首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
McNamara, Frances, Faiq G. Issa, and Colin E. Sullivan.Arousal pattern following central and obstructive breathing abnormalities in infants and children. J. Appl.Physiol. 81(6): 2651-2657, 1996.We analyzed thepolysomnographic records of 15 children and 20 infants with obstructivesleep apnea (OSA) to examine the interaction between central andobstructive breathing abnormalities and arousal from sleep. Eachpatient was matched for age with an infant or child who had no OSA. Wefound that the majority of respiratory events in infants and childrenwas not terminated with arousal. In children, arousals terminated 39.3 ± 7.2% of respiratory events during quiet sleep and 37.8 ± 7.2% of events during active (rapid-eye-movement) sleep. In infants,arousals terminated 7.9 ± 1.0% of events during quiet sleep and7.9 ± 1.2% of events during active sleep. In both infants andchildren, however, respiratory-related arousals occurred more frequently after obstructive apneas and hypopneas than after central events. Spontaneous arousals occurred in all patients with OSA duringquiet and active sleep. The frequency of spontaneous arousals was notdifferent between children with OSA and their matched controls. Duringactive sleep, however, infants with OSA had significantly fewerspontaneous arousals than did control infants. We conclude that arousalis not an important mechanism in the termination of respiratory eventsin infants and children and that electroencephalographic criteria arenot essential to determine the clinical severity of OSA in thepediatric population.

  相似文献   

2.
It is generally believed that reflex recruitment of pharyngeal dilator muscles is insufficient to open the airway of obstructive apnea (OSA) patients once it is closed and, therefore, that arousal is required. Yet arousal promotes recurrence of obstruction. There is no information about how much dilator [genioglossus (GG)] activation is required to open the airway (GG Opening Threshold) or about the capacity of reflex mechanisms to increase dilator activity before/without arousal (Non-Arousal Activation). The relationship between these two variables is important for ventilatory stability. We measured both variables in 32 OSA patients (apnea-hypopnea index 74 ± 42 events/h). GG activity was monitored while patients were on optimal continuous positive airway pressure (CPAP). Zopiclone was administered to delay arousal. Maximum GG activity (GG(MAX)) and airway closing pressure (P(CRIT)) were measured. During stable sleep CPAP was decreased to 1 cmH(2)O to induce obstructive events and the dial-downs were maintained until the airway opened with or without arousal. GG activity at the instant of opening (GG Opening Threshold) was measured. GG Opening Threshold averaged only 10.4 ± 9.5% GG(Max) and did not correlate with P(CRIT) (r = 0.04). Twenty-six patients had >3 openings without arousal, indicating that Non-Arousal Activation can exceed GG Opening Threshold in the majority of patients. GG activity reached before arousal in Arousal-Associated Openings was only 5.4 ± 4.6% GG(MAX) below GG Opening Threshold. We conclude that in most patients GG activity required to open the airway is modest and can be reached by non-arousal mechanisms. Arousals occur in most cases just before non-arousal mechanisms manage to increase activity above GG Opening Threshold. Measures to reduce GG Opening Threshold even slightly may help stabilize breathing in many patients.  相似文献   

3.
We evaluated cardiovascular autonomic control and arousability during sleep in infants with obstructive sleep apnea (OSA) before and after 10 +/- 4 (mean +/- SD) days of treatment with nasal continuous positive airway pressure (nCPAP). Six OSA infants and 12 age-matched control infants were studied with polygraphic sleep studies at the age of 13 +/- 4 wk. During the study, 45 degrees head-up tilt tests were performed in slow-wave and rapid eye movement sleep. Blood pressure (BP) and heart rate (HR) were continuously monitored. All OSA infants had decreased initial BP and HR responses, followed by hypotension in two and hypertension in two. OSA infants displayed higher arousal thresholds in response to the tilt in rapid eye movement sleep (P < 0.005) and higher baseline HR (P < 0.05) than controls. nCPAP treatment normalized BP and HR responses as well as arousal thresholds to tilting and stabilized HR levels. OSA in infants may be linked with cardiovascular autonomic control disturbances and decreased arousability during sleep. These defects are improved by control of OSA with nCPAP.  相似文献   

4.
Obstructive sleep apnea (OSA) in infants has been shown to resolve frequently without a cortical arousal. It is unknown whether infants do not require arousal to terminate apneas or whether this is a consequence of the OSA. We studied the apnea and arousal patterns of eight infants with OSA before and after treatment with nasal continuous positive airway pressure (CPAP). These infants were age matched to eight untreated infants with OSA and eight normal infants. Polysomnographic studies were performed on each infant. We found that the majority of central and obstructive apneas were terminated without arousal in all OSA infants. After several weeks of nasal CPAP treatment, the proportion of apneas terminating with an arousal during rapid-eye-movement sleep increased in treated infants compared with untreated infants. Spontaneous arousals during rapid-eye-movement sleep were reduced in all OSA infants; however, during CPAP treatment, the spontaneous arousals increased to the normal control level. We conclude that OSA in infants possibly depresses the arousal response and treatment of these infants with nasal CPAP partially reverses this depression.  相似文献   

5.
During obstructive sleep apnea (OSA), systemic (Psa) and pulmonary (Ppa) arterial pressures acutely increase after apnea termination, whereas left and right ventricular stroke volumes (SV) reach a nadir. In a canine model (n = 6), we examined the effects of arousal, parasympathetic blockade (atropine 1 mg/kg iv), and sleep state on cardiovascular responses to OSA. In the absence of arousal, SV remained constant after apnea termination, compared with a 4.4 +/- 1.7% decrease after apnea with arousal (P < 0.025). The rise in transmural Ppa was independent of arousal (4.5 +/- 1.0 vs. 4.1 +/- 1.2 mmHg with and without arousal, respectively), whereas Psa increased more after apnea termination in apneas with arousal compared with apneas without arousal. Parasympathetic blockade abolished the arousal-induced increase in Psa, indicating that arousal is associated with a vagal withdrawal of the parasympathetic tone to the heart. Rapid-eye-movement (REM) sleep blunted the increase in Psa (pre- to end-apnea: 5.6 +/- 2.3 mmHg vs. 10.3 +/- 1.6 mmHg, REM vs. non-REM, respectively, P < 0.025), but not transmural Ppa, during an obstructive apnea. We conclude that arousal and sleep state both have differential effects on the systemic and pulmonary circulation in OSA, indicating that, in patients with underlying cardiovascular disease, the hemodynamic consequences of OSA may be different for the right or the left side of the circulation.  相似文献   

6.
To determine whether the pharyngeal airway is abnormal in awake patients with obstructive sleep apnea (OSA), we measured the ability of the pharyngeal airway to resist collapse from subatmospheric pressure applied to the nose in awake subjects, 12 with OSA and 12 controls. Subatmospheric pressure was applied to subjects placed in the supine position through a tightly fitting face mask. We measured airflow at the mask as well as mask, pharyngeal, and esophageal pressures. Ten patients developed airway obstruction when subatmospheric pressures between 17 and 40 cmH2O were applied. Obstruction did not occur in two patients with the least OSA. Obstruction did not occur in 10 controls; one obese control subject developed partial airway obstruction when -52 cmH2O was applied as did another with -41 cmH2O. We conclude that patients with significant OSA have an abnormal airway while they are awake and that application of subatmospheric pressure may be a useful screening test to detect OSA.  相似文献   

7.
An imbalance in the amplitude of electrical activity of the upper airway and chest wall inspiratory muscles is associated with both collapse and reopening of the upper airway in obstructive sleep apnea (OSA). The purpose of this study was to examine whether timing of the phasic activity of these inspiratory muscles also was associated with changes in upper airway caliber in OSA. We hypothesized that activation of upper airway muscle phasic electrical activity before activation of the chest wall pump muscles would help preserve upper airway patency. In contrast, we anticipated that the reversal of this pattern with delayed activation of upper airway inspiratory muscles would be associated with upper airway narrowing or collapse. Therefore the timing and amplitude of midline transmandibular and costal margin moving time average (MTA) electromyogram (EMG) signals were analyzed from 58 apnea cycles in stage 2 sleep in six OSA patients. In 86% of the postapnea breaths analyzed the upper airway MTA peak activity preceded the chest wall peak activity. In 86% of the obstructed respiratory efforts the upper airway MTA peak activity followed the chest wall peak activity. The onset of phasic electrical activity followed this same pattern. During inspiratory efforts when phasic inspiratory EMG amplitude did not change from preapnea to apnea, the timing changes noted above occurred. Even within breaths the relative timing of the upper airway and chest wall electrical activities was closely associated with changes in the pressure-flow relationship. We conclude that the relative timing of inspiratory activity of the upper airway and chest wall inspiratory muscles fluctuates during sleep in OSA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
We examined the effects of high-frequency (30-Hz) low-pressure oscillations on respiration in nine patients with central sleep apnea. All patients were studied during sleep and wore a nasal mask through which the oscillations were applied. All tests were performed during periods of repetitive central apneas. Respiratory efforts were monitored from the airflow and calibrated Respitrace signals. After several cycles of apnea were monitored, the oscillatory pressures were applied for brief periods (less than 5 s) at the midpoint of the central apneas. All trials in which arousal occurred were discarded, leaving a total of 106 trials in the nine patients. High-frequency oscillation of the upper airway stimulated respiratory effort(s) in 68% of all trials (72 of 106). Apnea length was significantly shortened in four of the nine patients. In one patient with a tracheostomy, the stimulus applied to his isolated upper airway evoked respiratory efforts during central apnea in 13 of 15 trials. We conclude that high-frequency oscillatory pressures applied to the upper airway can stimulate respiratory efforts during central apnea. This response may be mediated by upper airway receptors involved in nonrespiratory airway defense reflexes and may have implications in the treatment of patients with central sleep apnea.  相似文献   

9.
Obstructive sleep apnea is caused by pharyngeal occlusion due to alterations in upper airway mechanical properties and/or disturbances in neuromuscular control. The objective of the study was to determine the relative contribution of mechanical loads and dynamic neuromuscular responses to pharyngeal collapse during sleep. Sixteen obstructive sleep apnea patients and sixteen normal subjects were matched on age, sex, and body mass index. Pharyngeal collapsibility, defined by the critical pressure, was measured during sleep. The critical pressure was partitioned between its passive mechanical properties (passive critical pressure) and active dynamic responses to upper airway obstruction (active critical pressure). Compared with normal subjects, sleep apnea patients demonstrated elevated mechanical loads as demonstrated by higher passive critical pressures [-0.05 (SD 2.4) vs. -4.5 cmH2O (SD 3.0), P = 0.0003]. Dynamic responses were depressed in sleep apnea patients, as suggested by failure to lower their active critical pressures [-1.6 (SD 3.5) vs. -11.1 cmH2O (SD 5.3), P < 0.0001] in response to upper airway obstruction. Moreover, elevated mechanical loads placed some normal individuals at risk for sleep apnea. In this subset, dynamic responses to upper airway obstruction compensated for mechanical loads and maintained airway patency by lowering the active critical pressure. The present study suggests that increased mechanical loads and blunted neuromuscular responses are both required for the development of obstructive sleep apnea.  相似文献   

10.
This study was designed to determine the effects of sleep deprivation on respiratory events during sleep in healthy infants. Ten unsedated full-term infants (1-6 mo) were monitored polygraphically during "afternoon naps" on a control day and on the day after sleep deprivation. Respiratory events, i.e., central apnea, obstructive apnea and hypopnea, and periodic breathing were tabulated. Results for respiratory events were expressed as 1) indexes of the total number of respiratory events and of specific respiratory events per hour of total sleep (TST), "quiet" sleep (QS) and "active" sleep (AS) times; 2) total duration of total and specific respiratory events, expressed as a percentage of TST, QS, and AS times. After sleep deprivation, significant increases were observed for 1) respiratory event (P less than 0.001), central apnea (P less than 0.05), and obstructive respiratory event (P less than 0.01) indexes; 2) respiratory event time as a percentage of TST (P less than 0.002) and as a percentage of AS time (P less than 0.001); 3) obstructive respiratory event time as a percentage of TST (P less than 0.01), QS (P less than 0.05), and AS times (P less than 0.002). The present study shows that short-term sleep deprivation in healthy infants increases the number and timing of respiratory events, especially obstructive events in AS.  相似文献   

11.
There is not a clinically available technique for measuring the physiological traits causing obstructive sleep apnea (OSA). Therefore, it is often difficult to determine why an individual has OSA or to what extent the various traits contribute to the development of OSA. In this study, we present a noninvasive method for measuring four important physiological traits causing OSA: 1) pharyngeal anatomy/collapsibility, 2) ventilatory control system gain (loop gain), 3) the ability of the upper airway to dilate/stiffen in response to an increase in ventilatory drive, and 4) arousal threshold. These variables are measured using a single maneuver in which continuous positive airway pressure (CPAP) is dropped from an optimum to various suboptimum pressures for 3- to 5-min intervals during sleep. Each individual's set of traits is entered into a physiological model of OSA that graphically illustrates the relative importance of each trait in that individual. Results from 14 subjects (10 with OSA) are described. Repeatability measurements from separate nights are also presented for four subjects. The measurements and model illustrate the multifactorial nature of OSA pathogenesis and how, in some individuals, small adjustments of one or another trait (which might be achievable with non-CPAP agents) could potentially treat OSA. This technique could conceivably be used clinically to define a patient's physiology and guide therapy based on the traits.  相似文献   

12.
Variable site of airway narrowing among obstructive sleep apnea patients   总被引:9,自引:0,他引:9  
The purpose of this was to determine whether the site of physiological narrowing within the upper airway was uniform or differed among patients with obstructive sleep apnea. Inspiratory pressures were measured with an esophageal balloon catheter and three catheters located at different sites along the upper airway: supralaryngeal airway, oropharynx, and nasopharynx. Peak inspiratory pressure differences between catheters allowed assessment of pressure gradients across three airway segments: lungs-larynx-retroepiglottal airway (esophageal-supralaryngeal pressure), hypopharynx (supralaryngeal-oropharynx pressure), and transpalatal airway (oropharynx-nasopharynx pressure). In five patients, hypopharyngeal obstruction was present, and in four patients no hypopharyngeal obstruction existed. In these four patients the site of obstruction was located at the level of the palate. In a given subject, the site of obstruction was the same during repeated measurements. The presence or absence of hypopharyngeal narrowing during sleep was not predictable from gradients measured across different segments of the upper airway during wakefulness. We conclude that the site of physiological upper airway obstruction varies among patients with obstructive sleep apnea and is not predictable from pressure measured during wakefulness. We speculate that uvulopalatopharyngoplasty may not relieve obstructive apneas in patients with hypopharyngeal obstruction.  相似文献   

13.
The response to inspiratory resistance loading (IRL) of the upper airway during sleep in children is not known. We, therefore, evaluated the arousal responses to IRL during sleep in children with the obstructive sleep apnea syndrome (OSAS) compared with controls. Children with OSAS aroused at a higher load than did controls (23 +/- 8 vs. 15 +/- 7 cmH(2)O. l(-1). s; P < 0.05). Patients with OSAS had higher arousal thresholds during rapid eye movement (REM) vs. non-REM sleep (P < 0.001), whereas normal subjects had lower arousal thresholds during REM (P < 0.005). Ventilatory responses to IRL were evaluated in the controls. There was a marked decrease in tidal volume both immediately (56 +/- 17% of baseline at an IRL of 15 cmH(2)O. l(-1). min; P < 0.001) and after 3 min of IRL (67 +/- 23%, P < 0.005). The duty cycle increased. We conclude that children with OSAS have impaired arousal responses to IRL. Despite compensatory changes in respiratory timing, normal children have a decrease in minute ventilation in response to IRL during sleep. However, arousal occurs before gas-exchange abnormalities.  相似文献   

14.
Repetitive occurrence of partial or total upper airway obstruction characterizes several respiratory dysfunctions such as the obstructive sleep apnea syndrome (OSAS). In OSAS patients, pharyngeal collapses are linked to a decrease in upper airway muscle activity during sleep which causes decreased upper airway wall stiffness. Continuous positive airway pressure (CPAP) is recommended as the treatment of choice. Advancements in CPAP therapy require early detection of respiratory events in real time to adapt the level of the applied pressure to airway collapsibility. The forced oscillation technique (FOT) is a noninvasive method which reflects patients' airway patency by measuring respiratory impedance. The aim of this study was to evaluate by a mathematical model of the respiratory system if FOT can provide an early detection index of total or partial upper airway obstruction. Furthermore, the simulation should suggest which characteristic features are relevant for early apnea detection in measured clinical data. The respiratory system has been treated as a series of cylindrical segments. The oropharynx analog of the model allows simulation of upper airway collapse, mimicking the situation in patients with OSAS. We calculated the input impedance for different degrees of upper airway obstruction ranging from unobstructed airways to total occlusion. Furthermore, we simulated different upper airway wall compliances. We compared the simulation with real data. The results of the study suggest that FOT is a valuable tool for assessing the degree of upper airway obstruction in patients with OSAS. Especially, the phase angle of the impedance seems to be a potentially useful tool for early apnea detection by assessing the upper airway wall collapsibility. Received: 23 July 1998 / Accepted in revised form: 26 January 1999  相似文献   

15.
Lowering surface tension (gamma) of upper airway lining liquid (UAL) reduces upper airway opening (anesthetized humans) and closing (anesthetized rabbits) pressures. We now hypothesize that in sleeping obstructive sleep apnea hypopnea syndrome (OSAHS) patients lowering gamma of UAL will enhance upper airway stability and decrease the severity of sleep-disordered breathing. Nine OSAHS patients [respiratory disturbance index (RDI): 49 +/- 8 (SE) events/h, diagnostic night] participated in a two-part, one-night, polysomnography study. In the first part, upper airway closing pressures (during non-rapid eye movement sleep, Pcrit) were measured and samples of UAL (awake) were obtained before and after 2.5 ml of surfactant (Exosurf, Glaxo Smith Kline) was instilled into the posterior pharynx. The gamma of UAL was determined with the use of the "pull-off" force technique. In the second part, subjects received a second application of 2.5 ml of surfactant and then slept the remainder of the night (205 +/- 30 min). Instillation of surfactant decreased the gamma of UAL from 60.9 +/- 3.1 mN/m (control) to 45.2 +/- 2.5 mN/m (surfactant group) (n = 9, P < 0.001). Pcrit decreased from 1.19 +/- 1.14 cmH2O (control) to -0.56 +/- 1.15 cmH2O (surfactant group) (n = 7, P < 0.02). Compared with the second half of diagnostic night, surfactant decreased RDI from 51 +/- 8 to 35 +/- 8 events/h (n = 9, P < 0.03). The fall in RDI (deltaRDI) correlated with the fall in gamma of UAL (deltagamma) (deltaRDI = 1.8 x deltagamma, r = 0.68, P = 0.04). Hypopneas decreased approximately 50% from 42 +/- 8 to 20 +/- 5 events/h (n = 9, P < 0.03, paired t-test). The gamma of UAL measured the next morning remained low at 49.5 +/- 2.7 mN/m (n = 9, P < 0.001, ANOVA, compared with control). In conclusion, instillation of surfactant reduced the gamma of UAL in OSAHS patients and decreased Pcrit and the occurrence of hypopneas. Therapeutic manipulation of gamma of UAL may be beneficial in reducing the severity of sleep-disordered breathing in OSAHS patients.  相似文献   

16.
In patients with obstructive sleep apnea (OSA), substantial elevations of systemic blood pressure (BP) and depressions of oxyhemoglobin saturation (SaO2) accompany apnea termination. The causes of the BP elevations, which contribute significantly to nocturnal hypertension in OSA, have not been defined precisely. To assess the relative contribution of arterial hypoxemia, we observed mean arterial pressure (MAP) changes following obstructive apneas in 11 OSA patients during non-rapid-eye-movement (NREM) sleep and then under three experimental conditions: 1) apnea with O2 supplementation; 2) hypoxemia (SaO2 80%) without apnea; and 3) arousal from sleep with neither hypoxemia nor apnea. We found that apneas recorded during O2 supplementation (SaO2 nadir 93.6% +/- 2.4; mean +/- SD) in six subjects were associated with equivalent postapneic MAP elevations compared with unsupplemented apneas (SaO2 nadir 79-82%): 18.8 +/- 7.1 vs. 21.3 +/- 9.2 mmHg (mean change MAP +/- SD); in the absence of respiratory and sleep disruption in eight subjects, hypoxemia was not associated with the BP elevations observed following apneas: -5.4 +/- 19 vs. 19.1 +/- 7.8 mmHg (P less than 0.01); and in five subjects, auditory arousal alone was associated with MAP elevation similar to that observed following apneas: 24.0 +/- 8.1 vs. 22.0 +/- 6.9 mmHg. We conclude that in NREM sleep postapneic BP elevations are not primarily attributable to arterial hypoxemia. Other factors associated with apnea termination, including arousal from sleep, reinflation of the lungs, and changes of intrathoracic pressure, may be responsible for these elevations.  相似文献   

17.
A current hypothesis for obstructive sleep apnea states that 1) negative airway pressure during inspiration can collapse the pharyngeal airway, and 2) neural control of pharyngeal airway-dilating muscles is important in preventing this collapse. To test this hypothesis we performed nasal mask occlusions to increase negative pharyngeal airway pressures during inspiration in eight normal and five micrognathic infants. Both groups developed midinspiratory pharyngeal obstruction, but obstruction was more frequent in micrognathic infants and varied in some infants with sleep state. The airway usually reopened with the subsequent expiration. The occasional failure to reopen was presumably due to pharyngeal wall adhesion. If airway obstruction occurred in sequential breaths during multiple-breath nasal mask occlusions in normal infants, there was a breath-by-breath change in the airway pressure associated with airway closure (airway closing pressure); the airway closing pressure became progressively more negative. Micrognathic infants showed less ability to improve the airway closing pressure, but this ability increased with age. These findings suggest that nasal mask occlusion can test the competence of the neuromuscular mechanisms that maintain pharyngeal airway patency in infants. Micrognathic infants had spontaneous midinspiratory pharyngeal airway obstructions during snoring. Their episodes of obstructive apnea began with midinspiratory pharyngeal obstruction similar to that seen during snoring and nasal mask occlusions. These findings imply a similar pathophysiology for snoring, spontaneous airway obstruction, and obstruction during snoring.  相似文献   

18.
The genioglossus (GG) muscle activity of four infants with micrognathia and obstructive sleep apnea was recorded to assess the role of this tongue muscle in upper airway maintenance. Respiratory air flow, esophageal pressure, and intramuscular GG electromyograms (EMG) were recorded during wakefulness and sleep. Both tonic and phasic inspiratory GG-EMG activity was recorded in each of the infants. On occasion, no phasic GG activity could be recorded; these silent periods were unassociated with respiratory embarrassment. GG activity increased during sigh breaths. GG activity also increased when the infants spontaneously changed from oral to nasal breathing and, in two infants, with neck flexion associated with complete upper airway obstruction, suggesting that GG-EMG activity is influenced by sudden changes in upper airway resistance. During sleep, the GG-EMG activity significantly increased with 5% CO2 breathing (P less than or equal to 0.001). With nasal airway occlusion during sleep, the GG-EMG activity increased with the first occluded breath and progressively increased during the subsequent occluded breaths, indicating mechanoreceptor and suggesting chemoreceptor modulation. During nasal occlusion trials, there was a progressive increase in phasic inspiratory activity of the GG-EMG that was greater than that of the diaphragm activity (as reflected by esophageal pressure excursions). When pharyngeal airway closure occurred during a nasal occlusion trial, the negative pressure at which the pharyngeal airway closed (upper airway closing pressure) correlated with the GG-EMG activity at the time of closure, suggesting that the GG muscle contributes to maintaining pharyngeal airway patency in the micrognathic infant.  相似文献   

19.
We hypothesized that upper airway collapsibility is modulated dynamically throughout the respiratory cycle in sleeping humans by alterations in respiratory phase and/or airflow regimen. To test this hypothesis, critical pressures were derived from upper airway pressure-flow relationships in six tracheostomized patients with obstructive sleep apnea. Pressure-flow relationships were generated by varying the pressure at the trachea and nose during tracheostomy (inspiration and expiration) (comparison A) and nasal (inspiration only) breathing (comparison B), respectively. When a constant airflow regimen was maintained throughout the respiratory cycle (tracheostomy breathing), a small yet significant decrease in critical pressure was found at the inspiratory vs. end- and peak-expiratory time point [7.1 +/- 1.6 (SE) to 6.6 +/- 1.9 to 6.1 +/- 1.9 cmH(2)O, respectively; P < 0.05], indicating that phasic factors exerted only a modest influence on upper airway collapsibility. In contrast, we found that the inspiratory critical pressure fell markedly during nasal vs. tracheostomy breathing [1.1 +/- 1.5 (SE) vs. 6.1 +/- 1.9 cmH(2)O; P < 0.01], indicating that upper airway collapsibility is markedly influenced by differences in airflow regimen. Tracheostomy breathing was also associated with a reduction in both phasic and tonic genioglossal muscle activity during sleep. Our findings indicate that both phasic factors and airflow regimen modulate upper airway collapsibility dynamically and suggest that neuromuscular responses to alterations in airflow regimen can markedly lower upper airway collapsibility during inspiration.  相似文献   

20.
Obstructive sleep apnea (OSA) is two to three times more common in men as in women. The mechanisms leading to this difference are currently unclear but could include gender differences in respiratory stability [loop gain (LG)] or upper airway collapsibility [pharyngeal critical closing pressure (Pcrit)]. The aim of this study was to compare LG and Pcrit between men and women with OSA to determine whether the factors contributing to apnea are similar between genders. The first group of 11 men and 11 women were matched for OSA severity (mean +/- SE apnea-hypopnea index = 43.8 +/- 6.1 and 44.1 +/- 6.6 events/h). The second group of 12 men and 12 women were matched for body mass index (BMI; 31.6 +/- 1.9 and 31.3 +/- 1.8 kg/m2, respectively). All measurements were made during stable supine non-rapid eye movement sleep. LG was determined using a proportional assist ventilator. Pcrit was measured by progressively dropping the continuous positive airway pressure level for three to five breaths until airway collapse. Apnea-hypopnea index-matched women had a higher BMI than men (38.0 +/- 2.4 vs. 30.0 +/- 1.9 kg/m2; P = 0.03), but LG and Pcrit were similar between men and women (LG: 0.37 +/- 0.02 and 0.37 +/- 0.02, respectively, P = 0.92; Pcrit: 0.35 +/- 0.62 and -0.18 +/- 0.87, respectively, P = 0.63). In the BMI-matched subgroup, women had less severe OSA during non-rapid eye movement sleep (30.9 +/- 7.4 vs. 52.5 +/- 8.1 events/h; P = 0.04) and lower Pcrit (-2.01 +/- 0.62 vs. 1.16 +/- 0.83 cmH2O; P = 0.005). However, LG was not significantly different between genders (0.38 +/- 0.02 vs. 0.33 +/- 0.03; P = 0.14). These results suggest that women may be protected from developing OSA by having a less collapsible upper airway for any given degree of obesity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号