首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adrenal glands obtained from patients undergoing therapeutic adrenalectomy were used to study the effects of angiotensin on human adrenal steroidogenesis. It was observed that angiotensin stimulated cortisol biosynthesis. Although this has been demonstrated to occur in canine and bovine adrenals, angiotensin-induced cortisol biosynthesis has not been established in man. The possibility that angiotensin merely stimulated glomerulosa cells to secrete precursor steroids which accumulated in the medium and then diffused into fasciculata cells to provide substrate for cortisol biosynthesis was excluded by demonstrating that 3β-hydroxy-5-pregnen-20-one (pregnenolone) and progesterone (the only pertinent precursors) did not accumulate in angiotensinstimulated cell suspensions. In addition, angiotensin stimulated cortisol biosynthesis in a fasciculata cell suspension in which angiotensin did not stimulate aldosterone production. Therefore, in human adrenal cell suspensions angiotensin appeared to act directly to stimulate cortisol synthesis by fasciculata cells. In normal subjects pre-treated with dexamethasone, angiotensin infusions failed to stimulate an increase in plasma cortisol. The physiological importance of angiotensin as a regulator of cortisol secretion remains, therefore, to be established.  相似文献   

2.
The ovine fetal adrenal cortex and pituitary are functional secretory organs by the end of the first third of gestation (term is 142-152 days). By half-way through gestation the zona glomerulosa is mature morphologically, more than 80% of the aldosterone in fetal blood is of fetal adrenal origin, but conventional stimuli, for example, increased plasma K+ or angiotensin II, do not increase aldosterone secretion until near term. The zona fasciculata is immature histologically, relatively unresponsive to ACTH, and contributes less than 10% of the cortisol in fetal blood between 100 and 120 days of gestation. After this time the zona fasciculata cells begin to mature, to respond to ACTH and to produce an increasing proportion of the cortisol in fetal blood. A functional relationship between hypothalamus-pituitary-adrenal cortex matures over the last fifth of gestation. It is hypothesized that cortisol exerts a local effect in maturation of fetal zona fasciculata cells, such that low concentrations of ACTH have increasingly larger effects on growth and secretion of the fasciculata and that the level of negative feedback by cortisol on the hypothalamic-pituitary axis is reset. The analogy is drawn between the changes in gonadotrophin and gonadal hormones which culminates in puberty in man and the changes in ACTH and cortisol which culminate in parturition in sheep.  相似文献   

3.
Immunoreactive 3 beta-hydroxysteroid dehydrogenase/delta 5-delta 4-isomerase (3 beta-HSD) was localized in adrenal glands of sheep fetuses in cortical-type cells, but not in medullary-type cells, from day 43 of gestation to term and in 2-4-day-old neonates. From day 54 of gestation, the formation of distinct zones within the adrenal cortex was apparent and immunoreactive 3 beta-HSD was found in cortical cells in the zona fasciculata and in groups and cords of cortical cells within the developing medulla, with weak positive staining in the zona glomerulosa. At this stage, most medullary cells were positive for immunoreactive tyrosine hydroxylase, and some of these cells with a juxtacortical distribution also stained positively for immunoreactive phenylethanolamine N-methyl transferase (PNMT). Between days 65 and 130, the adrenal medulla increased in size with little change in the width of the cortex. Organization and zonation of immunoreactive 3 beta-HSD staining cells were evident in the zona fasciculata and in groups of cells in the medulla. Between day 130 and term, uniform immunoreactive 3 beta-HSD staining was found throughout the zona fasciculata, and there was also staining in single cells and small clusters of cells throughout the medulla. At this stage, immunoreactive tyrosine hydroxylase was distributed in most cells throughout the medulla, but in two distinct patterns: cells staining intensely for immunoreactive tyrosine hydroxylase in the central region of the medulla, and cells exhibiting weaker staining for immunoreactive tyrosine hydroxylase localized in a juxta-cortical position. These juxta-cortical cells were also positive for immunoreactive PNMT.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
[1-14C]Arachidonic acid was incubated with microsomes of bovine adrenal fasciculata cells in the presence of 1 mM NADPH for 30 min at 37 degrees C. The metabolites were separated and purified by reverse phase high performance liquid chromatography, and identified by gas chromatography-mass spectrometry. Identified metabolites were four dihydroxyeicosatrienoic acids (DHTs) (5,6-, 8,9-, 11,12-, 14,15-DHTs), 20-hydroxyeicosatetraenoic acid and eicosatetradioic acid. The formation of these metabolites was dependent on NADPH and inhibited by SKF-525A. 14,15-DHT was also formed by isolated bovine adrenal fasciculata cells. These results indicate that cytochrome P-450 dependent arachidonate monooxygenase pathway may exist in bovine adrenal fasciculata cells. Addition of the chemically synthesized epoxyeicosatrienoic acids (EETs) to isolated bovine adrenal fasciculata cells stimulated cortisol production. Among four regioisomeric EETs, 14,15-EET was most potent and stimulated steroidogenesis in a dose-related manner over a range of 0.5 to 5.0 microM.  相似文献   

5.
Adrenal ferredoxin, the iron-sulfur protein associated with cytochromes P-450 in adrenocortical mitochondria, has been localized immunohistochemically at the light microscopic level in rat adrenals by employing rabbit antiserum to bovine adrenal ferredoxin in both an unlabeled antibody peroxidase-antiperoxidase method and an indirect fluorescent antibody method. When sections of rat adrenals were exposed to the adrenal ferredoxin antiserum in both procedures, positive staining for adrenal ferredoxin was observed in parenchymal cells of the three cortical zones but not in medullary chromaffin cells. Marked differences in the intensity of staining, however, where observed among the three cortical zones: the most intense staining being found in the zona fasciculata, less in the zona reticularis, and least in the zona glomerulosa. Furthermore, differences in staining intensity were also observed among cells within both the zona fasciculata and the zona reticularis. In agreement with these immunohistochemical observations, determinations of adrenal ferredoxin contents by electron paramagnetic resonance (EPR) spectrometry in homogenates prepared from capsular and decapsulated rat adrenals revealed that the concentration of adrenal ferredoxin in the zona glomerulosa was lower than that in the zona fasciculata-reticularis. Similar results were obtained when the contents of cytochrome P-450 were determined in capsular adn decapsulated rat adrenal homogenates. These observations indicate that adrenal ferrodoxin and cytochrome P-450 are not distributed uniformly throughout the rat adrenal cortex.  相似文献   

6.
NADPH-cytochrome c reductase (NADPH : ferricytochrome oxido-reductase, EC 1.6.2.4), the flavoprotein which mediates the NADPH-dependent reduction of cytochromes P-450 in adrenocortical microsomes, has been localized immunohistochemically at the light microscopic level in rat adrenal glands. Localization was achieved through the use of sheep antiserum produced against purified, trypsin-solubilized rat hepatic microsomal NADPH-cytochrome c reductase in both an unlabeled antibody peroxidase-antiperoxidase technique and an indirect fluorescent antibody method. The sheep antibody to rat hepatic microsomal NADPH-cytochrome c reductase concomitantly inhibited the NADPH-cytochrome c reductase and progesterone 21-hydroxylase activities catalyzed by isolated rat adrenal microsomes. When sections of rat adrenal glands were exposed to the reductase antiserum in both immunohistochemical procedures, positive staining for NADPH-cytochrome c reductase was observed in parenchymal cells of the three cortical zones but not in medullary chromaffin cells. The intensity of staining, however, was found to differ among the three cortical zones, with the most intense staining being found in the zona fasciculata and the least in the zona glomerulosa. The intensity of staining was also found to differ among cells within the zona fasciculata. These immunohistochemical observations demonstrate that microsomal NADPH-cytochrome c reductase is not distributed uniformly throughout the rat adrenal cortex.  相似文献   

7.
Previous studies showed that apolipoprotein-E (apoE) mRNA is regulated in rat adrenal gland by treatments that alter adrenal gland cholesterol content and steroidogenesis. In the present study cell types expressing apoE mRNA were determined by in situ hybridizations using an [alpha-35S]UTP-labeled RNA probe. Autoradiographic grains were counted to compare apoE expression in adrenal glands from control and experimentally treated animals. In control adrenal gland, zona (z.) fasciculata and z. reticularis exhibited the highest level of apoE mRNA expression, with lower levels in z. glomerulosa and medulla. Dexamethasone (DEX) treatment selectively increased apoE mRNA 3-fold in outer z. fasciculata, but not in other adrenal zones. ApoE mRNA expression appeared to be lower in adrenal glands from 4-aminopyrazolopyrimidine-treated rats, in that differences among adrenal gland zones were abolished. DEX treatment increased adrenal gland cholesteryl ester and oil red O staining in z. fasciculata cells in which the apoE mRNA concentration was increased as well as in other cortical cells in which apoE mRNA was unchanged. Aminoglutethimide administration led to a large increase in oil red O staining throughout the cortex, including z. fasciculata, without affecting apoE mRNA expression. These data suggest that adrenal gland apoE mRNA expression is not closely coupled to cellular cholesterol concentrations. Increased apoE mRNA expression in z. fasciculata of DEX-treated animals suggests an inverse relationship between apoE mRNA concentration and the level of steroidogenesis. This result is consistent with the proposal that apoE may play a role in regulating the utilization of cholesterol for steroid production.  相似文献   

8.
NADPH-cytochrome c reductase (NADPH : ferricytochrome oxido-reductase, EC 1.6.2.4), the flavoprotein which mediates the NADPH-dependent reduction of cytochromes P-450 in adrenocortical microsomes, has been localized immunohistochemically at the light microscopic level in rat adrenal glands. Localization was achieved through the use of sheep antiserum procued against purified, trypsin-solubilized rat hepatic microsomal NADPH-cytochrome c reductase in both an unlabeled antibody peroxidase-antiperoxidase techniques and an indirect fluorecent antibody method. The sheep antibody to rat hepatic microsomal NADPH-cytochrome c reductase concomitantly inhibited the NADPH-cytochrome c reductase and progesterone 21-hydroxylase activities catalyzed by isolated rat adrenal microsomes. When sections of rat adrenal glands were exposed to the reductase antiserum in both immunohistochemical procedures, positive staining for NADPH-cytochrome c reductase was observed in parenchymal cells of the three cortical zones but not in medullary chromaffin cells. The intensity of staining, however, was found to differ among the three cortical zones, with the most intense staining being found in the zona fasciculata and the least in the zona glomerulosa. The intensity of staining was also found differ among cells within the zona fasciculata. These immunohistochemical observations demonstrate that microsomal NADPH-cytochrome c reductase is not distributed uniformly throughout the rat adrenal cortex.  相似文献   

9.
Functional interrelationships between the pars intermedia and posterior pituitary were proved under different experimental conditions. After stimulation of the thyrotropical axis of rats by an acute intraperitoneal application of 50 microgram TRH/rat the nuclear sizes of the thyroid follicular and the anterior pituitary thyrotropical cells increased according to a monophasic time curve with maximal amplitude at the time of 30 minutes. Interestingly, the nuclear sizes of the posterior pituitary cells were also enhanced. Under the same experimental conditions the nuclear areas of the cells of the external layer of the adrenal zona fasciculata decreased as did the nuclei of the pars intermedia cells (without regard to the cell type or localization of the cells in the intermediate lobe). Stimulation of the adrenocorticotropical axis by an acute injection of 0.2 ml isotonic saline solution/rat was followed by a time-dependent increase of nuclear sizes of the fasciculata cells and pars intermedia, whereas the nuclear volumes of the thyroid follicular cells, the anterior pituitary thyrotropical cells and the posterior pituitary cells decreased. Thus the functional state of the pars intermedia was in accordance with that of the adrenal cortex. Also the posterior pituitary cells responded to stimuli applied to the thyrotropical axis at the same degree as the thyrotropic organs themselves. Between the nuclear sizes of the pars intermedia and posterior pituitary we established the same inverse functional relationships as between the adrenal cortex and the thyroid gland.  相似文献   

10.
The role of ACTH in the synthesis of the adrenocortical hormones has been largely described. In order to investigate the localization of this peptide at the subcellular level of the adrenal glomerulosa and fasciculata cells, an immunocytological method was used. Rat adrenals were fixed and frozen. Ultrathin sections obtained by cryoultramicrotomy, were incubated with anti-beta (1-24) ACTH or anti-alpha (17-39) ACTH sera. The antigen-antibody reaction was detected by PAP complexes (revealed by 4-chloro-1-naphthol) or with protein A-colloidal gold or IgG-colloidal gold. The results obtained were the same whatever the antisera of the technique employed. All the cells of the adrenal zona glomerulosa and zona fasciculata were labelled. ACTH-like immunoreactivity in zona glomerulosa and zona fasciculata cells was observed at the plasma membrane level, in cytoplasmic matrix, mitochondria and nucleus (in the euchromatin close to the heterochromatin aggregations and, occasionally, associated with the nucleolus). No immunoreactivity was observed when non-immune serum or anti-ACTH serum preincubated with ACTH were used, nor there was any modification of the immunocytochemical reaction when anti-ACTH serum incubated with heterologous antigens was employed. These data, demonstrate the presence of endogenous ACTH in both adrenal glomerulosa and fasciculata cells, and suggest that the peptide is internalized after binding to the plasma membrane.  相似文献   

11.
In an attempt to elucidate the regulation mechanism(s) of adrenocortical steroidogenesis, cytochrome P-450scc and cytochrome P-45011 beta were localized in bovine adrenal glands by the direct peroxidase-labeled antibody method. At the light microscopic level, parenchymal cells of the zona fasciculata and the zona reticularis stained heavily for both cytochromes, while the parenchymal cells of zona glomerulosa stained lightly for both. At the electron microscopic level, these two cytochromes were associated with the matrix side of the inner mitochondrial membranes of parenchymal cells from all three zones of the adrenal cortex. The association of cytochrome P-450 with the inner mitochondrial membrane, in a manner similar to that previously reported for adrenodoxin and adrenodoxin reductase (F Mitani, Y Ishimura, S Izumi, K Watanabe, Acta Endocrinol 90:317, 1979), establishes that the steroid monooxygenase systems exist at this site. The degree of immunocytochemical staining within a single cell varied from one mitochondrion to another: some stained intensely along the entire inner membrane, including the cristae, some stained only along segments of the inner membrane, and some did not stain at all. This heterogeneity in staining was observed in mitochondria stained in situ as well as in isolated mitochondria. These findings suggest that there is a heterogeneity in steroidogenesis among mitochondria contained within a single cell of the adrenal cortex.  相似文献   

12.
张宁宁  王长楠  倪鑫 《生理学报》2020,72(2):148-156
肾上腺是人体重要的内分泌器官。由于缺乏肾上腺皮质束状带特异性表达Cre酶的工具鼠,目前对肾上腺皮质束状带细胞中特异表达基因的功能缺乏深入的解析。CYP11B1基因编码类固醇11β-羟化酶,该酶是糖皮质激素合成的关键酶,在肾上腺皮质束状带中特异性表达。本研究旨在利用CYP11B1基因在束状带特异性表达的特点,构建在肾上腺皮质束状带中特异性表达Cre重组酶的转基因动物。采用CRISPR/Cas9技术在CYP11B1基因终止密码子位点定点敲入2A-GfpCre表达框,获得CYP11B1-2A-GfpCre同源重组载体,进而构建CYP11B1Cre小鼠,并通过mTmG和LacZ染色确定Cre酶主要表达在小鼠肾上腺皮质束状带。在此基础上,本研究还用该工具鼠与胱硫醚-γ-裂解酶(cystathionineγ-lyase, CTH)条件性敲除鼠交配,获得了肾上腺皮质束状带CTH特异性敲除的小鼠,并证实了该动物肾上腺皮质束状带中CTH表达缺失。以上结果充分说明肾上腺皮质束状带特异性表达Cre重组酶小鼠构建成功。该工具鼠的成功构建,为深入研究肾上腺皮质束状带相关功能提供了有力工具。  相似文献   

13.
Summary Adrenal glands of adult male hamsters are larger and secrete more cortisol than those of females. Stereology was therefore used to study zonal and cellular aspects of development of the adrenal cortex of male and female hamsters. Adrenal glands were studied at weekly intervals from day 21 to day 77 of postnatal ontogenesis. Within this period, body weight did not differ significantly between the sexes. During development, absolute and relative adrenal weights were higher in males; their zona glomerulosa (ZG), zona fasciculata (ZF) and zona reticularis (ZR) become markedly larger than those in females. No marked changes in the volume of individual ZG cells occurred although ZF cells and ZR cells become larger in male than female animals. The total number of adrenocortical cells increased within the period studied, a greater increase being observed in ZG and ZF in males. No distinct sex difference was observed in the number of ZR cells throughout development. From day 56 of postnatal life the adrenal cortex of male hamster contained more parenchymal cells than the female gland. These results thus indicate that sex differences in hamster adrenal cortex depend upon changes in number and size of parenchymal cells.Supported in part by a grant from the Committee of Zoology, Polish Academy of Sciences  相似文献   

14.
The inhibiting effects of 18-ethynyl-deoxycorticosterone (18-E-DOC) as a mechanism-based inhibitor on the late-steps of the aldosterone biosynthetic pathway were examined in calf adrenal zona glomerulosa cells in primary culture and in freshly isolated calf zona glomerulosa cells. 18-E-DOC inhibited the stimulated secretion of aldosterone and 18-hydroxycorticosterone in a similar dose-response and time fashion. No significant differences were found between the inhibition in cultured and freshly isolated cells (Ki of 0.25 vs 0.26 μM) Corticosterone secretion stimulated by ACTH or angiotensin II was also cultured in freshly isolated zona glomerulosa and fasciculata cells, but was not inhibited in cultured calf adrenal cells. Cortisol secretion stimulated by ACTH was not inhibited by 18-E-DOC in cultured zona fasciculata adrenal cells, but was inhibited in freshly isolated zona fasciculata cells with a Ki of 48 μM. The secretion of 18-hydroxyDOC or 19-hydroxyDOC stimulated by ACTH was not inhibited by 18-E-DOC. The bovine adrenal has been reported to have cytochrome P-450 11β-hydroxylases that can perform the various hydroxylations required for the synthesis of cortisol and aldosterone in the different areas of the adrenal. In other species a distinct 11β-hydroxylase which participates in the biosynthesis of aldosterone and is located in the zona glomerulosa has been described. These studies with the mechanism-based inhibitor, 18-E-DOC, suggest that the bovine adrenal functions in a manner very similar to that of other species and raises the possibility that a distinct 11β-hydroxylase with aldosterone synthase activity might be present, but has not been cloned as yet.  相似文献   

15.
Adrenal ferredoxin, the iron-sulfur protein associated with cytochrome P-450 in adrenocortical mitochondria, has been localized at the light microscopic level in bovine adrenal cortex. Localization was achieved through the use of rabbit antiserum to bovine adrenal ferrodoxin in an unlabeled antibody peroxidase-antiperoxidase method. When sections of bovine adrenal glands were exposed to the adrenal ferredoxin antiserum, intense staining was observed in parenchymal cells of the three cortical zones. Staining for adrenal ferredoxin was not detected in the medullary chromaffin cells. The presence of adrenal ferredoxin in the three cortical zones was verified by electron paramagnetic resonance spectrometry. These determinations also revealed that while the zona fasciculata and the zona reticularis contained approximately equal concentrations of adrenal ferredoxin, the concentration of the iron-sulfur protein in the zona glomerulosa was considerably lower. Similar results were obtained when the levels of cytochrome P-450 were determined in the three cortical zones. These results represent the first immunohistochemical localization within an intact tissue or cell of any component of an NADPH-dependent electron transport sequence which is responsible for the reduction of cytochrome P-450.  相似文献   

16.
It is not clear if an increase in intra-adrenal cortisol is required to mediate the actions of adrenocorticotropic hormone (ACTH) on adrenal growth and steroidogenesis during the prepartum stimulation of the fetal pituitary-adrenal axis. We infused metyrapone, a competitive inhibitor of cortisol biosynthesis, into fetal sheep between 125 and 140 days of gestation (term = 147 +/- 3 days) and measured fetal plasma cortisol, 11-desoxycortisol, and ACTH; pituitary pro-opiomelanocortin mRNA and adrenal expression of ACTH receptor (melanocortin type 2 receptor), steroidogenic acute regulatory protein (StAR), 11beta-hydroxysteroid dehydrogenase type 2 (11betaHSD2), cytochrome P450 cholesterol side-chain cleavage (CYP11A1), cytochrome P450 17-hydroxylase (CYP17), 3beta-hydroxysteroid dehydrogenase, and cytochrome P450 21-hydroxylase mRNA; and StAR protein in the fetal adrenal gland. Plasma ACTH and 11-desoxycortisol concentrations were higher (P < 0.05), whereas plasma cortisol concentrations were not significantly different in metyrapone- compared with vehicle-infused fetuses. The ratio of plasma cortisol to ACTH concentrations was higher (P < 0.0001) between 136 and 140 days than between 120 and 135 days of gestation in both metyrapone- and vehicle-infused fetuses. The combined adrenal weight and adrenocortical thickness were greater (P < 0.001), and cell density was lower (P < 0.01), in the zona fasciculata of adrenals from the metyrapone-infused group. Adrenal StAR mRNA expression was lower (P < 0.05), whereas the levels of mature StAR protein (30 kDa) were higher (P < 0.05), in the metyrapone-infused fetuses. In addition, adrenal mRNA expression of 11betaHSD2, CYP11A1, and CYP17 were higher (P < 0.05) in the metyrapone-infused fetuses. Thus, metyrapone administration may represent a unique model that allows the investigation of dissociation of the relative actions of ACTH and cortisol on fetal adrenal steroidogenesis and growth during late gestation.  相似文献   

17.
The effect of ovariectomy on the adrenal gland was studied in the Mongolian gerbil. Castration stimulated cells in the zona fasciculata as well as those in the region between the zona fasciculata and zona reticularis. No alterations occurred in the zona reticularis. The width of the intermediate region was enlarged, the cells were hypertrophic and contained an increased number of concentric whorls of rough endoplasmic reticulum. Smooth endoplasmic reticulum was hypertropic in cells of the zona fasciculata and intermediate region. Many mitochondria in cells of the intermediate region were larger than those in controls. Stimulation of cellular ultrastructure is directly correlated with a significant elevation in plasma cortisol in ovariectomized gerbils.  相似文献   

18.
A quantitative analysis of zone-specific proliferation was done to determine the recovery of adrenal cortical zonation during regeneration after enucleation. Adult male rats underwent adrenal enucleation [unilateral enucleation (ULE)] or sham surgery, both accompanied by contralateral adrenalectomy. At 2, 5, 10, and 28 days, blood and adrenals were collected to assess functional recovery. Adrenal sections were immunostained for Ki67 (proliferation), cytochrome P-450 aldosterone synthase (P-450aldo, glomerulosa), and cytochrome P-450 11beta-hydroxylase (P-45011beta, fasciculata). Unbiased stereology was used to count proliferating glomerulosa and fasciculata cells. Recovery of fasciculata secretory function occurred by 28 days as reflected by plasma ACTH and corticosterone, whereas glomerulosa function reflected by plasma aldosterone remained low at 28 days. At 5 days, ULE adrenals showed increased Ki67+ cells in the glomerulosa and inner fasciculata, whereas at 10 and 28 days increased proliferation was restricted to the outer fasciculata. These data show that enucleation results in transient elevations in glomerulosa and inner fasciculata cell proliferation followed by a delayed increase in the outer fasciculata. To assess adrenal growth in enucleated adrenals previously suppressed by the presence of an intact adrenal, rats underwent ULE and sham surgery; after 4 wk, the intact adrenal was removed and enucleated adrenals were collected at 2, 5, and 10 days. Overall, proliferation was delayed in this model, but at 5 days, Ki67+ cells increased in the outer fasciculata, whereas by 10 days, increased proliferation occurred in the outer and inner fasciculata. The key novel finding of increased proliferation in the inner fasciculata suggests that the delayed growth of the enucleated adrenal results in part from a regenerative response.  相似文献   

19.
Six patients with Cushing's disease and three with Cushing's syndrome due to an adrenal adenoma were monitored after their adenomectomy with the corticotropin-releasing hormone test to evaluate the progress of recovery of their pituitary adrenal function. Before surgery the patients with Cushing's disease showed either high, normal or low responses of plasma ACTH and cortisol to 100 micrograms synthetic ovine corticotropin-releasing hormone (CRH) administered intravenously, whereas all three patients with Cushing's syndrome due to an adrenal adenoma showed no response of plasma ACTH or cortisol to CRH. One or two months after surgery, the patients who had Cushing's disease had low levels of basal plasma ACTH and cortisol and their responses to CRH were extremely low. However, the same patients were tested later, it was found that their responses to CRH gradually increased and reached normal ranges approximately within one year after tumor removal, which coincided with the overall improvement in their clinical signs and symptoms due to adrenal insufficiency. In contrast, the recovery of the pituitary adrenal function in patients who had Cushing's syndrome due to an adrenal adenoma was not complete even one year after surgery. Thus the corticotropin-releasing factor test is a useful criteria to evaluate the recovery of the pituitary adrenal function in these patients after surgery, since the responses of plasma ACTH and cortisol to the administered CRH are parallel with the improvements in clinical signs and symptoms due to adrenal insufficiency in patients with Cushing's disease.  相似文献   

20.
Aldosterone production occurs in the outer area of the adrenal cortex, the zona glomerulosa. The glucocortocoids cortisol and corticosterone, depending upon the species, are synthesized in the inner cortex, the zona fasciculata. Calf zona glomerulosa cells rapidly lose the ability to synthesize aldosterone when placed in primary culture unless they are incubated in the presence of the antioxidants butylated hydroxyanisol and selenous acid, the radioprotectant DMSO, and the cytochrome P-450 inhibitor metyrapone. In the presence of these additives, calf zona fasciculata cells in primary culture synthesize aldosterone at rates which can approach those from cells isolated from the zona glomerulosa. Calf zona glomerulosa and fasciculata cells both responded well to ACTH and angiotensin II, but the zona fasciculata cells respond very poorly compared to glomerulosa cells to increased potassium in the media. Rat zona fasciculata cells in primary culture under similar conditions did not synthesize aldesterone, suggesting that the regulation of the expression of the enzymes responsible for the biosynthesis of aldosterone in the two species is different. Two distinct cytochrome P-450 cDNAs which hydroxylate deoxycorticosterone at the 11β position have been described in the rat, human and mouse. Both cytochrome P-450 cDNAs have been cloned and expressed in non-steroidogenic cells, but only one is expressed in the zona glomerulosa and only this glomerulosa cytochrome P450 can further hydroxylate deoxycorticosterone to generate aldosterone. Two bovine adrenal cDNAs have been described with 11β-hydroxylase activity and their expression products in transiently transfected COS cells can convert deoxycorticosterone into aldosterone. Both enzymes are expressed in all zones of the adrenal cortex. Zonal regulation of aldosterone synthesis in the bovine adrenal gland may be due to an 11β-hydroxylase with aldosterone synthesizing capacity which has not yet been isolated. Alternatively, a single enzyme might be responsible for the several hydroxylations in the pathway between deoxycorticosterone and aldosterone and zonal synthesis might be controlled by unknown factors regulating the expression of C-18 hydroxylation. The incubation of zona fasciculata with antioxidants and metyrapone results in atypical expression of this activity by an unclear mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号