首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Multiple variants of the AMBER all-atom force field were quantitatively evaluated with respect to their ability to accurately characterize helix-coil equilibria in explicit solvent simulations. Using a global distributed computing network, absolute conformational convergence was achieved for large ensembles of the capped A21 and Fs helical peptides. Further assessment of these AMBER variants was conducted via simulations of a flexible 164-residue five-helix-bundle protein, apolipophorin-III, on the 100 ns timescale. Of the contemporary potentials that had not been assessed previously, the AMBER-99SB force field showed significant helix-destabilizing tendencies, with beta bridge formation occurring in helical peptides, and unfolding of apolipophorin-III occurring on the tens of nanoseconds timescale. The AMBER-03 force field, while showing adequate helical propensities for both peptides and stabilizing apolipophorin-III, (i) predicts an unexpected decrease in helicity with ALA→ARG+ substitution, (ii) lacks experimentally observed 310 helical content, and (iii) deviates strongly from average apolipophorin-III NMR structural properties. As is observed for AMBER-99SB, AMBER-03 significantly overweighs the contribution of extended and polyproline backbone configurations to the conformational equilibrium. In contrast, the AMBER-99φ force field, which was previously shown to best reproduce experimental measurements of the helix-coil transition in model helical peptides, adequately stabilizes apolipophorin-III and yields both an average gyration radius and polar solvent exposed surface area that are in excellent agreement with the NMR ensemble.  相似文献   

2.
Kaya H  Chan HS 《Proteins》2005,58(1):31-44
Native-state hydrogen exchange experiments on several proteins have revealed partially unfolded conformations with diverse stabilities. These equilibrium observations have been used to support kinetic arguments that folding proceeds via a sequential "pathway." This interpretative logic is evaluated here by analyzing the relationship between thermodynamic behavior and folding kinetics in a class of simplified lattice protein models. The chain models studied have varying degrees of cooperative interplay (coupling) between local helical conformational preference and favorable nonlocal interactions. When model cooperativity is high, as native conditions are weakened, "isotherms" of free energy of exchange for residues belonging to the same helix merge together before global unfolding. The point of merger depends on the model energetic favorability of the helix. This trend is similar to the corresponding experimental observations. Kinetically, we find that the ordering of helix formation in the very last stage of native core assembly tends to follow the stabilities of their converged isotherms. In a majority (but not all) of folding trajectories, the final assembly of helices that are thermodynamically more stable against exchange precedes that of helices that are less stable against exchange. These model features are in partial agreement with common experimental interpretations. However, the model results also underscore the ensemble nature of the folding process: the kinetics of helix formation is not a discrete, strictly "all-or-none" process as that envisioned by certain non-explicit-chain models. Helices generally undergo many cycles of partial formation and dissolution before their conformations are fixed in the final assembly stage of folding, a kinetic stage that takes up only approximately 2% of the average folding time in the present model; and the ordering of the helices' final assembly in some trajectories can be different from the dominant ordering stipulated by the exchange isotherms.  相似文献   

3.
Muff S  Caflisch A 《Proteins》2008,70(4):1185-1195
The effects of a single-point mutation on folding thermodynamics and kinetics are usually interpreted by focusing on the native structure and the transition state. Here, the entire conformational spaces of a 20-residue three-stranded antiparallel beta-sheet peptide (double hairpin) and of its single-point mutant W10V are sampled close to the melting temperature by equilibrium folding-unfolding molecular dynamics simulations for a total of 40 micros. The folded state as well as the most populated free energy basins in the denatured state are isolated by grouping conformations according to fast relaxation at equilibrium. Such kinetic analysis provides more detailed and useful information than a simple projection of the free energy. The W10V mutant has the same native structure as the wild type peptide, and similar folding rate and stability. In the denatured state, the N-terminal hairpin is about 20% more structured in W10V than the wild type mainly because of van der Waals interactions. Notably, the W10V mutation influences also the van der Waals energy at the transition state ensemble causing a shift in the ratio of fluxes between two different transition state regions on parallel folding pathways corresponding to nucleation at either of the two beta-hairpins. Previous experimental studies have focused on the effects of denaturant-dependent or temperature-dependent changes in the structure of the denatured state. The atomistic simulations show that a single-point mutation in the central strand of a beta-sheet peptide results in remarkable changes in the topography of the denatured state ensemble. These changes modulate the relative accessibility of parallel folding pathways because of kinetic partitioning of the denatured state. Therefore, the observed dependence of the folding process on the starting ensemble raises questions on the biological significance of in vitro folding studies under strongly denaturing conditions.  相似文献   

4.
Site-directed mutagenesis has been used to probe the interactions that stabilize the equilibrium and burst phase kinetic intermediates formed by apomyoglobin. Nine bulky hydrophobic residues in the A, E, G and H helices were replaced by alanine, and the effects on protein stability and kinetic folding pathways were determined. Hydrogen exchange pulse-labeling experiments, with NMR detection, were performed for all mutants. All of the alanine substitutions resulted in changes in proton occupancy or an increased rate of hydrogen-deuterium exchange for amides in the immediate vicinity of the mutation. In addition, most mutations affected residues in distant parts of the amino acid sequence, providing insights into the topology of the burst phase intermediate and the interactions that stabilize its structure. Differences between the pH 4 equilibrium molten globule and the kinetic intermediate are evident: the E helix region plays no discernible role in the equilibrium intermediate, but contributes significantly to stabilization of the ensemble of compact intermediates formed during kinetic refolding. Mutations that interfere with docking of the E helix onto the preformed A/B/G/H helix core substantially decrease the folding rate, indicating that docking and folding of the E helix region occurs prior to formation of the apomyoglobin folding transition state. The results of the mutagenesis experiments are consistent with rapid formation of an ensemble of compact burst phase intermediates with an overall native-like topological arrangement of the A, B, E, G, and H helices. However, the experiments also point to disorder in docking of the E helix and to non-native contacts in the kinetic intermediate. In particular, there is evidence for translocation of the H helix by approximately one helical turn towards its N terminus to maximize hydrophobic interactions with helix G. Thus, the burst phase intermediate observed during kinetic refolding of apomyoglobin consists of an ensemble of compact, kinetically trapped states in which the helix docking appears to be topologically correct, but in which there are local non-native interactions that must be resolved before the protein can fold to the native structure.  相似文献   

5.
6.
We present a detailed investigation of unfolded and partially folded states of a mutant apomyoglobin (apoMb) where the distal histidine has been replaced by phenylalanine (H64F). Previous studies have shown that substitution of His64, located in the E helix of the native protein, stabilizes the equilibrium molten globule and native states and leads to an increase in folding rate and a change in the folding pathway. Analysis of changes in chemical shift and in backbone flexibility, detected via [1H]-15N heteronuclear nuclear Overhauser effect measurements, indicates that the phenylalanine substitution has only minor effects on the conformational ensemble in the acid- and urea-unfolded states, but has a substantial effect on the structure, dynamics, and stability of the equilibrium molten globule intermediate formed near pH 4. In H64F apomyoglobin, additional regions of the polypeptide chain are recruited into the compact core of the molten globule. Since the phenylalanine substitution has negligible effect on the unfolded ensemble, its influence on folding rate and stability comes entirely from interactions within the compact folded or partly folded states. Replacement of His64 with Phe leads to favorable hydrophobic packing between the helix E region and the molten globule core and leads to stabilization of helix E secondary structure and overall thermodynamic stabilization of the molten globule. The secondary structure of the equilibrium molten globule parallels that of the burst phase kinetic intermediate; both intermediates contain significant helical structure in regions of the polypeptide that comprise the A, B, E, G, and H helices of the fully folded protein.  相似文献   

7.
The variation in folding rate among single-domain natural proteins is tremendous, but common models with explicit representations of the protein chain are either demonstrably insufficient or unclear as to their capability for rationalizing the experimental diversity in folding rates. In view of the critical role of water exclusion in cooperative folding, we apply native-centric, coarse-grained chain modeling with elementary desolvation barriers to investigate solvation effects on folding rates. For a set of 13 proteins, folding rates simulated with desolvation barriers cover ∼ 4.6 orders of magnitude, spanning a range essentially identical to that observed experimentally. In contrast, folding rates simulated without desolvation barriers cover only ∼ 2.2 orders of magnitude. Following a Hammond-like trend, the folding transition-state ensemble (TSE) of a protein model with desolvation barriers generally has a higher average number of native contacts and is structurally more specific, that is, less diffused, than the TSE of the corresponding model without desolvation barriers. Folding is generally significantly slower in models with desolvation barriers because of their higher overall macroscopic folding barriers as well as slower conformational diffusion speeds in the TSE that are ≈ 1/50 times those in models without desolvation barriers. Nonetheless, the average root-mean-square deviation between the TSE and the native conformation is often similar in the two modeling approaches, a finding suggestive of a more robust structural requirement for the folding rate-limiting step. The increased folding rate diversity in models with desolvation barriers originates from the tendency of these microscopic barriers to cause more heightening of the overall macroscopic folding free-energy barriers for proteins with more nonlocal native contacts than those with fewer such contacts. Thus, the enhancement of folding cooperativity by solvation effects is seen as positively correlated with a protein's native topological complexity.  相似文献   

8.
Caspase recruitment domains (CARDs) are members of the death domain superfamily and contain six antiparallel helices in an alpha-helical Greek key topology. We have examined the equilibrium and kinetic folding of the CARD of Apaf-1 (apoptotic protease activating factor 1), which consists of 97 amino acid residues, at pH 6 and pH 8. The results showed that an apparent two state equilibrium mechanism is not adequate to describe the folding of Apaf-1 CARD at either pH, suggesting the presence of intermediates in equilibrium unfolding. Interestingly, the results showed that the secondary structure is less stable than the tertiary structure, based on the transition mid-points for unfolding. Single mixing and sequential mixing stopped-flow studies showed that Apaf-1 CARD folds and unfolds rapidly and suggest a folding mechanism that contains parallel channels with two unfolded conformations folding to the native conformation. Kinetic simulations show that a slow folding phase is described by a third conformation in the unfolded ensemble that interconverts with one or both unfolded species. Overall, the native ensemble is formed rapidly upon refolding. This is in contrast to other CARDs in which folding appears to be dominated by formation of kinetic traps.  相似文献   

9.
De novo folding simulations of the major pVIII coat protein from filamentous fd bacteriophage, using a newly developed implicit membrane generalized Born model and replica-exchange molecular dynamics, are presented and discussed. The quality of the predicted structures, judged by comparison of the root-mean-square deviations of a room temperature ensemble of conformations from the replica-exchange simulations and experimental structures from both solid-state NMR in lipid bilayers and solution-phase NMR on the protein in micelles, was quite good, reinforcing the general quality of the folding simulations. The transmembrane helical segment of the protein was well defined in comparison with experiment and the amphipathic helical fragment remained at the membrane/aqueous phase boundary while undergoing significant conformational flexibility due to the loop connecting the two helical segments of the protein. Additional comparisons of computed solid-state NMR properties, the 15N chemical shift and 15N-1H dipolar coupling constants, showed semi-quantitative agreement with the corresponding measurements. These findings suggest an emerging potential for the de novo investigation of integral membrane peptides and proteins and a mechanism to assist experimental approaches to the characterization and structure determination of these important systems.  相似文献   

10.
Studies by one-dimensional NMR are reported on the interconversion of folded and unfolded forms of the GCN4 leucine zipper in neutral saline buffer. The peptide bears 99% 13C(alpha) labels at three sites: V9, L12, and G31. Time-domain 13C(alpha)-NMR spectra are interpreted by global Bayesian lineshape analysis to extract the rate constants for both unfolding and folding as functions of temperature in the range 47-71 degrees C. The data are well fit by the assumption that the same rate constants apply at each labeled site, confirming that only two conformational states need be considered. Results show that 1) both processes require a free energy of activation; 2) unfolding is kinetically enthalpy-opposed and entropy-driven, while folding is the opposite; and 3) the transition state dimer ensemble averages approximately 40% helical. The activation parameters for unfolding, derived from NMR data at the elevated temperatures where both conformations are populated, lead to estimates of the rate constant at low temperatures (5-15 degrees C) that agree with extant values determined by stopped-flow CD via dilution from denaturing media. However, the corresponding estimated values for the folding rate constant are larger by two to three orders of magnitude than those obtained by stopped flow. We propose that this apparent disagreement is caused by the necessity, in the stopped-flow experiment, for initiation of new helices as the highly denaturant-unfolded molecule adjusts to the newly created benign solvent conditions. This must reduce the success rate of collisions in producing the folded molecule. In the NMR determinations, however, the unfolded chains always have a small, but essential, helix content that makes such initiation unnecessary. Support for this hypothesis is adduced from recent extant experiments on the helix-coil transition in single-chain helical peptides and from demonstration that the folding rate constants for coiled coils, as obtained by stopped flow, are influenced by the nature of the denaturant used.  相似文献   

11.
We have used molecular dynamics simulations restrained by experimental phi values derived from protein engineering experiments to determine the structures of the transition state ensembles of ten proteins that fold with two-state kinetics. For each of these proteins we then calculated the average contact order in the transition state ensemble and compared it with the corresponding experimental folding rate. The resulting correlation coefficient is similar to that computed for the contact orders of the native structures, supporting the use of native state contact orders for predicting folding rates. The native contacts in the transition state also correlate with those of the native state but are found to be about 30% lower. These results show that, despite the high levels of heterogeneity in the transition state ensemble, the large majority of contributing structures have native-like topologies and that the native state contact order captures this phenomenon.  相似文献   

12.
Biphasic folding kinetics of RNA pseudoknots and telomerase RNA activity   总被引:1,自引:0,他引:1  
Using a combined master equation and kinetic cluster approach, we investigate RNA pseudoknot folding and unfolding kinetics. The energetic parameters are computed from a recently developed Vfold model for RNA secondary structure and pseudoknot folding thermodynamics. The folding kinetics theory is based on the complete conformational ensemble, including all the native-like and non-native states. The predicted folding and unfolding pathways, activation barriers, Arrhenius plots, and rate-limiting steps lead to several findings. First, for the PK5 pseudoknot, a misfolded 5' hairpin emerges as a stable kinetic trap in the folding process, and the detrapping from this misfolded state is the rate-limiting step for the overall folding process. The calculated rate constant and activation barrier agree well with the experimental data. Second, as an application of the model, we investigate the kinetic folding pathways for human telomerase RNA (hTR) pseudoknot. The predicted folding and unfolding pathways not only support the proposed role of conformational switch between hairpin and pseudoknot in hTR activity, but also reveal molecular mechanism for the conformational switch. Furthermore, for an experimentally studied hTR mutation, whose hairpin intermediate is destabilized, the model predicts a long-lived transient hairpin structure, and the switch between the transient hairpin intermediate and the native pseudoknot may be responsible for the observed hTR activity. Such finding would help resolve the apparent contradiction between the observed hTR activity and the absence of a stable hairpin.  相似文献   

13.
An important question in protein folding is whether molten globule states formed under equilibrium conditions are good structural models for kinetic folding intermediates. The structures of the kinetic and equilibrium intermediates in the folding of the plant globin apoleghemoglobin have been compared at high resolution by quench-flow pH-pulse labeling and interrupted hydrogen/deuterium exchange analyzed in dimethyl sulfoxide. Unlike its well studied homolog apomyoglobin, where the equilibrium and kinetic intermediates are quite similar, there are striking structural differences between the intermediates formed by apoleghemoglobin. In the kinetic intermediate, formed during the burst phase of the quench-flow experiment, protected amides and helical structure are found mainly in the regions corresponding to the G and H helices of the folded protein, and in parts of the E helix and CE loop regions, whereas in the equilibrium intermediate, amide protection and helical structure are seen in parts of the A and B helix regions, as well as in the G and H regions, and the E helix remains largely unfolded. These results suggest that the structure of the molten globule intermediate of apoleghemoglobin is more plastic than that of apomyoglobin, so that it is readily transformed depending on the solution conditions, particularly pH. Thus, in the case of apoleghemoglobin at least, the equilibrium molten globule formed under destabilizing conditions at acid pH is not a good model for the compact intermediate formed during kinetic refolding experiments. Our high-precision kinetic analysis also reveals an additional slow phase during the folding of apoleghemoglobin, which is not observed for apomyoglobin. Hydrogen exchange pulse-labeling experiments show that the slow-folding phase is associated with residues in the CE loop, which probably forms non-native structure in the intermediate that must be resolved before folding can proceed to completion.  相似文献   

14.
Over the past decade, the "protein engineering method" has been used to investigate the folding pathways of more than 20 different proteins. This method involves measuring the folding and unfolding rates of mutant proteins with single amino acid substitutions spread across the sequence. Comparison of folding rates of the mutant proteins to that of the wild-type protein allows the calculation of the phi value, which can be used to evaluate the stabilizing contribution of an amino acid side chain to the structure of the folding transition state. Here, we review the methodology for analysing data collected in protein engineering folding kinetics studies. We discuss the calculation of folding rates and kinetic m values, the estimation of errors in folding kinetics experiments, phi value calculation including potential pitfalls of the analysis, Br?nsted plots, detecting Hammond behaviour, and the analysis of curved chevron plots.  相似文献   

15.
Sullivan DC  Kuntz ID 《Proteins》2001,42(4):495-511
We report a simple method for measuring the accessible conformational space explored by an ensemble of protein structures. The method is useful for diverse ensembles derived from molecular dynamics trajectories, molecular modeling, and molecular structure determinations. It can be used to examine a wide range of time scales. The central tactic we use, which has been previously employed, is to replace the true mechanical degrees of freedom of a molecular system with the conformationally effective degrees of freedom as measured by the root-mean squared cartesian distances among all pairs of conformations. Each protein conformation is treated as a point in a high dimensional euclidean space. In this article, we model this space in a novel way by representing it as an N-dimensional hypercube, describable with only two parameters: the number of dimensions and the edge length. To validate this approach, we provide a number of elementary test cases and then use the N-cube method for measuring the size and shape of conformational space covered by molecular dynamics trajectories spanning 10 orders of magnitude in time. These calculations were performed on a small protein, the villin headpiece subdomain, exploring both the native state and the misfolded/folding regime. Distinct features include single, vibrationally averaged, substate minima on the 0.1-1-ps time scale, thermally averaged conformational states that persist for 1-100 ps and transitions between these local minima on nanosecond time scales. Large-scale refolding modes appear to become uncorrelated on the microsecond time scale. Associated length scales for these events are 0.2 A for the vibrational minima; 0.5 A for the conformational minima; and 1-2 A for the nanosecond events. We find that the conformational space that is dynamically accessible during folding of villin has enough volume for approximately 10(9) minima of the variety that persist for picoseconds. Molecular dynamics trajectories of the native protein and experimentally derived solution ensembles suggest the native state to be composed of approximately 10(2) of these thermally accessible minima. Thus, based on random exploration of accessible folding space alone, protein folding for a small protein is predicted to be a milliseconds time scale event. This time can be compared with the experimental folding time for villin of 10-100 micros. One possible explanation for the 10-100-fold discrepancy is that the slope of the "folding funnel" increases the rate 1-2 orders of magnitude above random exploration of substates.  相似文献   

16.
A key problem in experimental protein folding is that of characterizing the conformational ensemble of denatured proteins under folding conditions. We address this problem by studying the conformational propensities of reductively unfolded RNase A under folding conditions, since earlier work has indicated that the equilibrium conformational ensemble of fully reduced RNase A resembles the transient conformational ensemble of a burst-phase folding intermediate of disulfide-intact RNase A. To assess these propensities, the relative disulfide-bond populations of the 1S, 2S, and 3S ensembles of the [C40A,C95A] mutant of RNase A were measured. Thirteen of the fifteen possible disulfide bonds are observed, consistent with earlier results and with the rapid reshuffling and lack of stable tertiary structure in these ensembles. This broad distribution contradicts recent observations by another group, but rigorous cross-checks show unambiguously that our data are self-consistent whereas their data are not. The distributions of disulfide bonds in the wild-type and mutant proteins show a power-law dependence on loop length, with an exponent that is significantly smaller than the exponents of either ideal or excluded-volume polymers. The 65-72 disulfide bond is much more strongly favored than would be predicted by this power law, consistent with earlier peptide studies and the disulfide-bond distributions of the 1S and 2S ensembles in wild-type RNase A. Experimental evidence suggests that this preference results from conformational biases in the backbone, rather than from differing accessibilities or reactivities of the two cysteine residues. In general, the other disulfide species do not deviate significantly from the power-law dependence, indicating that the conformational biases are relatively weak.  相似文献   

17.
The guanidinium-denatured state of the N-domain of phosphoglycerate kinase (PGK) has been characterized using solution NMR. Rather than behaving as a homogenous ensemble of random coils, chemical shift changes for the majority of backbone amide resonances indicate that the denatured ensemble undergoes two definable equilibrium transitions upon titration with guanidinium, in addition to the major refolding event. (13)C and (15)N chemical shift changes indicate that both intermediary states have distinct helical character. At denaturant concentrations immediately above the mid-point of unfolding, size-exclusion chromatography shows N-PGK to have a compact, denatured form, suggesting that it forms a helical molten globule. Within this globule, the helices extend into some regions that become beta strands in the native state. This predisposition of the denatured state to extensive non-native-like conformation, illustrates that, rather than directing folding, conformational pre-organization in the denatured state can compete with the normal folding direction. The corresponding reduction in control of the direction of folding as proteins become larger, could thus constitute a restriction on the size of protein domains.  相似文献   

18.
Flavodoxin is an alpha/beta protein with a noncovalently bound flavin-mononucleotide (FMN) cofactor. The apo-protein adopts a structure identical to that of the holo-form, although there is more dynamics in the FMN-binding loops. The equilibrium unfolding processes of Azotobacter vinelandii apo-flavodoxin, and Desulfovibrio desulfuricans ATCC strain 27774 apo- and holo-flavodoxins involve rather stable intermediates. In contrast, we here show that both holo- and apo-forms of flavodoxin from D. desulfuricans ATCC strain 29577 (75% sequence similarity with the strain 27774 protein) unfold in two-state equilibrium processes. Moreover, the FMN cofactor remains bound to the unfolded holo-protein. The folding and unfolding kinetics for holo-flavodoxin exhibit two-state behavior, albeit an additional slower phase is present at very low denaturant concentrations. The extrapolated folding time in water for holo-flavodoxin, approximately 280 microsec, is in excellent agreement with that predicted from the protein's native-state topology. Unlike the holo-protein behavior, the folding and unfolding reactions for apo-flavodoxin are best described by two kinetic phases, with rates differing approximately 15-fold, suggesting the presence of a kinetic intermediate. Both folding phases for apo-flavodoxin are orders of magnitude slower (40- and 530-fold, respectively) than that for the holo-protein. We conclude that polypeptide-cofactor interactions in the unfolded state of D. desulfuricans strain 29577 flavodoxin alter the kinetic-folding path towards two-state and speed up the folding reaction.  相似文献   

19.
Schuler B  Kremer W  Kalbitzer HR  Jaenicke R 《Biochemistry》2002,41(39):11670-11680
We used (19)F NMR to extend the temperature range accessible to detailed kinetic and equilibrium studies of a hyperthermophilic protein. Employing an optimized incorporation strategy, the small cold shock protein from the bacterium Thermotoga maritima (TmCsp) was labeled with 5-fluorotryptophan. Although chaotropically induced unfolding transitions revealed a significant decrease in the stabilization free energy upon fluorine labeling, the protein's kinetic folding mechanism is conserved. Temperature- and guanidinium chloride-dependent equilibrium unfolding transitions monitored by (19)F NMR agree well with the results from optical spectroscopy, and provide a stringent test of the two-state folding character of TmCsp. Folding and unfolding rate constants at high temperatures were determined from the (19)F NMR spectra close to the midpoint of thermal unfolding by global line shape analysis. In combination with results from stopped-flow experiments at lower temperatures, they show that the folding rate constant of TmCsp and its temperature dependence closely resemble those of its mesophilic homologue from Bacillus subtilis, BsCspB. However, the unfolding rate constant of TmCsp is two orders of magnitude lower over the entire temperature range that was investigated. Consequently, the difference in conformational stability between the two proteins is solely due to the unfolding rate constant over a wide temperature range. A thermodynamic analysis points to an important role of entropic factors in the stabilization of TmCsp relative to its mesophilic homologues.  相似文献   

20.
The role that intermediate states play in protein folding is the subject of intense investigation and in the case of ubiquitin has been controversial. We present fluorescence-detected kinetic data derived from single and double mixing stopped-flow experiments to show that the F45W mutant of ubiquitin (WT*), a well-studied single-domain protein and most recently regarded as a simple two-state system, folds via on-pathway intermediates. To account for the discrepancy we observe between equilibrium and kinetic stabilities and m-values, we show that the polypeptide chain undergoes rapid collapse to an intermediate whose presence we infer from a fast lag phase in interrupted refolding experiments. Double-jump kinetic experiments identify two direct folding phases that are not associated with slow isomerisation reactions in the unfolded state. These two phases are explained by kinetic partitioning which allows molecules to reach the native state from the collapsed state via two possible competing routes, which we further examine using two destabilised ubiquitin mutants. Interrupted refolding experiments allow us to observe the formation and decay of an intermediate along one of these pathways. A plausible model for the folding pathway of ubiquitin is presented that demonstrates that obligatory intermediates and/or chain collapse are important events in restricting the conformational search for the native state of ubiquitin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号