首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In order to evaluate the differences in the cleavage patterns of the glossiphoniid leeches Glossiphonia complanata and Theromyzon tessulatum, previously studied by Müller ('32) and Schmidt ('17, '41), the cleavage of Theromyzon tessulatum was reexamined. For the period of the first 29 hours of development embryos were observed, photographed, and serially sectioned for light microscopy at each developmental stage. The exact cell lineage until completion of teloblast formation is reported. Besides some other not previously reported features, we show that the mesoteloblast precursor cell in the glossiphoniid leeches, as probably in most Annelida, is not the cell 3D, but cell 4d formed by an additional division of cell 3D. The results further indicate that all glossiphoniid leeches likely share a common cleavage pattern, and that major differences between Glossiphonia complanata and Theromyzon tessulatum do not exist. A comparison between the cleavage patterns of some Oligochaeta and Hirudinea is made, and plesiomorphic characters in the cleavage of a clitellate ancestor species and their deviations in present day species are discussed.  相似文献   

2.
 Different species of leech vary greatly in body size but all have 32 body segments. It is unclear how the development of this precise number of segments is regulated, although it is known that the teloblasts of the early leech embryo initially produce more than the required numbers of segment founder cells (blast cells). We used fluorescent dextrans to show that the M teloblast of the Helobdella robusta embryo produces a variable number of additional (supernumerary) cells. These cells fail to enter the germinal band (which contains cells of all lineages and gives rise to the adult leech), but detach from its posterior end and disappear. Our observations suggest that some suffer an increase in membrane permeability while others fuse with the M teloblasts, but that they do not undergo apoptosis. The supernumerary cells of different lineages detach from the germinal band at different times, suggesting that detachment is not triggered by a global signal acting simultaneously on all lineages. We tested the hypothesis that the elimination of the supernumerary m blast cells results from a requirement of m blast cells for close interactions with cells of the other lineages for their survival, a condition that would not be achieved by the last-born m blast cells that fail to enter the germinal band. We cultured isolated M teloblasts and found that they do produce blast cells that themselves divide, indicating that cells of the M lineage can survive in the absence of any interactions with cells of the other lineages. Received: 17 August 1998 / Accepted: 20 November 1998  相似文献   

3.
Segmentally iterated tissues of the mature leech comprise five distinct sets of definitive progeny that arise from chains of blast cells (m, n, o, p, and q bandlets) produced by five bilateral pairs of stem cells (M, N, O/P, O/P, and Q teloblasts). In each n and q bandlet, two blast cells are needed to generate one set of hemisegmental progeny, and two alternating classes of blast cells (nf and ns, qf and qs) can be distinguished after their first divisions. Furthermore, two distinct subsets of definitive N and Q progeny exist within each hemisegment. Here we first show that there is fixed correspondence between the class of blast cell and the subset of final progeny: ns cells contribute mainly anterior ganglionic neurons and epidermal cells; nf cells contribute mainly posterior ganglionic neurons, peripheral neurons and neuropil glia; qs cells contribute both ventral and dorsal progeny; and qf cells contribute only dorsal progeny. Second, ablation studies indicate that the two classes of n blast cells do not behave as an equivalence group in the germinal band. Finally, we show that the cycles giving rise to nf and ns blast cells differ. These data suggest that cellular interactions within the germinal band may not be critical in establishing the distinct nf and ns cell fates and that, conversely, differences between the two classes of n blast cells may be established at birth.  相似文献   

4.
5.
Embryonic segmentation in clitellate annelids (oligochaetes and leeches) is a cell lineage-driven process. Embryos of these worms generate a posterior growth zone consisting of 5 bilateral pairs of identified segmentation stem cells (teloblasts), each of which produces a column of segmental founder cells (blast cells). Each blast cell generates a lineage-specific clone via a stereotyped sequence of cell divisions, which are typically unequal both in terms of the relative size of the sister cells and in the progeny to which they give rise. In two of the five teloblast lineages, including the ventralmost, primary neurogenic (N) lineage, the blast cells adopt two different fates, designated nf and ns, in exact alternation within the blast cell column; this is termed a grandparental stem cell lineage. To lay groundwork for investigating unequal divisions in the leech Helobdella, we have surveyed the Helobdella robusta genome for genes encoding orthologs of the Rho family GTPases, including the rho, rac and cdc42 sub-families, which are known to be involved in multiple processes involving cell polarization in other systems. We find that, in contrast to most other known systems the Helobdella genome contains two cdc42 orthologs, one of which is expressed at higher levels in the ns blast cells than in nf blast cells. We also demonstrate that the asymmetric divisions of the primary nf and ns blast cells are regulated by the polarized distribution of the activated form of the Cdc42 protein, rather than by the overall level of expression. Our results provide the first molecular insights into the mechanisms of the grandparental stem cell lineages, a novel, yet evolutionarily ancient stem cell division pattern. Our results also provide an example in which asymmetries in the distribution of Cdc42 activity, rather than in the overall levels of Cdc42 protein, are important regulating unequal divisions in animal cells.  相似文献   

6.
Summary The membrane potential of identified nerve (Retzius) cells and neuropil glial cells from 11 (±1) day-old embryos of the leechHirudo medicinalis was recorded using conventional intracellular microelectrodes. At this stage all ganglia of the segmental nervous system are formed. The membrane potential of Retzius cells was –68±4 mV (±SD,n=8), and showed a slope of 42 mV between 10 mM and 100 mM external K concentration. Retzius cells were able to fire action potentials which had a fast Na-dependent component, and, under appropriate conditions, also generated slow Ca (Ba) action potentials. The mean membrane potential of the neuropil glial cell at physiological K concentration (4 mM) was –83±5 mV (±SD,n=10), and showed a dependence of 56 mV for a tenfold change in the external K concentration (> 4mM). Neuropil glial cells showed no signs of voltage-activated excitability, but they repeatedly depolarized in the presence of 0.1 mM 5-HT.  相似文献   

7.
In the normal development of glossiphoniid leech embryos, cytoplasmic reorganization prior to the first cleavage generates visibly distinct domains of yolk-deficient cytoplasm, called teloplasm. During an ensuing series of stereotyped and unequal cell divisions, teloplasm is segregated primarily into cell CD of the two-cell stage and then into cell D of the four-cell and eight-cell stages. The subsequent fate of cell D is also unique in that it alone undergoes further cleavages which generate five bilateral pairs of embryonic stem cells, the mesodermal (M) and ectodermal (N, O/P, O/P, and Q) teloblasts. Here we report studies on the effects of centrifugation on cleavage pattern and protein composition of individual blastomeres of the leech Helobdella triserialis. Centrifugation partially stratifies the cytoplasm of each cell, generating a layer of clear cytoplasm in cell CD derived largely from teloplasm. After centrifuging embryos at the two-cell stage, clear cytoplasm present in cell CD and normally inherited by cell D is redistributed and can be inherited by both cells C and D at the second cleavage. The developmental fates of cells C and D in centrifuged embryos correlate with the amount of clear cytoplasm they receive. In particular, when clear cytoplasm has been distributed roughly equally between the two cells, both cell C and cell D undergo further cleavages resembling the pattern of divisions normally associated with cell D. Likewise, non-yolk-associated proteins, normally found in higher quantities in cell D than in cell C, appear evenly disbursed between the two cells under conditions which induce this fate change. These results are consistent with the idea that the fates of cells C and D are influenced by the distribution or cellular localization of cytoplasmic components.  相似文献   

8.
The endolysosomal cysteine endoprotease cathepsin L is secreted from cells in a variety of pathological conditions such as cancer and arthritis. We compared the secretome composition and extracellular proteolytic cleavage events in cell supernatants of cathepsin L-deficient and wild-type mouse embryonic fibroblasts (MEFs). Quantitative proteomic comparison of cell conditioned media indicated that cathepsin L deficiency affects, albeit in a limited manner, the abundances of extracellular matrix (ECM) components, signaling proteins, and further proteases as well as endogenous protease inhibitors. Immunodetection corroborated that cathepsin L deficiency results in decreased abundance of the ECM protein periostin and elevated abundance of matrix metalloprotease (MMP)-2. While mRNA levels of MMP-2 were not affected by cathepsin L ablation, periostin mRNA levels were reduced, potentially indicating a downstream effect. To characterize cathepsin L contribution to extracellular proteolysis, we performed terminal amine isotopic labeling of substrates (TAILS), an N-terminomic technique for the identification and quantification of native and proteolytically generated protein N-termini. TAILS identified >1500 protein N-termini. Cathepsin L deficiency predominantly reduced the magnitude of collagenous cleavage sites C-terminal to a proline residue. This contradicts cathepsin L active site specificity and indicates altered activity of further proteases as a result of cathepsin L ablation.  相似文献   

9.
A new member of the Wnt class of cell-cell communication molecules was identified in the leech Helobdella triserialis, on the basis of a conserved 86 amino acid coding sequence and exon structure. This gene, htr-wnt-A, is not an obvious homolog of any one of the previously described wnt class proteins. The embryonic expression of htr-wnt-A has been characterized at the cellular level, using nonradioactive in situ hybridization and polyclonal antibodies generated via a novel method of antigen presentation. Subcellular localization of the htr-wnt-A protein was examined by the use of immunofluorescence and confocal microscopy. htr-wnt-A is among the first zygotically expressed genes in Helobdella, appearing first in a single cell of the eight-cell embryo. In early development it is expressed within a stereotyped subset of micromeres and later, in a seemingly dynamic and stochastic pattern, by cells in a micromere-derived provisional embryonic epithelium. Its spatial and temporal expression pattern make it a candidate for participation in the regulation of cell fate in the O/P equivalence group.  相似文献   

10.
Telomere associations have been observed during key cellular processes such as mitosis, meiosis, and carcinogenesis and must be resolved before cell division to prevent genome instability. Here we establish that telomeric repeat-binding factor 1 (TRF1), a core component of the telomere protein complex, is a mediator of telomere associations in mammalian cells. Using live-cell imaging, we show that expression of TRF1 or yellow fluorescent protein (YFP)-TRF1 fusion protein above endogenous levels prevents proper telomere resolution during mitosis. TRF1 overexpression results in telomere anaphase bridges and aggregates containing TRF1 protein and telomeric DNA. Site-specific protein cleavage of YFP-TRF1 by tobacco etch virus protease resolves telomere aggregates, indicating that telomere associations are mediated by TRF1. This study provides novel insight into the formation and resolution of telomere associations.  相似文献   

11.
1. Changes in the activity pattern of leech Retzius (R) cells were investigated using intracellular recording. 2. The presence of an after-hyperpolarisation (AHP) is closely related to activity pattern; regular firing being associated with an AHP, bursting with its absence. 3. Increasing external calcium (Cao), cyclic AMP levels or activity of kinase A enhanced the AHP. 4. Bursting was induced by low Cao, EGTA, barium, cobalt or injection of phorbol ester. 5. Reduction of Cao to zero caused long paroxysmal depolarising shifts of potential which could be reversed to bursting by cobalt, IBMX or injection of kinase A catalytic subunit. 6. The possible roles of a calcium-activated potassium channel and protein phosphorylation in regulating the activity of the cell are discussed.  相似文献   

12.
Gap junctions are direct intercellular channels that permit the passage of ions and small signaling molecules. The temporal and spatial regulation of gap junctional communication is, thus, one mechanism by which cell interactions, and hence cell properties and cell fate, may be regulated during development. The nervous system of the leech, Hirudo medicinalis, is a particularly advantageous system in which to study developmental mechanisms involving gap junctions because interactions between identified cells may be studied in vivo in both the embryo and the adult. As in most invertebrates, gap junctions in the leech are composed of innexin proteins, which are distantly related to the vertebrate pannexins and are encoded by a multi-gene family. We have cloned ten novel leech innexins and describe the expression of these, plus two other previously reported members of this gene family, in the leech embryo between embryonic days 6 and 12, a period during which the main features of the central nervous system are established. Four innexins are expressed in neurons and two in glia, while several innexins are expressed in the excretory, circulatory, and reproductive organs. Of particular interest is Hm-inx6, whose expression appears to be restricted to the characterized S cell and two other neurons putatively identified as presynaptic to this cell. Two other innexins also show highly restricted expressions in neurons and may be developmentally regulated. Electronic Supplementary Material Supplementary material is available for this article at .  相似文献   

13.
A central pattern generator underlies crawling in the medicinal leech   总被引:1,自引:0,他引:1  
Crawling in the medicinal leech has previously been thought to require sensory feedback because the intact behavior is strongly modulated by sensory feedback and because semi-intact preparations will only crawl if they can move freely. Here we show that an isolated leech nerve cord can produce a crawling motor pattern similar to the one seen in semi-intact preparations, which consists of an anterior-to-posterior wave of alternating excitatory circular and longitudinal motor neuron bursts in each segment. The isolated cord also reproduces the patterns of activity seen in semi-intact preparations for several other kinds of cells: the dorsal inhibitor cell 1, the ventral excitor cell 4, and the annulus erector motor neuron. Because this correspondence is so strong, there must be a central pattern generator in the isolated cord that can produce the basic motor pattern for crawling without sensory feedback. A quantitative analysis of the isolated motor pattern, however, reveals that isolated and semi-intact preparations have longer periods than the intact behavior and that there are deficiencies in the timing of motor neuron bursts in the isolated pattern. These results suggest that sensory feedback modulates the isolated central pattern generator to help produce the normal motor pattern.  相似文献   

14.
15.
16.
In the embryos of glossiphoniid leeches, as in many annelids, cytoplasmic reorganization prior to first cleavage generates domains of yolk-deficient cytoplasm (called teloplasm) that are sequestered during the first three cell divisions to the D' macromere. Subsequently, the D' macromere generates a set of embryonic stem cells (teloblasts) that are the progenitors of the definitive segmental tissues. The hypothesis that fate-determining substances are localized within the teloplasm and segregated to the D macromere during cleavage is supported by experiments in which a redistribution of yolk-defcient cytoplasm changes the fate of blastomeres that inherit it (Astrow et al. 1987; Devries 1973; Nelson and Weisblat 1992). As a step toward identifying fate-determining factors in teloplasm, we describe the distribution of polyadenylated RNAs (polyA+ RNA) in the early embryo of the leech, Helobdella triserialis, as inferred from in situ hybridization using tritiated polyuridylic acid (3H-polyU). Our results indicate that polyA+ RNA colocalizes with teloplasm during cytoplasmic rearrangements resulting in teloplasm formation, and that it remains concentrated in the teloplasm during the cell divisions and a second cytoplasmic rearrangement during early embryogenesis. Lesser amounts of polyA+ RNA appear to be localized in cortical cytoplasm at most stages.  相似文献   

17.
Mature adipocytes can revert to a more primitive phenotype and gain cell proliferative ability under the condition of ceiling method, named dedifferentiated fat cells (DFAT cells). These cells exhibit multilineage potential as adipose tissue-derived stromal cells (ADSCs). However, the stem molecular signature of DFAT cells and the difference distinct from ADSCs are still not sure. To study the molecular signature of DFAT cells better, highly purified mature adipocytes were obtained from rats and the purity was more than 98%, and about 98.6% were monocytes. These mature adipocytes dedifferentiated into fibroblast-like cells spontaneously by the ceiling culture method, these cells proliferated rapidly in vitro, grew in the same direction and formed vertex, and expressed extensively embryonic stem cell markers such as Oct4, Sox2, c-Myc, and Nanog, surface antigen SSEA-1, CD105, and CD31, moreover, these cells possessed ALP and telomerase activity. The expression level was Oct4 1.3%, Sox2 1.3%, c-Myc 1.2%, Nanog 1.2%, CD105 0.6%, CD31 0.6% and SSEA-1 0.4%, respectively, which was lower than that in ADSCs, but the purity of DFAT cells was much higher than that of ADSCs. In conclusion, DFAT cells is a highly purified stem cell population, and expressed some embryonic stem cell markers like ADSCs, which seems to be a good candidate source of adult stem cells for the future cell replacement therapy.  相似文献   

18.
Embryonic origins of cells in the leech Helobdella triserialis   总被引:2,自引:0,他引:2  
To ascertain the embryonic origins of the cells in various tissues of the leech Helobdella triserialis, horseradish peroxidase (HRP) was injected as a cell lineage tracer into all identified blastomeres of the early embryo in turn, except for a few of the micromeres, and the resulting distribution of HRP-labeled cells was then examined in the late embryo. In this way it was found that in every body segment a topographically characteristic set of neurons in the ganglion and body wall and a characteristic territory of the epidermis is derived from each of the four paired ectodermal teloblasts N, O/P, O/P, and Q, whereas the muscles, nephridia, and connective tissue, as well as a few presumptive neurons in each segmental ganglion, are derived from the paired mesodermal teloblast, M. Each topographically characteristic, segmentally iterated set of neurons descended from a given teloblast is designated as a kinship group. However, the prostomial (nonsegmental) epidermis and the neurons of the supraesophageal ganglion were found to be derived from the a, b, c, and d micromere quartet to which the A, B, C, and D blastomeres give rise at the dorsal pole of the embryo. The superficial epithelium of the provisional integument, which covers the surface of the embryo midway through development and is sloughed off at the time of body closure, was found to be derived from the a, b, c, and d micromere quartet, as well as from other micromeres produced in the course of teloblast formation. The contractile fibers of the provisional integument were found to be derived from the paired M teloblast. These results demonstrate that development of the leech embryo proceeds according to a highly stereotyped pattern, in the sense that a particular identifiable blastomere of the early embryo regularly gives rise to a particular set of cells of the adult (or provisional embryonic) tissues.  相似文献   

19.
Gallocyanine-chrome alum-stained pig embryonic kidney cells have paramagnetic properties. They move under the influence of gradient magnetic field (magnetophoresis). The velocity of magnetophoresis is proportional to the content of nucleic acids in cells. This allows to estimate the content of nucleic acids per cell dry weight by magnetophoresis and analytical centrifugation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号