首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thiamine deficiency (TD) causes mild impairment of oxidative metabolism and region‐selective neuronal loss in the brain, which may be mediated by neuronal oxidative stress, endoplasmic reticulum (ER) stress, and neuroinflammation. TD‐induced brain damage is used to model neurodegenerative disorders, and the mechanism for the neuronal death is still unclear. We hypothesized that autophagy might be activated in the TD brain and play a protective role in TD‐induced neuronal death. Our results demonstrated that TD induced the accumulation of autophagosomes in thalamic neurons measured by transmission electron microscopy, and the up‐regulation of autophagic markers LC3‐II, Atg5, and Beclin1 as measured with western blotting. TD also increased the expression of autophagic markers and induced LC3 puncta in SH‐SY5Y neuroblastoma cells. TD‐induced expression of autophagic markers was reversed once thiamine was re‐administered. Both inhibition of autophagy by wortmannin and Beclin1 siRNA potentiated TD‐induced death of SH‐SY5Y cells. In contrast, activation of autophagy by rapamycin alleviated cell death induced by TD. Intraperitoneal injection of rapamycin stimulated neuronal autophagy and attenuated TD‐induced neuronal death and microglia activation in the submedial thalamus nucleus (SmTN). TD inhibited the phosphorylation of p70S6 kinase, suggesting mTOR/p70S6 kinase pathway was involved in the TD‐induced autophagy. These results suggest that autophagy is neuroprotective in response to TD‐induced neuronal death in the central nervous system. This opens a potential therapeutic avenue for neurodegenerative diseases caused by mild impairment of oxidative metabolism.

  相似文献   


2.
CD40 ligand (CD40L) and its receptor CD40 participate in numerous inflammatory pathways that contribute to multiple pathophysiological processes. A role for CD40-CD40L interactions has been identified in atherosclerosis, and such interactions are known to destabilize atherosclerotic plaques by inducing the expression of cytokines, chemokines, growth factors, matrix metalloproteinases and pro-coagulant factors. The CD40-CD40L interaction has also been implicated in immune system disorders. Recent studies have suggested that CD40-CD40L interactions regulate oxidative stress and affect various signaling pathways in both the immunological and cardiovascular systems. Here, we discuss the emerging role of CD40-CD40L-mediated processes in oxidative stress, inflammatory pathways and vascular diseases. Understanding the roles and regulation of CD40-CD40L-mediated oxidative signaling in immune and non-immune cells could facilitate the development of therapeutics targeting diverse inflammatory diseases.  相似文献   

3.
Age-related neurodegenerative diseases are characterized by selective neuron loss, glial activation, inflammation and abnormalities in oxidative metabolism. Thiamine deficiency (TD) is a model of neurodegeneration induced by impairment of oxidative metabolism. TD produces a time-dependent, selective neuronal death in specific brain regions, while other cell types are either activated or unaffected. TD-induced neurodegeneration occurs first in a small, well-defined brain region, the submedial thalamic nucleus (SmTN). This discrete localization permits careful analysis of the relationship between neuronal loss and the response of other cell types. The temporal analysis of the changes in the region in combination with the use of transgenic mice permits testing of proposed mechanisms of how the interaction of neurons with other cell types produces neurodegeneration. Loss of neurons and elevation in markers of neurodegeneration are accompanied by changes in microglia including increased redox active iron, the induction of nitric oxide synthase (NOS) and hemeoxygenase-1, a marker of oxidative stress. Endothelial cells also show changes in early stages of TD including induction of intracellular adhesion molecule-1 (ICAM-1) and endothelial NOS. The number of degranulating mast cells also increases in early stages of TD. Alterations in astrocytes and neutrophils occur at later stages of TD. Studies with transgenic knockouts indicate that the endothelial cell changes are particularly important. We hypothesize that TD-induced abnormalities in oxidative metabolism promote release of neuronal inflammatory signals that activate microglia, astrocytes and endothelial cells. Although at early stages the responses of non-neuronal cells may be neuroprotective, at late phases they lead to entry of peripheral inflammatory cells into the brain and promote neurodegeneration.  相似文献   

4.
Our studies show that ischemia-reperfusion (I/R) in the isolated rat lung causes retention of lymphocytes, which is associated with increased microvascular permeability, as determined by quantitative measurement of the microvascular filtration coefficient (K(f,c)). Immunoneutralization of either CD40 or CD40L, cell surface proteins important in lymphocyte-endothelial cell proinflammatory events, results in significantly lower postischemic K(f,c) values. Antagonism of CD40-CD40L signaling also results in attenuation of I/R-elicited macrophage inflammatory protein-2 production. Rat lymphocytes activated ex vivo with phorbol 12-myristate, 13-acetate increased K(f,c) in isolated lungs independently of I/R, and this increase was prevented by pretreating lungs with anti-CD40. In addition to lymphocyte involvement via CD40-CD40L interactions, our studies also show that I/R injury is potentiated by antagonism of IL-10 produced locally within the postischemic lung, whereas exogenous, rat recombinant IL-10 provided protection against I/R-induced microvascular damage. Thus acute lymphocyte involvement in lung I/R injury involves CD40-CD40L signaling mechanisms, and these events may be influenced by local IL-10 generation.  相似文献   

5.
Recent studies have established a protective role for T cells during primary West Nile virus (WNV) infection. Binding of CD40 by CD40 ligand (CD40L) on activated CD4+ T cells provides an important costimulatory signal for immunoglobulin class switching, antibody affinity maturation, and priming of CD8+ T-cell responses. We examined here the function of CD40-dependent interactions in limiting primary WNV infection. Compared to congenic wild-type mice, CD40(-/-) mice uniformly succumbed to WNV infection. Although CD40(-/-) mice produced low levels of WNV-specific immunoglobulin M (IgM) and IgG, viral clearance from the spleen and serum was not altered, and CD8+ T-cell priming in peripheral lymphoid tissues was normal. Unexpectedly, CD8+ T-cell trafficking to the central nervous system (CNS) was markedly impaired in CD40(-/-) mice, and this correlated with elevated WNV titers in the CNS and death. In the brains of CD40(-/-) mice, T cells were retained in the perivascular space and did not migrate into the parenchyma, the predominant site of WNV infection. In contrast, in wild-type mice, T cells trafficked to the site of infection in neurons. Beside its role in maturation of antibody responses, our experiments suggest a novel function of CD40-CD40L interactions: to facilitate T-cell migration across the blood-brain barrier to control WNV infection.  相似文献   

6.
CD40 is thought to play a central role in T cell-dependent humoral responses through two distinct mechanisms. CD4+ T helper cells are activated via CD40-dependent Ag presentation in which CD80/CD86 provides costimulation through CD28. In addition, engagement of CD40 on B cells provides a direct pathway for activation of humoral responses. We used a model of adenovirus-mediated gene transfer of beta-galactosidase (lacZ) into murine lung to evaluate the specific CD40-dependent pathways required for humoral immunity at mucosal surfaces of the lung. Animals deficient in CD40L failed to develop T and B cell responses to vector. Activation of Th2 cells, which normally requires CD40-dependent stimulation of APCs, was selectively reconstituted in CD40 ligand-deficient mice by systemic administration of an Ab that is agonistic to CD28. Surprisingly, this resulted in the development of a functional humoral response to vector as evidenced by formation of germinal centers and production of antiadenovirus IgG1 and IgA that neutralized and prevented effective readministration of vector. The CD28-dependent B cell response required CD4+ T cells and was mediated via IL-4. These studies indicate that CD40 signals to the B cells are not necessary for CD4+ Th2 cell-dependent humoral responses to be generated.  相似文献   

7.
Mutations in the CD40 ligand (CD40L) gene lead to X-linked immunodeficiency with hyper-IgM, which is often associated with autoimmune diseases. To determine the contribution of defective CD40-CD40L interactions to T cell autoreactivity, we reconstituted CD40-CD40L interactions by transferring T cells from CD40-deficient mice to syngenic athymic nude mice and assessed autoimmunity. T cells from CD40-deficient mice triggered autoimmune diseases accompanied with elevations of various autoantibodies, while those from wild-type mice did not. In CD40-deficient mice, the CD25(+) CD45RB(low) CD4(+) subpopulation which regulates T cell autoreactivity was markedly reduced. CD40-deficient APCs failed to induce T regulatory cells 1 producing high levels of an inhibitory cytokine, IL-10 in vitro. Furthermore, autoimmune development was inhibited when T cells from CD40-deficient mice were cotransferred with CD45RB(low) CD4(+) T cells from wild-type mice or with T regulatory cells 1 induced on CD40-expressing APCs. Collectively, our results indicate that CD40-CD40L interactions contribute to negative regulation of T cell autoreactivity and that defective interactions can lead to autoimmunity.  相似文献   

8.
Thiamine deficiency (TD) models the selective neurodegeneration that accompanies the mild impairment of oxidative metabolism, which is observed in a variety of neurodegenerative diseases. Several markers of inflammation accompany neuronal death in TD and in these diseases. Studies in the submedial thalamic nucleus (SmTN), the region most sensitive to TD, have begun to define the temporal response of inflammation, immune response and neurodegeneration. Our previous studies show that the immune response is involved in TD-induced neurodegeneration. The current experiments tested the roles of other inflammatory cascades in TD-induced neuronal death. Deletion of genes for CD4, or CD8 (the co-receptors for T-cells), IFN-gamma (the cytokine produced by T-cell), or NADPH oxidase (the inflammation related oxidase) were tested. None protected against neuronal death in late stages of TD. On the other hand, deletion of the genes for CD4, CD8 and IFN-gamma increased the microglial activation, and deletion of the gene for NADPH oxidase decreased microglial activation when compared to control mice. In wild type mice, TD caused hypertrophy of CD68 positive microglia without increasing the number of microglia. However, TD induced hypertrophy and proliferation of CD68-positive microglia in the CD4 (97%), CD8 (57%) or IFN-gamma (96%) genetic knockout mice. In the genetic knockout mice for NADPH oxidase, the microglial activation was 65% less than the wild type mice. The results demonstrate that mice deficient in specific T cells (CD4-/-, CD8-/-) or activated T cell product, (IFN-gamma-/-) have increased microglia activation, but mice deficient in NADPH oxidase have decreased microglial activation. However, at the time point tested, the deletions were not neuroprotective. The results suggest that inflammatory responses play a role in TD-induced pathological changes in the brain, and the inflammation appears to be a late event that reflects a response to neuronal damage, which may spread the damage to other brain regions.  相似文献   

9.
The interaction between CD40 on B cells and CD40 ligand (CD40L) on activated T cells is important for B-cell differentiation in T-cell-dependent humoral responses. We have extended our previous murine studies of CD40-CD40L in adenoviral vector-mediated immune responses to rhesus monkeys. Primary immune responses to adenoviral vectors and the ability to readminister vector were studied in rhesus monkeys in the presence or absence of a transient treatment with a humanized anti-CD40 ligand antibody (hu5C8). Adult animals were treated with hu5C8 at the time vector was instilled into the lung. Immunological analyses demonstrated suppression of adenovirus-induced lymphoproliferation and cytokine responses (interleukin-2 [IL-2], gamma interferon, IL-4, and IL-10) in hu5C8-treated animals. Animals treated with hu5C8 secreted adenovirus-specific immunoglobulin M (IgM) levels comparable to control animals, but did not secrete IgA or develop neutralizing antibodies; consequently, the animals could be readministered with adenovirus vector expressing alkaline phosphatase. A second study was designed to examine the long-term effects on immune functions of a short course of hu5C8. Acute hu5C8 treatment resulted in significant and prolonged inhibition of the adenovirus-specific humoral response well beyond the time hu5C8 effects were no longer significant. These studies demonstrate the potential of hu5C8 as an immunomodulatory regimen to enable administration of adenoviral vectors, and they advocate testing this model in humans.  相似文献   

10.
This study investigated the expression of CD40, CD40 ligand (CD40L) and matrix metalloproteinases (MMPs) in dietary-induced atherosclerosis in rats. Wister rats were fed with high cholesterol diet (As group, n = 6) or with normal diet (N group, n = 6). Blood cells that express CD40 and CD40L were sorted by flow cytometry, the MMP-2 and MMP-9 were measured by zymography method. The morphological locations of MMP-2 and MMP-9 in the aorta were studied with immunohistochemistry and by microscopy. The results showed that the expression of CD40, CD40L and matrix metalloproteinase were higher in As group than those in control group. The MMP-2 and MMP-9 were positive in As group but negative in control group by immunohistochemistry study. Our results suggest that the expression of CD40 and CD40L in the blood cells and the activities of MMP-2 and MMP-9 in plasma were higher in As group than those in Normal group, indicating that they may contribute to the formation of atherosclerosis.  相似文献   

11.
12.
We examined the role of CD40/CD40L interactions on the development of experimental autoimmune uveoretinitis (EAU), a cell-mediated, Th1-driven autoimmune disease that serves as a model for autoimmune uveitis in humans. EAU-susceptible B10.RIII mice immunized with the retinal autoantigen interphotoreceptor retinoid binding protein in CFA and treated with anti-CD40L Ab (MR1) had reduced incidence and severity of disease. Real-time PCR analysis revealed that the innate and adaptive responses of protected mice were reduced, without an obvious shift toward a Th2 cytokine profile. In contrast to some other reports, no evidence was found for regulatory cells in adoptive transfer experiments. To determine whether CD40L blockade resulted in long-term tolerance, mice protected by treatment with MR1 Ab were rechallenged for uveitis after circulating MR1 Ab levels dropped below the detection limit of ELISA. MR1-treated mice developed severe EAU and strong cellular responses to interphotoreceptor retinoid binding protein, comparable to those of control mice. These responses were higher than in mice that had not received the primary immunization concurrently with anti-CD40L treatment. We conclude that 1) CD40/CD40L interaction is required for EAU and its disruption prevents disease development; 2) CD40L blockade inhibits the innate response to immunization and reduces priming, but does not result in immune deviation; and 3) protection is dependent on persistence of anti-CD40L Abs, and long-term tolerance is not induced. Furthermore, immunological memory develops under cover of CD40L blockade causing enhanced responses upon rechallenge. Taken together, our data suggest that ongoing CD40/CD40L blockade might be required to maintain a therapeutic effect against uveitis.  相似文献   

13.
The interaction of CD40 ligand (CD40L) expressed by activated T cells with CD40 on macrophages has been shown to be a potent stimulus for the production of IL-12, an obligate signal for generation of Th1 cytokine responses. The expression and interaction of CD40 and CD40L were investigated in human infectious disease using leprosy as a model. CD40 and CD40L mRNA and surface protein expression were predominant in skin lesions of resistant tuberculoid patients compared with the highly susceptible lepromatous group. IL-12 release from PBMC of tuberculoid patients stimulated with Mycobacterium leprae was partially inhibited by mAbs to CD40 or CD40L, correlating with Ag-induced up-regulation of CD40L on T cells. Cognate recognition of M. leprae Ag by a T cell clone derived from a tuberculoid lesion in the context of monocyte APC resulted in CD40L-CD40-dependent production of IL-12. In contrast, M. leprae-induced IL-12 production by PBMC from lepromatous patients was not dependent on CD40L-CD40 ligation, nor was CD40L up-regulated by M. leprae. Furthermore, IL-10, a cytokine predominant in lepromatous lesions, blocked the IFN-gamma up-regulation of CD40 on monocytes. These data suggest that T cell activation in situ by M. leprae in tuberculoid leprosy leads to local up-regulation of CD40L, which stimulates CD40-dependent induction of IL-12 in monocytes. The CD40-CD40L interaction, which is not evident in lepromatous leprosy, probably participates in the cell-mediated immune response to microbial pathogens.  相似文献   

14.
Wang X  Fan Z  Wang B  Luo J  Ke ZJ 《Journal of neurochemistry》2007,103(6):2380-2390
Thiamine (vitamin B1) deficiency (TD) causes mild and chronic impairment of oxidative metabolism and induces neuronal death in specific brain regions. The mechanisms underlying TD-induced cell death, however, remain unclear. The double-stranded RNA-activated protein kinase (PKR), has been well known for its anti-viral function. Upon activation by viral infection or double-stranded RNA, PKR phosphorylates its substrate, the α-subunit of eukaryotic initiation factor-2 (eIF2α), leading to inhibition of translation. In response to various cellular stresses, PKR can also be stimulated by its protein activators, or its mouse homologue, PKR activator (RAX). We demonstrated that TD in mice induced phosphorylation of PKR at Thr446 and Thr451 and phosphorylation of eIF2α at Ser51 in the cerebellum and the thalamus. TD caused phosphorylation of PKR and eIF2α, as well as nuclear translocation of PKR in primary cultures of cerebellar granule neurons. PKR phosphorylation is necessary for its nuclear translocation because TD failed to induce nuclear translocation of a T446A/T451A PKR mutant. Both PKR inhibitor and dominant-negative PKR mutant protected cerebellar granule neurons against TD-induced cell death. TD promoted the association between RAX and PKR. Antioxidant vitamin E dramatically decreased the RAX/PKR association and ameliorated TD-induced cell death. Our results indicate that TD-induced neuronal death is at least partially mediated by the activation of PKR.  相似文献   

15.
Many hypotheses have been developed to explain aging and age-related neurodegenerative disorders; one of the most compelling is the role of oxidative stress to induce changes in protease activity in brains of patients of Alzheimer's disease and prion disease. At the moment however, there is no clear answer how protein degradation may be achieved in the brain. We have observed that several metal compounds can degrade proteins in the presence of hydrogen peroxide, and elucidated the reaction scheme based on the new theoretical point for the reactivity of a metal-peroxide adduct with eta 1-coordination mode. In this article we would like to point out the importance of a copper(II)-peroxide adduct to promote neurodegenerative diseases such as prion disease and amyotrophic lateral sclerosis through its oxidative protease function.  相似文献   

16.
C3H/HeJBir is a mouse substrain that is highly susceptible to colitis. Their CD4+ T cells react to Ags of the commensal enteric bacteria, and the latter can mediate colitis when activated by these Ags and transferred to histocompatible scid recipients. In this study, multiple long-term C3H/HeJBir CD4+ T cell (Bir) lines reactive to commensal enteric bacterial Ags have been generated. All these were Ag specific, pauciclonal, and Th1 predominant; most induced colitis uniformly after transfer to scid recipients. Lesions were focal and marked by increased expression of IL-12p40 and IFN-gamma mRNA and protein. Pathogenic Bir T cell lines expressed CD40 ligand (CD40L) when cultured with Ag-pulsed APCs in vitro. Production of IL-12 was also increased in such cultures, an effect that was Ag- and T cell-dependent and required costimulation by CD40, but not by B7. The two Bir T cell lines that did not induce lesions after transfer failed to significantly express CD40L or increase IL-12 when cultured with Ag-pulsed APCs. Administration of anti-CD40L blocked disease expression induced by pathogenic T cells. We conclude that interactions in the colon mucosa between CD40L-expressing Bir Th1 cells with APCs endogenously loaded with commensal bacterial Ags are critical for sustained increases in local IL-12 production and progression to colitis.  相似文献   

17.
CD40-CD40L interactions have been shown to be essential for the production of IL-12 and IFN-gamma and control of L. major infection. In contrast, C57BL/6 mice deficient in CD28 develop a dominant Th1-type response and heal infection. In this study, we investigate the effects of a deficiency in both CD40L and CD28 molecules on the immune response and the course of L. major infection. We compared infection in mice genetically lacking CD40L (CD40L(-/-)), CD28 (CD28(-/-)), or both (CD40L(-/-)CD28(-/-)), and in C57BL/6 mice, all on a resistant background. Although CD40L(-/-) mice failed to control infection, CD28(-/-) and CD40L(-/-)CD28(-/-) mice, as well as C57BL/6 mice, spontaneously resolved their infections. Healing mice had reduced numbers of lesion parasites compared with nonhealing CD40L(-/-) mice. At wk 9 of infection, we detected similar levels of IL-4, IFN-gamma, IL-12p40, and IL-12Rbeta2 mRNA in draining lymph nodes of healing C57BL/6, CD28(-/-), and CD40L(-/-)CD28(-/-) mice, whereas CD40L(-/-) mice had increased mRNA levels for IL-4 but reduced levels for IFN-gamma, IL-12p40, and IL-12Rbeta2. In a separate experiment, blocking of the CD40-CD40L pathway using Ab to CD40L led to an exacerbation of infection in C57BL/6 mice, but had little or no effect on infection in CD28(-/-) mice. Together, these results demonstrate that in the absence of CD28 costimulation, CD40-CD40L interaction is not required for the development of a protective Th1-type response. The expression of IL-12p40, IL-12Rbeta2, and IFN-gamma in CD40L(-/-)CD28(-/-) mice further suggests the presence of an additional stimulus capable of regulating IL-12 and its receptors in absence of CD40-CD40L interactions.  相似文献   

18.
The primary effector cells of contact hypersensitivity (CHS) responses to dintrofluorobenzene (DNFB) are IFN-gamma-producing CD8(+) T cells, whereas CD4(+) T cells regulate the magnitude and duration of the response. The requirement for CD40-CD154 engagement during CD8(+) and CD4(+) T cell priming by hapten-presenting Langerhans cells (hpLC) is undefined and was tested in the current study. Similar CHS responses to DNFB were elicited in wild-type and CD154(-/-) animals. DNFB sensitization of CD154(-/-) mice primed IFN-gamma-producing CD8(+) T cells and IL-4-producing CD4(+) T cells. However, anti-CD154 mAb MR1 given during hapten sensitization inhibited hapten-specific CD8(+), but not CD4(+), T cell development and the CHS response to challenge. F(ab')(2) of MR1 failed to inhibit CD8(+) T cell development and the CHS response suggesting that the mechanism of inhibition is distinct from that of CD40-CD154 blockade. Furthermore, anti-CD154 mAb did not inhibit CD8(+) T cell development and CHS responses in mice depleted of CD4(+) T cells or in CD4(-/-) mice. During in vitro proliferation assays, hpLC from mice treated with anti-CD154 mAb during DNFB sensitization were less stimulatory for hapten-primed T cells than hpLC from either control mice or mice depleted of CD4(+) T cells before anti-CD154 mAb administration. These results demonstrate that development of IFN-gamma-producing CD8(+) T cells and the CHS response are not dependent on CD40-CD154 interactions. This study proposes a novel mechanism of anti-CD154 mAb-mediated inhibition of CD8(+) T cell development where anti-CD154 mAb acts indirectly through CD4(+) T cells to impair the ability of hpLC to prime CD8(+) T cells.  相似文献   

19.
CD47 or integrin-associated protein promotes cell death in blood and tumor cells. Recently, CD47 signaling has been identified in neurons as well. In this study, we investigated the role of CD47 in neuronal cell death. Exposure of primary mouse cortical neurons to the CD47 ligand thrombospondin-1 or the specific CD47-activating peptide 4N1K induced cell death. Activation of CD47 elevated levels of active caspase 3 and increased the generation of reactive oxygen species (ROS) in a time-dependent manner. Both ROS scavengers and caspase inhibitors attenuated cell death. But ROS scavenging did not reduce the activation of caspase 3, and combination treatments with a caspase inhibitor plus free radical scavenger did not yield additive protection. Taken together, these data suggest that parallel and redundant pathways of oxidative stress and caspase-mediated cell death are involved. We conclude that CD47 mediates neuronal cell death through caspase-dependent and caspase-independent pathways.  相似文献   

20.
Both wild-type (WT) and IFN-gamma-deficient (IFN-gamma(-/-)) C57BL/6 mice can rapidly reject BALB/c cardiac allografts. When depleted of CD8(+) cells, both WT and IFN-gamma(-/-) mice rejected their allografts, indicating that these mice share a common CD4-mediated, CD8-independent mechanism of rejection. However, when depleted of CD4(+) cells, WT mice accepted their allografts, while IFN-gamma(-/-) recipients rapidly rejected them. Hence, IFN-gamma(-/-), but not WT mice developed an unusual CD8-mediated, CD4-independent, mechanism of allograft rejection. Allograft rejection in IFN-gamma(-/-) mice was associated with intragraft accumulation of IL-4-producing cells, polymorphonuclear leukocytes, and eosinophils. Furthermore, this form of rejection was resistant to treatment with anti-CD40 ligand (CD40L) mAb, which markedly prolonged graft survival in WT mice. T cell depletion studies verified that anti-CD40L treatment failed to prevent CD8-mediated allograft rejection in IFN-gamma(-/-) mice. However, anti-CD40L treatment did prevent CD4-mediated rejection in IFN-gamma(-/-) mice, although grafts were eventually rejected when CD8(+) T cells repopulated the periphery. The IL-4 production and eosinophil influx into the graft that occurred during CD8-mediated rejection were apparently epiphenomenal, since treatment with anti-IL-4 mAb blocked intragraft accumulation of eosinophils, but did not interfere with allograft rejection. These studies demonstrate that a novel, CD8-mediated mechanism of allograft rejection, which is resistant to experimental immunosuppression, can develop when IFN-gamma is limiting. An understanding of this mechanism is confounded by its association with Th2-like immune events, which contribute unique histopathologic features to the graft but are apparently unnecessary for the process of allograft rejection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号