首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Strains of Aspergillus nidulans carrying the orlA1 or tse6 allele are deficient in cell wall chitin and undergo lysis at restrictive temperatures. The strains are remediable by osmotic stabilizers or by the presence of N-acetylglucosamine (GlcNAc) in the medium. The remediation by GlcNAc suggests that the lesion(s) in chitin synthesis resides in the amino sugar biosynthetic pathway prior to the synthesis of N-acetylglucosamine-6-phosphate. orlA1 strains grown at permissive temperature exhibit an abnormally low specific activity for L-glutamine:fructose-6-phosphate amidotransferase (EC 2.6.1.16, amidotransferase), the first enzyme unique to amino sugar synthesis. In addition, the enzyme produced is temperature sensitive in vitro. tsE6 strains grown at permissive temperature show virtually no amidotransferase activity. This finding is consistent with an extremely labile enzyme which is destroyed by cell breakage and extract preparation. The enzyme must be active in vivo at permissive temperatures since GlcNAc is not required for growth. Thus, two structural genes (orlA and tsE) are necessary for the amidotransferase activity. bimG11 strains are temperature sensitive for a type 1 protein phosphatase involved in cell cycle regulation and arrest in mitosis. Like orlA1 and tsE6 strains, conidia from bimG11 strains swell excessively when germinated and lyse; the germlings produced are deficient in chitin content. The amidotransferase from wild-type and mutant strains is sensitive to feedback inhibition by uridine diphosphate-N-acetylglucosamine. The sensitivity of the amidotransferase from bimG11 strains is dependent on growth temperature, while that from wild-type strains is independent of temperature. The enzyme can be desensitized in vitro under conditions consistent with a protein phosphatase reaction. It is proposed that amino sugar (and chitin biosynthesis) is partially regulated by phosphorylation-dephosphorylation of the amidotransferase or a protein regulator of the enzyme.  相似文献   

2.
Glutamine-fructose-6-phosphate amidotransferase (GFAT) catalyzes the first committed step in the pathway for biosynthesis of hexosamines in mammals. A member of the N-terminal nucleophile class of amidotransferases, GFAT transfers the amino group from the L-glutamine amide to D-fructose 6-phosphate, producing glutamic acid and glucosamine 6-phosphate. The kinetic constants reported previously for mammalian GFAT implicate a relatively low affinity for the acceptor substrate, fructose 6-phosphate (Fru-6-P, K(m) 0.2-1 mm). Utilizing a new sensitive assay that measures the production of glucosamine 6-phosphate (GlcN-6-P), purified recombinant human GFAT1 (hGFAT1) exhibited a K(m) for Fru-6-P of 7 microm, and was highly sensitive to product inhibition by GlcN-6-P. In a second assay method that measures the stimulation of glutaminase activity, a K(d) of 2 microm was measured for Fru-6-P binding to hGFAT1. Further, we report that the product, GlcN-6-P, is a potent competitive inhibitor for the Fru-6-P site, with a K(i) measured of 6 microm. Unlike other members of the amidotransferase family, where glutamate production is loosely coupled to amide transfer, we have demonstrated that hGFAT1 production of glutamate and GlcN-6-P are strictly coupled in the absence of inhibitors. Similar to other amidotransferases, competitive inhibitors that bind at the synthase site may inhibit the synthase activity without inhibiting the glutaminase activity at the hydrolase domain. GlcN-6-P, for example, inhibited the transfer reaction while fully activating the glutaminase activity at the hydrolase domain. Inhibition of hGFAT1 by the end product of the pathway, UDP-GlcNAc, was competitive with a K(i) of 4 microm. These data suggest that hGFAT1 is fully active at physiological levels of Fru-6-P and may be regulated by its product GlcN-6-P in addition to the pathway end product, UDP-GlcNAc.  相似文献   

3.
Glutamine:fructose-6-phosphate amidotransferase (GFAT) catalyzes the first step in the biosynthesis of amino sugars by transferring the amino group from l-glutamine to the acceptor substrate, fructose 6-phosphate, generating the products glucosamine 6-phosphate and glutamic acid. We describe a method for the synthesis and purification of the substrate, fructose 6-phosphate, and methods for a radiometric assay of human GFAT1 that can be performed in either of two formats: a small disposable-column format and a high-throughput 96-well-plate format. The method performed in the column format can detect 1 pmol of glucosamine 6-phosphate, much less than that required by previously published assays that measure GlcN 6-phosphate. The column assay demonstrates a broad linear range with low variability. In both formats, the assay is linear with time and enzyme concentration and is highly reproducible. This method greatly improves the sensitivity and speed with which GFAT1 activity can be measured and facilitates direct kinetic measurement of the transferase activity.  相似文献   

4.
The enzyme amidotransferase [2-amino-2-deoxy-D-glucose-6-phosphate ketol isomerase (amino-transferring); EC 2.6.1.16] catalyzes the first step in the hexosamine biosynthetic pathway. In Blastocladiella emersonii the sensitivity of the enzyme to the inhibitor uridine-5'-diphospho-N-acetylglucosamine (UDP-GlcNAc) is developmentally regulated. The inhibitable form of amidotransferase activity present in the zoospore is converted to a noninhibitable form during germination. The latter form is present throughout the growth phase and sensitivity to UDP-GlcNAc gradually returns to the zoospore level during sporulation [C.P. Selitrennikoff, N.E. Dalley, and D.R. Sonneborn (1980) Proc. Natl. Acad. Sci. USA 77, 5998-6002]. The following evidence suggests that a phosphorylation/dephosphorylation mechanism underlies this interconversion: (i) Both the vegetative and zoospore enzymes have the same molecular weight of 140,000, but the vegetative enzyme elutes significantly earlier on a DEAE-cellulose column than does the zoospore enzyme. (ii) The increased sensitivity to UDP-GlcNAc occurring in vivo and in vitro correlates with increased phosphorylation of a polypeptide of apparent Mr 76,000. This component copurifies with amidotransferase activity through ion-exchange chromatography and sucrose density gradient centrifugation. (iii) Desensitization and concurrent dephosphorylation of sensitive amidotransferase can be observed in vitro after treatment with a partially purified magnesium-dependent phosphoprotein phosphatase from zoospores.  相似文献   

5.
Dubinský P., Rybo? M. and Tur?eková ?. 1985. Enzymes regulating glucosamine 6-phosphate synthesis in the zygote of Ascaris suum. International Journal for Parasitology15: 415–419. Formation of glucosamine 6-phosphate, a basic intermediate product of chitin synthesis in the zygote of Ascaris suum is catalyzed by glutamine-fructose-6-phosphate aminotransferase (EC 2.6.1.16). The highest activity of the enzyme was observed immediately after fertilization of mature oocytes. High enzyme activity also found in unfertilized oocytes indicates that formation of glucosamine 6-phosphate is catalyzed by enzymes that were present in the oocytes prior to their fertilization. In the Ascaris suum zygote, in contrast to the situation in other organisms, glucosaminephosphate isomerase (EC 5.3.1.10) plays no part in glucosamine 6-phosphate synthesis. The paper discusses possible participation of glucosaminephosphate isomerase in the resynthesis of fructose 6-phosphate from the surplus glucosamine 6-phosphate not utilized for chitin synthesis, and accordingly its involvement in the metabolism of the zygote.  相似文献   

6.
The enzyme glutamine:fructose 6-phosphate amidotransferase (L-glutamine:D-fructose-6-phosphate amidotransferase; EC 2.6.1.16, GFAT) catalyzes the formation of glucosamine 6-phosphate from fructose 6-phosphate and glutamine. In view of the important role of GFAT in the hexosamine biosynthetic pathway, we have purified the enzyme from rat liver and characterized its physicochemical properties in comparison to those from the published microbial enzymes. The purified enzyme has a molecular mass of about 75 kDa as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. On a Sephacryl S-200 gel filtration column, the purified enzyme eluted in a single peak corresponding to a molecular mass of about 280 kDa, indicating that the active enzyme may be composed of four subunits. The N-terminal amino acid sequence of the purified enzyme was determined as X-G-I-F-A-Y-L-N-Y-H-X-P-R, where X indicates an unidentified residue. The K(M) values of the purified enzyme for fructose 6-phosphate and glutamine were 0.4 and 0.8 mM, respectively. The purified enzyme was inactivated by 4, 4'-dithiodipyridine, and the activity of the inactivated enzyme was restored by dithiothreitol. The inactivation followed pseudo first-order and saturation kinetics with the K(inact) of 5.0 microM. Kinetic studies also indicated that 4,4'-dithiodipyridine is a competitive inhibitor of the enzyme with respect to glutamine. Isolation and analysis of the cysteine-modified peptide indicated that Cys-1 was the modified site. Cys-1 has been suggested to play an important role in enzymatic activity of the Escherichia coli enzyme (M. N. Isupov, G. Obmolova, S. Butterworth, M. Badet-Denisot, B. Badet, I. Polikarpov, J. A. Littlechild, and A. Teplyakov, 1996, Structure 4, 801-810).  相似文献   

7.
A mutant was isolated from Escherichia coli K-12 which requires glucosamine or N-acetylglucosamine for growth. Depriving the mutant of glucosamine resulted in a rapid loss of viability of the cells, followed by a decrease in the turbidity of the culture. When the mutant cells were resuspended in broth media containing 10% sucrose, the rod-shaped cells became spheroplasts. However, the presence of sucrose in the media did not prevent the cells from losing their viability. This mutant was shown to be deficient in the activity of l-glutamine:d-fructose-6-phosphate aminotransferase (EC 2.6.1.16). The activity of the deaminating enzyme, 2-amino-2-deoxy-d-glucose-6-phosphate ketol-isomerase (EC 5.3.1.10), appeared to be normal in this mutant. The position of the mutation has been determined to be at the 74th min of the Taylor and Trotter map, as shown by cotransduction with phoS (90%) and ilv (25%) by using bacteriophage P1.  相似文献   

8.
The binding of substrates and modifiers to glucosamine synthetase   总被引:2,自引:0,他引:2  
1. The binding of substrates and effectors to glucosamine synthetase (l-glutamine-d-fructose 6-phosphate aminotransferase, EC 2.6.1.16) was studied by using the ligand to alter the denaturation rate of the enzyme. The free enzyme bound fructose 6-phosphate, glucose 6-phosphate and UDP-N-acetylglucosamine, but not glutamine, AMP or UTP. Glucose 6-phosphate and AMP increased the binding of UDP-N-acetylglucosamine whereas UTP decreased the interaction between the enzyme and the feedback inhibitor. UDP-N-acetylglucosamine induced a glutamine-binding site on the enzyme. 2. Selective thermal or chemical denaturation revealed that the UDP-N-acetylglucosamine-binding site was not located at the catalytic site. The UTP site could not be distinguished from that for the nucleotide sugar. The AMP- and glucose 6-phosphate-binding sites were distinct from the catalytic and feedback-inhibitor-binding sites. 3. The specificity of the glutamine-binding site was investigated by using a series of potential analogues. 4. A model is proposed for the action of the effectors and the mechanism of the reaction discussed in kinetic and chemical terms.  相似文献   

9.
Inhibition of glucosamine synthase by bacilysin and anticapsin   总被引:1,自引:0,他引:1  
L-Glutamine:D-fructose-6-phosphate amidotransferase ('glucosamine synthase', EC 5.3.1.19) from Escherichia coli MRE 600 was purified at least 75-fold. It catalysed the formation of 21.1 mumol glucosamine 6-phosphate (mg protein)-1 in 30 min at 37 degrees C. Its molecular weight, estimated by gel filtration, was about 90000 and it was inhibited by thiol group reagents. Anticapsin, the C-terminal amino acid of the dipeptide antibiotic bacilysin, and to a lesser extent bacilysin itself, inhibited glucosamine synthase activity. Kinetic studies indicated that the inhibition was non-competitive with respect to fructose 6-phosphate as substrate but partly competitive with respect to L-glutamine. Incubation of the enzyme with anticapsin brought about a time-dependent and irreversible inhibition. It is suggested that anticapsin behaves as a glutamine analogue and that a reaction of its epoxide group with a thiol group of glucosamine synthase results in its linkage to the enzyme by a covalent bond.  相似文献   

10.
L-Glutamine:D-fructose-6-phosphate amidotransferase (glucosamine synthetase) has been purified to homogeneity from Escherichia coli. A subunit molecular weight of 70,800 was estimated by gel electrophoresis in sodium dodecyl sulfate. Pure glucosamine synthetase did not exhibit detectable NH3-dependent activity and did not catalyze the reverse reaction, as reported for more impure preparations [Gosh, S., Blumenthal, H. J., Davidson, E., & Roseman, S. (1960) J. Biol. Chem. 235, 1265]. The enzyme has a Km of 2 mM for fructose 6-phosphate, a Km of 0.4 mM for glutamine, and a turnover number of 1140 min-1. The amino-terminal sequence confirmed the identification of residues 2-26 of the translated E. coli glmS sequence [Walker, J. E., Gay, J., Saraste, M., & Eberle, N. (1984) Biochem. J. 224, 799]. Methionine-1 is therefore removed by processing in vivo, leaving cysteine as the NH2-terminal residue. The enzyme was inactivated by the glutamine analogue 6-diazo-5-oxo-L-norleucine (DON) and by iodoacetamide. Glucosamine synthetase exhibited half-of-the-sites reactivity when incubated with DON in the absence of fructose 6-phosphate. In its presence, inactivation with [6-14C]DON was accompanied by incorporation of 1 equiv of inhibitor per enzyme subunit. From this behavior, a dimeric structure was tentatively assigned to the native enzyme. The site of reaction with DON was the NH2-terminal cysteine residue as shown by Edman degradation.  相似文献   

11.
Extracts of the aquatic fungus Blastocladiella emersonii were found to contain protein phosphatases type 1, type 2A, and type 2C with properties analogous to those found in mammalian tissues. The activities of all three protein phosphatases are developmentally regulated, increasing during sporulation, with maximum level in zoospores. Protein phosphatases 2A and 2C, present in zoospore extracts, catalyze the dephosphorylation of L-glutamine:fructose-6-phosphate amidotransferase (EC 2.6.1.16, amidotransferase), a key regulatory enzyme in hexosamine biosynthesis. The protein phosphatase inhibitor okadaic acid induces encystment and inhibits germ tube formation but does not affect the synthesis of the chitinous cell wall. These results strongly suggest that phosphatase 2C is responsible for the dephosphorylation of amidotransferase in vivo. This dephosphorylation is inhibited by uridine-5'-diphospho-N-acetylglucosamine, the end product of hexosamine synthesis and the substrate for chitin synthesis. This result demonstrates a dual role of uridine-5'-diphospho-N-acetylglucosamine by inhibiting the activity of the phosphorylated form of amidotransferase and by preventing its dephosphorylation by protein phosphatases.  相似文献   

12.
UDP-N-acetylglucosamine pyrophosphorylases (UTP: 2-acetamido-2-deoxy-alpha-D-glucose-1-phosphate uridylyltransferase, EC 2.7.7.23) from baker's yeast and Neurospora crassa IFO 6178 were inhibited by uridine which is the nucleoside moiety of UDP-GlcNAc. The inhibition was shown in both directions of pyrophosphorolysis and of synthesis of UDP-GlcNAc. Kinetic analysis revealed that uridine demonstrated a noncompetitive type of inhibition with UDP-GlcNAc and competitive inhibition with PPi. The Ki values for the baker's yeast enzyme were 1.8 mM for UDP-GlcNAc and 0.16 mM for PPi, and the values for the Neurospora enzyme were 1.1 mM for UDP-GlcNAc and 0.15 mM for PPi, respectively. Uridine did not bind irreversibly to the enzyme, as the activity was restored with dialysis. No other nucleosides caused inhibition of the enzyme activity except uridine. Some uridine derivatives, such as 5-hydroxyuridine, 5,6-dihydrouridine and pseudouridine, also inhibited the enzyme activity. But doexyuridine showed only slight inhibition, and 5'-UMP and orotidine caused no inhibition of the enzyme activity.  相似文献   

13.
Based on experiments in cultured adipocytes, it has been proposed that glucose-induced down regulation of glucose transport is mediated by the conversion of fructose-6-phosphate to glucosamine-6-phosphate via the first and rate-determining enzyme of the hexasamine biosynthetic pathway, glutamine: fructose-6-phosphate amidotransferase (glutamine hexosephosphate aminotransferase). Evidence for this assertion was: (a) l-glutamine, the provider group for the aminotransferase was essential; (b) two inhibitors of glutamine hexosephosphate aminotransferase, 6-diazo-5-oxonorleucine (l form) and azaserine, blocked glucose-induced down regulation of glucose transport; (c) azaserine inhibited the activity of the aminotransferase, (d) glucosamine, which enters the hexosamine pathway distal to this enzyme was 40-times more potent than glucose; and (e) azaserine was unable to block the effect of glucosmaine. Since muscle is quantitatively much more important than adipose tissue for whole body glucose utilization, we sought to determine if the hexosamine pathway was involved in glucose-induced down regulation of glucose transport in L6 myotubes. Glucose was effective, both in the presence and absence of glutamine in the incubation media. Glucosamine was also effective but was as equipotent as glucose. Small amounts of glutamine hexosephosphate aminotransferase were present in the L6 myotubes and although the leucine derivative (20 μM)_ inhibited the enzyme, it did not impair glucose-induced down regulation of glucose transport. Total GLUT-1 levels were similar when the cells were incubated in the absence or presence of 5 mM glucose or glucosamine although glucosamine was associated with a marked increase in a lower molecular weight band. These results do not suggest that the hexosamine biosynthetic pathway is involved in glucose-induced down regulation of glucose transport in L6 myotubes. Thus, this phenomenon is regulated differently in muscle and fat.  相似文献   

14.
Using a genomic library constructed from Saccharomyces cerevisiae, we have identified a gene GFA1 that confers resistance to methylmercury toxicity. GFA1 encodes L-glutamine:D-fructose-6-phosphate amidotransferase (GFAT) and catalyzes synthesis of glucosamine-6-phosphate. Transformed yeast cells expressing GFA1 demonstrated resistance to methylmercury but no resistance to p-chloromercuribenzoate, a GFAT inhibitor. The cytotoxicity of methylmercury was inhibited by loading excess glucosamine 6-phosphate into yeast. Considering that GFAT is an essential cellular enzyme, our findings suggest that GFAT is the major target molecule of methylmercury in yeasts. This report is the first to identify the target molecule of methylmercury toxicity in eukaryotic cells.  相似文献   

15.
Incubation of anticapsin with the purified glucosamine synthetase (2-amino-2-deoxy-D-glucose-6-phosphate ketol-isomerase, amino transferring, EC 5.3.1.19) from Escherichia coli, Pseudomonas aeruginosa, Arthrobacter aurescens and Bacillus thuringiensis led to the formation of an inactive enzyme irreversibly modified. The inactivation reaction followed pseudo-first-order kinetics. The rate of the inactivation reaction at various concentrations of anticapsin exhibited saturation kinetics, implying that anticapsin binds reversibly to the enzyme prior to inactivation. The determined Kinact is in the range of 10(-5) M (B. thuringiensis) and 10(-6) M (E. coli, P. aeruginosa, A. aurescens ). The addition of glutamine protected the amidotransferase from inactivation by anticapsin . The anticapsin was demonstrated to be a mixed type or competitive inhibitor with respect to glutamine with a Ki value of 10(-6) to 10(-7) M. Reaction of anticapsin with the enzyme exhibits the characteristics of affinity labelling of the glutamine binding site. Chemical modification of the enzyme thiol group with various reagents, 5,5'-dithiobis-(2-nitrobenzoic) acid, 6,6'- dithiodinicotinic acid, 1,1'- dithiodiformamidine , N-ethylmaleimide and iodoacetamide, resulted in an inactive enzyme.  相似文献   

16.
Glucosamine-6-phosphate synthase (GlmS, EC 2.6.1.16) catalyzes the first and rate-limiting step in the hexosamine biosynthetic pathway, leading to the synthesis of uridine-5′-diphospho-N-acetyl-d-glucosamine, the major building block for the edification of peptidoglycan in bacteria, chitin in fungi, and glycoproteins in mammals. This bisubstrate enzyme converts d-fructose-6-phosphate (Fru-6P) and l-glutamine (Gln) into d-glucosamine-6-phosphate (GlcN-6P) and l-glutamate (Glu), respectively. We previously demonstrated that matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) allows determination of the kinetic parameters of the synthase activity. We propose here to refine the experimental protocol to quantify Glu and GlcN-6P, allowing determination of both hemisynthase and synthase parameters from a single assay kinetic experiment, while avoiding interferences encountered in other assays. It is the first time that MALDI-MS is used to survey the activity of a bisubstrate enzyme.  相似文献   

17.
Glutamine:fructose-6-phosphate amidotransferase (Gfat) catalyzes the first and rate-limiting step in the hexosamine biosynthetic pathway. The increasing amount of evidence that links excess hexosamine biosynthesis with pathogenic complications of type II diabetes highlights the need to understand the regulation of Gfat. Previous studies showed that eukaryotic Gfat is subjected to feedback inhibition by UDP-N-acetyl-d-glucosamine (UDP-GlcNAc) and to phosphorylation by cAMP-activated protein kinase A (PKA). In this study, overexpression of human Gfat isoform 1 (hGfat1) in insect cells revealed that hGfat1 is phosphorylated in vivo. Using matrix-assisted laser desorption/ionization and electrospray tandem mass spectrometry, we have identified Ser243 as a novel phosphorylation site. Biochemical properties of the wild type and the Ser243Glu mutant of hGfat1 overexpressed in Escherichia coli were compared. Our results provide evidence that phosphorylation at Ser243 stimulates glucosamine 6-phosphate-synthesizing activity, lowers amidohydrolyzing activity in the absence of fructose 6-phosphate (F6P) (glutaminase activity), and lowers Km(F6P) 2-fold, but has no effect on UDP-GlcNAc inhibition. On the basis of the sequence consensus, AMP-activated protein kinase and calcium/calmodulin-dependent kinase II were identified to phosphorylate specifically Ser243 in vitro. Phosphorylation by these two kinases results in an increase of enzymatic activity by 1.4-fold. These findings suggest for the first time that hGfat1 may be regulated by kinases other than PKA.  相似文献   

18.
An enzyme which catalyzes the hydrolysis of acetamido groups of N-acetylglucosamine residues in cell wall peptidoglycan was found in the supernatant and 20,000 X g pellet fractions of Bacillus cereus. Autolysis of the latter fraction resulted in solubilization and activation of the deacetylase. Among various bacteria, strains of B. cereus which contain high proportions of N-unsubstituted glucosamine residues in their cell wall peptidoglycan components are particularly rich in the deacetylase. The peptidoglycan deacetylase is distinguishable from N-acetylglucosamine-6-phosphate deacetylase [EC 3.5.1.25] on the basis of their cellular distribution and chromatographic behavior. The rate of reaction of the deacetylase with (N-acetylglucosaminyl-N-acetylmuramic acid)3 [abbreviated as (GlcNAc-MurNAc)3] is less than 1/100 of that with peptidoglycan, while the enzyme is inactive towards (GlcNAc-MurNAc)2, GlcNAc-MurNAc, and monomeric N-acetylglucosamine derivatives. The enzyme also deacetylates partially O-hydroxyethylated chitin. The concentrations of peptidoglycan and partially O-hydroxyethylated chitin required for half-maximum activities were found to be 0.29 and 6.9 mg per ml (or 0.17 and 20 mM with respect to N-acetylglucosamine residues), respectively. The occurrence of this enzyme accounts for the formation of cell wall peptidoglycan N-unsubstituted at the glucosamine residues.  相似文献   

19.
The purification of Neurospora crassa myo-inositol-1-phosphate synthase (EC 5.5.1.4) was studied by affinity chromatography using the substrate (glucose-6-phosphate), the inhibitor (pyrophosphate), the coenzyme (NAD+) and the coenzyme analogues (5'AMP and Cibacron Blue F3G-A) of the enzyme as adsorbents attached to agarose gel. Myo-inositol-1-phosphate synthase could be separated completely from the contaminating substance, glucose-6-phosphate dehydrogenase (EC 1.1.1.49), on Blue Sepharose CL-6B and on pyrophosphate-Sepharose. The purified enzyme had a specific activity of 16 400 U/mg. The sodium dodecyl sulfate/polyacrylamide gel electrophoresis of the 60 micrograms of this purified enzyme gave a homogenous band. The enzyme was found to be composed of four identical subunits having a molecular weight of 65 000.  相似文献   

20.
The purification of Neurospora crassa myo-inositol-1-phosphate synthase (EC 5.5.1.4) was studied by affinity chromatography using the substrate (glucose-6-phosphate), the inhibitor (pyrophosphate), the coenzyme (NAD+) and the coenzyme analogues (5′AMP and Cibacron Blue F3G-A) of the enzyme as adsorbents attached to agarose gel. Myo-inositol-1-phosphate synthase could be separated completely from the contaminating substance, glucose-6-phosphate dehydrogenase (EC 1.1.1.49), on Blue Sepharose CL-6B and on pyrophosphate-Sepharose. The purified enzyme had a specific activity of 16 400 U/mg. The sodium dodecyl sulfate/polyacrylamide gel electrophoresis of 60 μq of this purified enzyme gave a homogenous band. The enzyme was found to be composed of four identical subunits having a molecular weight of 65 000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号