首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
The regulation of terephthalate catabolism was studied in Rhodococcus rubropertinctus which decomposed this synthetic monomer. The pathway (a) of terephthalate (TP) catabolism is as follows: TP----benzoate----4-hydroxybenzoate----protocatechuate----pyrocatechol-- --cycle ortho-cleavage. The following results were obtained when studying why two other catabolic pathways were realized if benzoate and 4-hydroxybenzoate were taken as a sole carbon source, namely, (b) benzoate----pyrocatechol----cycle cleavage and (c) 4-hydroxybenzoate----protocatechuate----cycle cleavage. TP seemed to cause the divergence of pathways (a) and (b) by repressing the system of benzoate oxidation to pyrocatechol. In pathway (c), benzoate repressed the synthesis of enzymes which catalysed protocatechuate oxidation. Pathway (b) was switched over to (a) when the strain was grown in a medium containing TP and benzoate at a benzoate concentration above 5 mM. Here, the concentration of benzoate (first exogenous and later formed from TP) played a key role. R. rubropertinctus growth in a medium with TP and glucose had diauxic characteristics.  相似文献   

2.
Prophage curing was achieved in Streptococcus lactis and Streptococcus cremoris, and the cured derivatives were shown to be indicators for their temperate bacteriophages. Relysogenization of these cured derivatives completed the first formal demonstration of the lysogenic state in lactic streptococci.  相似文献   

3.
Rhodococcus rubropertinctus N82 possesses unique regiospecific hydroxylation activity in biotransformation of compounds. In this study, the ability of whole cells of the strain R. rubropertinctus N82 in biotransformation was studied. The hydroxylation activity resulted in transforming 6,7-dihydro-4H-thieno[3,2-c]-pyridine-5-carboxylic acid tert-butyl ester (LS1) into 2-hydroxy-6,7-dihydro-4H-thieno[3,2-c]-pyridine-5-carboxylic acid tert-butyl ester (LP1), a pharmaceutical intermediate. By optimizing conditions for the hydroxylating biotransformation using whole cells of R. rubropertinctus N82 as biocatalyst, 3.3?mM LP1 was successfully produced from 4?mM LS1 with a molar yield of 83%. Thus, effective method was newly developed to produce LP1, which is a synthetic intermediate of a platelet inhibitor active pharmaceutical ingredient drug, prasugrel.  相似文献   

4.
5.
Pyruvate Kinase of Streptococcus lactis   总被引:18,自引:14,他引:4       下载免费PDF全文
The kinetic properties of pyruvate kinase (ATP:pyruvate-phosphotransferase, EC 2.7.1.40) from Streptococcus lactis have been investigated. Positive homotropic kinetics were observed with phosphoenolpyruvate and adenosine 5′-diphosphate, resulting in a sigmoid relationship between reaction velocity and substrate concentrations. This relationship was abolished with an excess of the heterotropic effector fructose-1,6-diphosphate, giving a typical Michaelis-Menten relationship. Increasing the concentration of fructose-1,6-diphosphate increased the apparent Vmax values and decreased the Km values for both substrates. Catalysis by pyruvate kinase proceeded optimally at pH 6.9 to 7.5 and was markedly inhibited by inorganic phosphate and sulfate ions. Under certain conditions adenosine 5′-triphosphate also caused inhibition. The Km values for phosphoenolpyruvate and adenosine 5′-diphosphate in the presence of 2 mM fructose-1,6-diphosphate were 0.17 mM and 1 mM, respectively. The concentration of fructose-1,6-diphosphate giving one-half maximal velocity with 2 mM phosphoenolpyruvate and 5 mM adenosine 5′-diphosphate was 0.07 mM. The intracellular concentrations of these metabolites (0.8 mM phosphoenolpyruvate, 2.4 mM adenosine 5′-diphosphate, and 18 mM fructose-1,6-diphosphate) suggest that the pyruvate kinase in S. lactis approaches maximal activity in exponentially growing cells. The role of pyruvate kinase in the regulation of the glycolytic pathway in lactic streptococci is discussed.  相似文献   

6.
Lomofungin is a new antimicrobial agent obtained from the culture broth of Streptomyces lomondensis sp. n. UC-5022. Lomofungin is an acidic, olive-yellow, crystalline compound which inhibits, in vitro, a variety of pathogenic fungi, yeasts, and gram-positive and gram-negative bacteria.  相似文献   

7.
8.
beta-Galactosidase of Streptococcus lactis 7962 was partially purified, and its properties were studied. Enzyme from only this strain of numerous lactic streptococci tested was stable in cell exudates prepared by various means. Cell-free extracts of the 7962 strain were prepared by sonic treatment of washed cells previously grown in presence of lactose to fully induce enzyme synthesis. Protamine sulfate precipitation of the nucleic acids and ammonium sulfate precipitation of protein were used for partial purification of the enzyme. The resulting enzyme, when resuspended in cold (5 C) phosphate buffer, was extremely labile. However, ammonium sulfate in high concentrations (0.85 m) stabilized and stimulated beta-galactosidase activity. Sephadex G-200 gel filtration was used to achieve further purification and to monitor homogeneity of the enzyme. Separation of the beta-galactosidase in buffer at 5 C yielded an enzyme elution pattern showing two peaks of activity. However, addition of the enzyme solution in 0.85 m ammonium sulfate to the column equilibrated with the same salt concentration yielded only one peak of enzyme activity. The data suggested that the native enzyme was dissociating into active subunits which were stabilized in the presence of the ammonium sulfate.  相似文献   

9.
10.
11.
Preparation of spheroplasts from Streptococcus lactis   总被引:7,自引:0,他引:7  
  相似文献   

12.
Streptococcus lactis plasmid DNA, which is required for the fermentation of lactose (plasmid pLM2001), and a potential streptococcal cloning vector plasmid (pDB101) which confers resistance to erythromycin were evaluated by transformation into Streptococcus sanguis Challis. Plasmid pLM2001 transformed lactose-negative (Lac-) mutants of S. sanguis with high efficiency and was capable of conferring lactose-metabolizing ability to a mutant deficient in Enzyme IIlac, Factor IIIlac, and phospho-beta-galactosidase of the lactose phosphoenolpyruvate-phosphotransferase system. Plasmid pDB101 was capable of high-efficiency transformation of S. sanguis to antibiotic resistance, and the plasmid could be readily isolated from transformed strains. However, when 20 pLM2001 Lac+ transformants were analyzed by a variety of techniques for the presence of plasmids, none could be detected. In addition, attempts to cure the Lac+ transformants by treatment with acriflavin were unsuccessful. Polyacrylamide gel electrophoresis was used to demonstrate that the transformants had acquired a phospho-beta-galactosidase characteristic of that normally produced by S. lactis and not S. sanguis. It is proposed that the genes required for lactose fermentation may have become stabilized in the transformants due to their integration into the host chromosome. The efficient transformation into and expression of pLM2001 and pDB101 genes in S. sanguis provides a model system which could allow the development of a system for cloning genes from dairy starter cultures into S. sanguis to examine factors affecting their expression and regulation.  相似文献   

13.
Uptake and metabolism of sucrose by Streptococcus lactis   总被引:4,自引:11,他引:4       下载免费PDF全文
Transport and metabolism of sucrose in Streptococcus lactis K1 have been examined. Starved cells of S. lactis K1 grown previously on sucrose accumulated [14C]sucrose by a phosphoenolpyruvate-dependent phosphotransferase system (PTS) (sucrose-PTS; Km, 22 microM; Vmax, 191 mumol transported min-1 g of dry weight of cells-1). The product of group translocation was sucrose 6-phosphate (6-O-phosphoryl-D-glucopyranosyl-1-alpha-beta-2-D-fructofuranoside). A specific sucrose 6-phosphate hydrolase was identified which cleaved the disaccharide phosphate (Km, 0.10 mM) to glucose 6-phosphate and fructose. The enzyme did not cleave sucrose 6'-phosphate(D-glucopyranosyl-1-alpha-beta-2-D-fructofuranoside-6'-phosphate). Extracts prepared from sucrose-grown cells also contained an ATP-dependent mannofructokinase which catalyzed the conversion of fructose to fructose 6-phosphate (Km, 0.33 mM). The sucrose-PTS and sucrose 6-phosphate hydrolase activities were coordinately induced during growth on sucrose. Mannofructokinase appeared to be regulated independently of the sucrose-PTS and sucrose 6-phosphate hydrolase, since expression also occurred when S. lactis K1 was grown on non-PTS sugars. Expression of the mannofructokinase may be negatively regulated by a component (or a derivative) of the PTS.  相似文献   

14.
15.
Galactose transport systems in Streptococcus lactis   总被引:4,自引:8,他引:4       下载免费PDF全文
Galactose-grown cells of Streptococcus lactis ML3 have the capacity to transport the growth sugar by two separate systems: (i) the phosphoenolpyruvate-dependent phosphotransferase system and (ii) an adenosine 5'-triphosphate-energized permease system. Proton-conducting uncouplers (tetrachlorosalicylanilide and carbonyl cyanide-m-chlorophenyl hydrazone) inhibited galactose uptake by the permease system, but had no effect on phosphotransferase activity. Inhibition and efflux experiments conducted using beta-galactoside analogs showed that the galactose permease had a high affinity for galactose, methyl-beta-D-thiogalactopyranoside, and methyl-beta-D-galactopyranoside, but possessed little or no affinity for glucose and lactose. The spatial configurations of hydroxyl groups at C-2, C-4, and C-6 were structurally important in facilitating interaction between the carrier and the sugar analog. Iodoacetate had no inhibitory effect on accumulation of galactose, methyl-beta-D-thiogalactopyranoside, or lactose via the phosphotransferase system. However, after exposure of the cells to p-chloromercuribenzoate, phosphoenolpyruvate-dependent uptake of lactose and methyl-beta-D-thiogalactopyranoside were reduced by 75 and 100%, respectively, whereas galactose phosphotransferase activity remained unchanged. The independent kinetic analysis of each transport system was achieved by the selective generation of the appropriate energy source (adenosine 5'-triphosphate or phosphoenolpyruvate) in vivo. The maximum rates of galactose transport by the two systems were similar, but the permease system exhibited a 10-fold greater affinity for sugar than did the phosphotransferase system.  相似文献   

16.
Streptococcus cremoris C3 was found to transfer lactose-fermenting ability to LM2301, a Streptococcus lactis C2 lactose-negative streptomycin-resistant (Lac Strr) derivative which is devoid of plasmid deoxyribonucleic acid (DNA); to LM3302, a Lac erythromycin-resistant (Eryr) derivative of S. lactis ML3; and to BC102, an S. cremoris B1 Lac Eryr derivative which is devoid of plasmid DNA. S. cremoris strains R1, EB7, and Z8 were able to transfer lactose-fermenting ability to LM3302 in solid-surface matings. Transduction and transformation were ruled out as mechanisms of genetic transfer. Chloroform treatment of donor cells prevented the appearance of recombinant clones, indicating that viable cell-to-cell contact was responsible for genetic transfer. Transfer of plasmid DNA was confirmed by agarose gel electrophoresis. Transconjugants recovered from EB7 and Z8 matings with LM3302 exhibited plasmid sizes not observed in the donor strains. Transconjugants recovered from R1, EB7, and Z8 matings with LM3302 were able to donate lactose-fermenting ability at a high frequency to LM2301. In S. cremoris R1, EB7, and Z8 matings with LM2301, streptomycin resistance was transferred from LM2301 to the S. cremoris strains. The results confirm genetic transfer resembling conjugation between S. cremoris and S. lactis strains and present presumptive evidence for plasmid linkage of lactose metabolism in S. cremoris.  相似文献   

17.
18.
Survival of Streptococcus lactis in starvation conditions   总被引:11,自引:0,他引:11  
  相似文献   

19.
20.
Membrane protein solubilized by octyl-beta-D-glucopyranoside in the presence of dispersed phospholipid was incubated with bath-sonicated liposomes and additional detergent. The proteoliposomes formed on dilution showed transport and exchange properties consistent with a reconstitution of phosphate:sugar 6-phosphate antiport. Thus, phosphate self-exchange was found only when protein from induced cells was used; this exchange was blocked by a sugar 6-phosphate, not by a sugar 1-phosphate; and proteoliposomes supported an accumulation of 2-deoxyglucose 6-phosphate with no added source of energy. Solubilization and reconstitution of protein was most effective when performed in the presence of gram-positive phospholipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号