlate with HIV-1 containment when examined concurrently. Many novel epitopes, particularly directed to Nef, Tat, and Env, and frequently with unique HLA restrictions, merit further consideration in vaccine design.  相似文献   

10.
Although human immunodeficiency virus type 1 (HIV-1)-specific CD8+ T cells can produce various cytokines that suppress HIV-1 replication or modulate anti-HIV-1 immunity, the extent to which HIV-1-specific CD8+ T cells produce cytokines when they recognize HIV-1-infected CD4+ T cells in vivo still remains unclear. We first analyzed the abilities of 10 cytotoxic T-lymphocyte (CTL) clones specific for three HIV-1 epitopes to produce gamma interferon, macrophage inflammatory protein 1beta, and tumor necrosis factor alpha after stimulation with epitope peptide-pulsed cells. These CTL clones produced these cytokines in various combinations within the same specificity and among the different specificities, suggesting a functional heterogeneity of HIV-1-specific effector CD8+ T cells in cytokine production. In contrast, the HIV-1-specific CTL clones for the most part produced a single cytokine, without heterogeneity of cytokine production among the clones, after stimulation with HIV-1-infected CD4+ T cells. The loss of heterogeneity in cytokine production may be explained by low surface expression of HLA class I-epitope peptide complexes. Freshly isolated HIV-1-specific CD8+ T cells with an effector/memory or memory phenotype produced much more of the cytokines than the same epitope-specific CTL clones when stimulated with HIV-1-infected CD4+ T cells. Cytokine production from HIV-1-specific memory/effector and memory CD8+ T cells might be a critical event in the eradication of HIV-1 in HIV-1-infected individuals.  相似文献   

11.
12.
In a previous study (Y. Koga, M. Sasaki, H. Yoshida, H. Wigzell, G. Kimura, and K. Nomoto, J. Immunol. 144:94-102, 1990), we demonstrated that the expression of gp160, a precursor form of envelope glycoprotein of human immunodeficiency virus type 1, in CD4+ cells causes the downregulation of surface CD4 and single-cell killing by forming intracellular gp160-CD4 complex. In the present study we investigated the events that lead to cell death in CD4+ cells expressing gp160. We found that apoptosis is induced in cells undergoing single-cell death. Moreover, even the cell clone, which expresses so little gp160 that it does not exhibit any apparent cytopathic effects, such as the inhibition of cell growth, was found to be highly susceptible to the apoptosis induction by the anti-Fas monoclonal antibody.  相似文献   

13.
Both endocytic uptake and viral fusion can lead to human immunodeficiency virus type 1 (HIV-1) transfer to CD4+ lymphocytes, either through directional regurgitation (infectious transfer in trans [I-IT]) or through de novo viral production in dendritic cells (DCs) resulting in a second-phase transfer to CD4+ lymphocytes (infectious second-phase transfer [I-SPT]). We have evaluated in immature monocyte-derived DCs both pathways of transfer with regard to their susceptibilities to being blocked by potential microbicidal compounds, including cyanovirin (CNV); the plant lectins Hippeastrum hybrid agglutinin, Galanthus nivalis agglutinin, Urtica dioica agglutinin, and Cymbidium hybrid agglutinin; and the glycan mannan. I-IT was a relatively inefficient means of viral transfer compared to I-SPT at both high and low levels of the viral inoculum. CNV was able to completely block I-IT at 15 microg/ml. All other compounds except mannan could inhibit I-IT by at least 90% when used at doses of 15 microg/ml. In contrast, efficient inhibition of I-SPT was remarkably harder to achieve, as 50% effective concentration levels for plant lectins and CNV to suppress this mode of HIV-1 transfer increased significantly. Thus, our findings indicate that I-SPT may be more elusive to targeting by antiviral drugs and stress the need for drugs affecting the pronounced inhibition of the infection of DCs by HIV-1.  相似文献   

14.
A number of studies have indicated that central nervous system-derived cells can be infected with human immunodeficiency virus type 1 (HIV-1). To determine whether CD4, the receptor for HIV-1 in lymphoid cells, was responsible for infection of neural cells, we characterized infectable human central nervous system tumor lines and primary fetal neural cells and did not detect either CD4 protein or mRNA. We then attempted to block infection with anti-CD4 antibodies known to block infection of lymphoid cells; we noted no effect on any of these cultured cells. The results indicate that CD4 is not the receptor for HIV-1 infection of the glioblastoma line U373-MG, medulloblastoma line MED 217, or primary human fetal neural cells.  相似文献   

15.
In resting CD4(+) T lymphocytes harboring human immunodeficiency virus type 1 (HIV-1), replication-competent virus persists in patients responding to highly active antiretroviral therapy (HAART). This small latent reservoir represents between 10(3) and 10(7) cells per patient. However, the efficiency of HIV-1 DNA-positive resting CD4(+) T cells in converting to HIV-1-antigen-secreting cells (HIV-1-Ag-SCs) after in vitro CD4(+)-T-cell polyclonal stimulation has not been satisfactorily evaluated. By using an HIV-1-antigen enzyme-linked immunospot assay, 8 HIV-1-Ag-SCs per 10(6) CD4(+) resting T cells were quantified in 25 patients with a plasma viral load of <20 copies/ml, whereas 379 were enumerated in 10 viremic patients. In parallel, 369 and 1,238 copies of HIV-1 DNA per 10(6) CD4(+) T cells were enumerated in the two groups of patients, respectively. Only a minority of latently HIV-1 DNA-infected CD4(+) T cells could be stimulated in vitro to become HIV-1-Ag-SCs, particularly in aviremic patients. The difference between the number of HIV-1 immunospots in viremic versus aviremic patients could be explained by HIV-1 unintegrated viral DNA that gave additional HIV-1-Ag-SCs after in vitro CD4(+)-T-cell polyclonal stimulation. The ELISPOT approach to targeting the HIV-1-Ag-SCs could be a useful method for identifying latently HIV-1-infected CD4(+) T cells carrying replication-competent HIV-1 in patients responding to HAART.  相似文献   

16.
Analysis of major histocompatibility complex-restricted cytotoxic T lymphocytes (CTL) capable of killing human immunodeficiency virus type 1 (HIV-1)-infected targets is essential for elucidating the basis for HIV-1 disease progression and the potential efficacy of candidate vaccines. The use of primary CD4+ T cells with variable infectivity as targets for such studies has significant limitations, and immortal autologous cells with high levels of CD4 expression that can be consistently infected with HIV-1 would be of much greater utility. Therefore, we transduced Epstein-Barr-virus-transformed B-lymphoblastoid cell lines (LCL) with a retroviral vector, LT4SN, containing the human CD4 gene. Stable LCL in which more than 95% of cells expressed membrane CD4 were obtained. Aliquots were infected with HIV-1, and, after 4 to 7 days, nearly all of the cells contained cytoplasmic gag and produced high levels of p24 antigen. The ability of major histocompatibility complex-restricted CD8+ CTL to lyse such HIV-1-infected CD4-transduced LCL (LCL-CD4HIV-1) was evaluated. These autologous targets were lysed by CTL generated from an HIV-1-uninfected vaccinee over a broad range of effector-to-target ratios. Similarly, the LCL-CD4HIV-1 were efficiently lysed by fresh circulating CTL from HIV-1-infected individuals, as well as by CTL activated by in vitro stimulation. Both HIV-1 env- and gag-specific CTL effectors lysed LCL-CD4HIV-1, consistent with the cellular expression of both HIV-1 genes. The LCL-CD4HIV also functioned as stimulator cells, and thus are capable of amplifying CTL against multiple HIV-1 gene products in HIV-1-infected individuals. The ability to produce HIV-1-susceptible autologous immortalized cell lines that can be employed as target cells should enable a more detailed evaluation of vaccine-induced CTL against both homologous and disparate HIV-1 strains. Furthermore, the use of LCL-CD4HIV-1 should facilitate the analysis of the range of HIV-1 gene products recognized by CTL in seropositive persons.  相似文献   

17.
The murine monoclonal antibody (MAb) 5A8, which is reactive with domain 2 of CD4, blocks human immunodeficiency virus type 1 (HIV-1) infection and syncytium formation of CD4+ cells (L. C. Burkly, D. Olson, R. Shapiro, G. Winkler, J. J. Rosa, D. W. Thomas, C. Williams, and P. Chisholm, J. Immunol., in press). Here we show that, in contrast to the CD4 domain 1 MAb 6H10, 5A8 and its Fab fragment do not block soluble CD4 (sCD4) binding to virions, whereas they do inhibit sCD4-induced exposure of cryptic epitopes on gp41 and dissociation of gp120 from virions. Two other MAbs, OKT4 and L120, which are reactive with domains 3 and 4 of CD4, have little or no effect on HIV-1 infection, syncytium formation, or sCD4-induced conformational changes in the envelope glycoproteins. The mechanisms of action of 5A8 and 6H10 can be further distinguished in syncytium inhibition assays: 6H10 blocks competitively, while 5A8 does not. We opine that 5A8 blocks HIV-1 infection and fusion by interfering with conformational changes in gp120/gp41 and/or CD4 that are necessary for virus-cell fusion.  相似文献   

18.
Human immunodeficiency virus type 1 (HIV-1)-specific CD8+ T-cell responses generated during acute infection play a critical role in the initial control of viremia. However, little is known about the viral T-cell epitopes targeted during acute infection or about their hierarchy in appearance and relative immunodominance over time. In this study, HIV-1-specific CD8+ T-cell responses in 18 acutely infected individuals expressing HLA-A3 and/or -B7 were characterized. Detailed analysis of CD8 responses in one such person who underwent treatment of acute infection followed by reexposure to HIV-1 through supervised treatment interruptions (STI) revealed recognition of only two cytotoxic T-lymphocyte (CTL) epitopes during symptomatic acute infection. HIV-1-specific CD8+ T-cell responses broadened significantly during subsequent exposure to the virus, ultimately targeting 27 distinct CTL epitopes, including 15 different CTL epitopes restricted by a single HLA class I allele (HLA-A3). The same few peptides were consistently targeted in an additional 17 persons expressing HLA-A3 and/or -B7 during acute infection. These studies demonstrate a consistent pattern in the development of epitope-specific responses restricted by a single HLA allele during acute HIV-1 infection, as well as persistence of the initial pattern of immunodominance during subsequent STI. In addition, they demonstrate that HIV-1-specific CD8+ T-cell responses can ultimately target a previously unexpected and unprecedented number of epitopes in a single infected individual, even though these are not detectable during the initial exposure to virus. These studies have important implications for vaccine design and evaluation.  相似文献   

19.
We describe human immunodeficiency type 2 (HIV-2) strains which induce cell-to-cell fusion and infect certain CD4- human cell lines. Soluble CD4 (sCD4) induces or enhances fusion by most HIV-2 strains tested. Soluble CD4-immunoglobulin G chimeras and conjugates of sCD4 and antibody to the third domain of CD4 block HIV-2 fusion of CD4- cells. We conclude that HIV-2 can enter CD4- cells via an alternative cell surface receptor to CD4. While some strains entered efficiently, others retained a dependency on an interaction with sCD4 to initiate changes in the virion envelope required for membrane fusion.  相似文献   

20.
X L Li  T Moudgil  H V Vinters    D D Ho 《Journal of virology》1990,64(3):1383-1387
One neuronal cell line (SK-N-MC) was found to be susceptible to productive infection by multiple isolates of the human immunodeficiency virus type 1 (HIV-1). Characterization of SK-N-MC cells showed that these cells are neuroectodermal in origin in that they express dopamine hydroxylase, catecholamines, neuron-specific enolase, and neurofilaments. Despite their susceptibility to HIV-1 infection, SK-N-MC cells had no detectable CD4 and this infection was not blocked by anti-CD4 monoclonal antibodies (OKT4A, Leu3A) or recombinant soluble CD4. These experiments demonstrated that certain cells of neuroectodermal origin are susceptible to infection in vitro by HIV-1 via a CD4-independent mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号