首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The proton gradient (delta pH) and electrical potential (delta psi) across the neurosecretory vesicles were measured using the optical probes 9-aminoacridine and Oxanol VI, respectively. The addition of neurosecretory vesicles to 9-aminoacridine resulted in a rapid quenching of the dye fluorescence which was reversed when the delta pH was collapsed with ammonium chloride or K+ in the presence of nigericin. From fluorescence quenching data and the intravesicular volume, delta pH across the membrane was calculated. Mg2+ ATP caused a marked carbonyl cyanide p-trifluoromethoxyphenylhydrazone-sensitive change in the membrane potential measured using Oxanol VI (plus 100 mV inside positive), presumably due to H+ translocation across the neurosecretory vesicle membrane. Imposition of this membrane potential was responsible for the lysis of vesicles in the presence of permeant anions. The effectiveness of these anions to support lysis reflected the relative permeability of the anion which followed the order acetate greater than I- greater than Cl greater than F- greater than SO4- = isethionate = methyl sulfate. These data showed that the neurosecretory vesicles possess a membrane H+-translocating system and prompted the study of Mg2+-dependent ATPase activities in the vesicle fractions. In intact vesicles a Mg2+ ATPase appeared to be coupled to electrogenic proton translocation, since the enzyme activity was enhanced by uncoupling the electrical potential, using proton ionophores. Inhibition of this enzyme with dicyclohexylcarbodiimide also inhibited the carbonyl cyanide p-trifluoromethoxyphenylhydrazone-sensitive delta psi across the vesicle membrane caused by H+ translocation. A second Mg2+ ATPase was also found on the vesicle membranes which is sensitive to vanadate. Complete inhibition of this enzyme with vanadate had little effect on the proton ionophore-uncoupled ATPase activity or on the Mg2+ ATP-induced membrane potential change.  相似文献   

2.
The vacuo-lysosomes of Hevea brasiliensis (rubber tree) constitute a suitable model system for the study of active transport and energization at the level of the membrane of plant vacuoles. The pH gradient (delta pH) and the membrane potential (delta psi) of vacuo-lysosomes were determined by means of the weak base methylamine and the lipophilic cation tetraphenylphosphonium. The values obtained depended strongly on the experimental conditions such as medium pH or K+ concentration. Under experimental conditions, i.e., pH 7.5 outside and low K+, the delta pH amounts to about 0.9 unit, interior acid, and the delta psi to -120 mV, interior negative. The delta psi is presumably caused by the imposed K+ gradient, and the internal acidification might be a consequence of the passive proton inflow along the electric field. This explanation is sustained by the ineffectiveness of carbonyl cyanide p-trifluoromethoxyphenylhydrazone in destroying the delta pH and delta psi, whereas higher K+ concentration decreased both. Under conditions existing in vivo, the membrane potential might be significantly lower. The presence of ATP increased the acidification of the intravesicular space by 0.5pH unit to a delta pH of up to 1.4 and shifts the membrane potential at least 60mV to a more positive value. The change of the protonmotive potential did not occur with ADP; the pH-dependence of the change was identical with the pH-dependence of a vacuo-lysosomal membrane-bound ATPase, and the effect of ATPase was prevented by the presence of the uncoupler carbonyl cyanide p-trifluoromethoxyphenylhydrazone. The change of protonmotive potential difference, brought about by the ATPase, was at least 90 mV. This is evidence that a vacuo-lysosomal ATPase in plants can function as an electrogenic proton pump that transfers protons into the vacuo-lysosomal space.  相似文献   

3.
The possible presence of ATP-driven H+ translocase activity in isolated rat parotid secretory granules has been examined by several approaches. First the transmembrane pH difference measured by either [14C] methylamine or [3H]acetate distribution is not substantially affected by ATP in the presence of membrane-permeating anions. Second, despite a low intrinsic H+ permeability of parotid granule membranes, only a small variably detectable inside-positive transmembrane potential is observed (by altered distribution of radioactive ions) when ATP is added in the absence of permeant anions. Third, ATP-induced lysis of parotid granules is minor and appears to be independent of ATP hydrolysis. Finally, ATP-hydrolase activity of the parotid granule fraction is not stimulated by an H+ ionophore, nor is it susceptible to inhibition by 7-chloro-4-nitrobenz-2-oxa-1,3-diazole at a concentration which decreases the measured ATPase of purified chromaffin granule membranes by more than 80%. These findings suggest that this exocrine secretory granule type, which is characterized by storage of a heterogeneous mixture of secretory proteins, exhibits H+ pump activity which is at most a small fraction of that observed in biogenic amine storage granules of neural and endocrine tissues.  相似文献   

4.
Endocytic vesicles possess an electrogenic proton pump, and measurements of ATPase activity suggest that Cl- may stimulate proton pump activity. This study was undertaken to measure the steady-state pH, potential (delta psi), and total proton electrochemical gradients established by the rat liver multivesicular body (MVB) proton pump and to examine the effects of Cl- (0.5-140 mM) on these gradients. Radiolabeled [( 14C] methylamine and 36Cl-) and fluorescent (fluorescein isothiocyanate-conjugated low density lipoproteins) probes were used to assess internal pH (pHi) and delta psi. In the absence of ATP, pHi averaged 7.37 +/- 0.05 (extracellular pH 7.31 +/- 0.02), and delta psi ranged from -32 to -71 mV; but neither pHi nor delta psi varied consistently with [Cl-]. In the presence of ATP, pHi decreased progressively with increasing [Cl-] to a plateau value of about 5.89 at greater than or equal to 25 mM Cl-, and MVB exhibited an interior positive delta psi that was maximal at the lowest Cl- concentration (+65.5 mV) and decreased as medium Cl- increased. The total ATP-dependent proton electrochemical gradient (proton-motive force (delta p] averaged 118.0 +/- 4.3 mV and did not change in any consistent manner as [Cl-] varied almost 300-fold. However, initial rates of MVB acidification increased with increasing [Cl-]. These studies indicate that: (a) in the absence of ATP, isolated MVB exhibited a negative delta psi, probably a Donnan potential; (b) in the presence of ATP and at a [Cl-] similar to that in hepatocyte cytoplasm (25 mM), MVB pHi was 5.89, and delta psi was +9.6 mV; and (c) over the range of [Cl-] tested, the magnitudes of delta pH and delta psi were inversely related, apparently related to Cl- availability, but the ATP-dependent delta p did not vary. Therefore, it is concluded that Cl- increases the initial rate of vesicle acidification in MVB and also affects the relative chemical and electrical contributions of the steady-state proton pump-determined delta p. Cl-, however, does not alter steady-state delta p.  相似文献   

5.
Plasma membrane vesicles were reconstituted by freezing and thawing of purified plasma membrane fraction from the yeast Metschnikowia reukaufii and phosphatidylcholine (type II-S from Sigma). The reconstituted plasma membrane vesicles generated a proton gradient (acidic inside) upon addition of ATP in presence of alkali cations. delta pH generation was most efficient when K+ was present both outside and inside the plasma membrane vesicles. Both ATPase activity and proton translocation in plasma membrane vesicles were inhibited by orthovanadate (50% inhibition at 100 microM). Plasma membrane vesicles reconstituted without added phosphatidylcholine generated in addition to delta pH, also an electrical potential difference delta psi (inside positive). Delta psi generation exhibited no K+ specificity. 50 microM dicyclohexylcarbodiimide inhibited completely delta psi generation whereas the K+-channel blocker quinine (5 microM) caused an 8-fold increase of delta psi. The proton gradient was much less affected by the agents. Taking into account the K+-dependent stimulation of the plasma membrane ATPase of M. reukaufii, these results further support the conclusion that the ATPase operates as a partially electrogenic H+/K+ exchanger, as was also suggested for other yeast plasma membrane ATPases.  相似文献   

6.
The membrane potential (delta psi) of whole cells of Methanobacterium thermoautotrophicum strain delta H was estimated under different external conditions using a TPP(+)-sensitive electrode. The results show that the delta psi values of M. thermoautotrophicum at alkaline pHout (8.5) are comparable with delta psi values under slightly acidic conditions (pH 6.8; 230 and 205 mV, respectively). On the other hand, the size of colonies on Petri dishes was remarkably smaller at pH 8.5 than at 6.8. The delta psi was insensitive to relevant ATPase inhibitors. At pH 6.8, the protonophore 3,3',4',5-tetrachlorosalicylanilide (TCS) strongly inhibited delta psi formation and ATP synthesis driven by methanogenic electron transport. On the other hand, at pH 8.5 the CH4 formation and ATP synthesis were insensitive to TCS and a protonophore-resistant delta psi of approximately 150 mV was determined. The finding of a protonophore-resistant delta psi at pH 8.5 indicates that at alkaline pHout these cells can switch from H(+)-energetics to Na(+)-energetics, when the delta [symbol: see text] H+ becomes limited. The results strongly support the hypothesis that at alkaline pHout Na+ ions might fully substitute for H+ in these cells as the coupling ions.  相似文献   

7.
G E Dean  P J Nelson  G Rudnick 《Biochemistry》1986,25(17):4918-4925
The ATP-dependent H+ pump from adrenal chromaffin granules is, like the platelet-dense granule H+ pump, essentially insensitive to the mitochondrial ATPase inhibitors sodium azide, efrapeptin, and oligomycin and also insensitive to vanadate and ouabain, agents that inhibit the Na+,K+-ATPase. The chromaffin granule H+ pump is, however, sensitive to low concentrations of NEM (N-ethylmaleimide) and Nbd-Cl (7-chloro-4-nitro-2,1,3-benzoxadiazole). These transport ATPases may thus belong to a new class of ATP-dependent ion pumps distinct from F1F0-and phosphoenzyme-type ATPases. Comparisons of ATP hydrolysis with ATP-dependent serotonin transport suggest that approximately 80% of the ATPase activity in purified chromaffin granule membranes is coupled to H+ pumping. Most of the remaining ATPase activity is due to contaminating mitochondrial ATPase and Na+,K+-ATPase. When extracted with cholate and octyl glucoside, the H+ pump is solubilized in a monodisperse form that retains NEM-sensitive ATPase activity. When reconstituted into proteoliposomes with crude brain phospholipid, the extracted enzyme recovers ATP-dependent H+ pumping, which shows the same inhibitor sensitivity and nucleotide dependence as the native pump. These data demonstrate that the predominant ATP hydrolase of chromaffin granule membrane is also responsible for ATP-driven amine transport and granule acidification in both native and reconstituted membranes.  相似文献   

8.
The electrical potential (delta psi) and proton gradient (alpha pH) across the membranes of isolated bovine chromaffin granules and ghosts were simultaneously and quantitatively measured by using the membrane- permeable dyes 3,3'dipropyl-2,2'thiadicarbocyanine (diS-C3-(5)) to measure delta psi and 9-aminoacridine or atebrin to measure delta pH. Increases or decreases in the delta psi across the granular membrane could be monitored by fluorescence or transmittance changes of diS-C3- (5). Calibration of the delta psi was achieved by utilization of the endogenous K+ and H+ gradients, and valinomycin or carbonyl cyanide-p- trifluoromethoxyphenylhydrazone (FCCP), respectively, with the optical response of diS-C3-(5) varying linearly with the Nernst potential for H+ and K+ over the range -60 to +90 mV. The addition of chromaffin granules to a medium including 9-aminoacridine or atebrin resulted in a rapid quenching of the dye fluorescence, which could be reversed by agents known to cause collapse of pH gradients. From the magnitude of the quenching and the intragranular water space, it was possible to calculate the magnitude of the alpha pH across the chromaffin granule membrane. The time-course of the potential-dependent transmittance response of diS-C3-(5) and the delta pH-dependent fluorescence of the acridine dyes were studied simultaneously and quantitatively by using intact and ghost granules under a wide variety of experimental conditions. These results suggest that membrane-permeable dyes provide an accurate method for the kinetic measurement of delta pH and delta psi in an amine containing subcellular organelle.  相似文献   

9.
J Shioi  S Naito    T Ueda 《The Biochemical journal》1989,258(2):499-504
Measurements have been made of the ATP-dependent membrane potential (delta psi) and pH gradient (delta pH) across the membranes of the synaptic vesicles purified from bovine cerebral cortex, using the voltage-sensitive dye bis[3-propyl-5-oxoisoxazol-4-yl]pentamethine oxanol and the delta pH-sensitive fluorescent dye 9-aminoacridine respectively. A pre-existing small delta pH (inside acidic) was detected in the synaptic vesicles, but no additional significant contribution by MgATP to delta pH was observed. In contrast, delta psi (inside positive) increased substantially upon addition of MgATP. This ATP-dependent delta psi was reduced by thiocyanate anion (SCN-), a delta psi dissipator, or carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone (FCCP), a protonmotive-force dissipator. Correspondingly, a substantially larger glutamate uptake occurred in the presence of MgATP, which was inhibited by SCN- and FCCP. A nonhydrolysable analogue of ATP, adenosine 5'-[beta gamma-methylene]triphosphate, did not substitute for ATP in either delta psi generation or glutamate uptake. The results support the hypothesis that a H+-pumping ATPase generates a protonmotive force in the synaptic vesicles at the expense of ATP hydrolysis, and the protonmotive force thus formed provides a driving force for the vesicular glutamate uptake. The delta psi generation by ATP hydrolysis was not affected by orthovanadate, ouabain or oligomycin, but was inhibited by N-ethylmaleimide, quercetin, trimethyltin, 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole and 4-acetamido-4'-isothiocyanostilbene-2,2'-disulphonic acid. These results indicate that the H+-pumping ATPase in the synaptic vesicle is similar to that in the chromaffin granule, platelet granule and lysosome.  相似文献   

10.
Sealed vesicles were isolated from a plant pathogenic fungus Phytophthora megasperma f. sp. glycinea using a modification of a method previously developed for plant plasma membrane vesicle isolation. Vanadate-sensitive, proton pumping microsomal membrane vesicles were resolved on a linear sucrose density gradient and found to comigrate with a vanadate-sensitive ATPase. Both the proton pumping and ATPase activity of these vesicles had a pH optimum of 6.5 and demonstrated similar properties with respect to substrate specificity and inhibitor sensitivity. These properties were in agreement with previously published data on the Phytophthora plasma membrane ATPase. In contrast with previous reports there was no K+ stimulation of the plasma membrane ATPase and the Km for Mg:ATP (1:1 concentration ratio) was higher (2.5 mM). A comparison of anion (potassium salts) effects upon delta pH and delta psi formation in sealed Phytophthora plasma membrane vesicles revealed a correspondence between the relative ability of anions to stimulate proton transport and to reduce delta psi. The relative order for this effect was KCl greater than KBr much greater than KMes, KNO3, KClO3, K2SO4. This study presents a method for the isolation of sealed vesicles from Phytophthora hyphae. It also provides basic information on the plasma membrane H+-ATPase and its associated proton pumping activity.  相似文献   

11.
The effect of the transmembrane proton gradient (delta pH) and potential gradient (delta psi) upon the rate and extent of amine accumulation was investigated in intact 5-hydroxytryptamine (serotonin) containing dense granules. The granules were isolated and purified from other subcellular organelles under isotonic conditions utilizing a newly developed continuous density gradient of Percoll. As measured by [14C]methylamine distribution, isolated granules suspended in a highly buffered medium at pH 7.0 had an intragranular pH of 5.40, independent of the pH of the external medium. This pH gradient could be collapsed by the addition of 60 mM ammonia. In the presence of Mg-ATP, a transmembrane potential (delta psi) of 30-40 mV, inside positive, was generated and sustained for over 30 min, as measured by [14C]thiocyanate distribution. The addition of carbonyl cyanide p-trifluoromethoxyphenylhydrazone, a proton translocator, resulted in the reversal of the potential to negative values. The Mg-ATP-dependent generation of the delta psi was prevented by addition of dicyclohexylcarbodiimide and trimethyltin, inhibitors of proton-translocating ATPases in this and other subcellular organelles. Ammonia (1-50 mM) addition to highly buffered suspensions of serotonin granules caused a dose-dependent decrease in the delta pH, while thiocyanate added at varying concentrations produced a dose-related collapse of the delta psi and had no effect upon the delta pH. Both the delta pH and delta psi were found to independently drive accumulation of [14C]serotonin into the granules; stepwise collapse of each gradient resulted in a corresponding diminution of [14C]serotonin accumulation. The maximum rate and extent of [14C]serotonin uptake, however, were observed in the presence of both the delta pH and delta psi. The conclusions provide support for the existence of a proton-translocating ATPase in the serotonin granule membrane responsible for the generation of the delta pH and delta psi. Moreover, the results demonstrate a primary role for the electrochemical proton gradient (delta mu H+) in the carrier-mediated active transport of 5-hydroxytryptamine into the platelet granule.  相似文献   

12.
Measurements were made of the difference in the electrochemical potential of protons (delta-mu H+) across the membrane of vesicles restituted from the ATPase complex (TF0.F1) purified from a thermophilic bacterium and P-lipids. Two fluorescent dyes, anilinonaphthalene sulfonate (ANS) and 9-aminoacridine (9AA) were used as probes for measuring the membrane potential (delta psi) and pH difference across the membrane (delta pH), respectively. In the presence of Tris buffer the maximal delta psi ans no delta pH were produced, while in the presence of the permeant anion NO-3 the maximal delta pH and a low delta psi were produced by the addition of ATP. When thATP concentration was 0.24 mm, the delta psi was 140-150 mV (positive inside) in Tris buffer, and the delta pH was 2.9-3.5 units (acidic inside) in the presence of NO-3. Addition of a saturating amount of ATP produced somewhat larger delta psi and delta pH values, and the delta -muH+attained was about 310mV. By trapping pH indicators in the vesicles during their reconstitution it was found that the pH inside the vesicles was pH 4-5 during ATP hydrolysis. The effects of energy transfer inhibitors, uncouplers, ionophores, and permeant anions on these vesicles were studied.  相似文献   

13.
The transmembrane pH gradient maintained by nonrespiring, uncoupled heart mitochondria has been estimated using the distribution of methylamine and of 5,5-dimethyl-2,4-oxazolidinedione (DMO) and compared with the delta pH reported by the fluorescent probe 2,7-biscarboxyethyl-5(6)-carboxyfluorescein (BCECF). Under these conditions the protonmotive force approaches zero and the membrane potential (delta psi) should equal 59 delta pH (P. Mitchell and J. Moyle (1969) Eur. J. Biochem. 7, 471-484). The delta pH reported by DMO corresponds closely to that estimated by BCECF and is consistent with a Donnan potential of no greater than about -30 mV (interior negative) for nonenergized mitochondria in a sucrose medium. This potential appears to result from the presence of immobile negative charges in the matrix and is eliminated by addition of 10 to 25 mM KCl. Measurements of delta pH using the methylamine and of delta tsi using the distribution of 42K+ in the presence of valinomycin result in an apparent overestimation of these parameters due to binding of these components to negative sites on the membrane. Increasing ionic strength decreases this contribution of surface potential, but significant binding can still be detected in 100 mM KCl. These studies suggest that 42K+ (or 86Rb+) is far from an ideal probe for measuring delta tsi in respiring mitochondria and may significantly overestimate this parameter, especially in sucrose media.  相似文献   

14.
The transmembrane potential of isolated chromaffin granules has been measured using the permeant ions [14C]methylamine and [35S]thiocyanate, as well as the fluorescent probe, 9-aminoacridine. At pH 7.0, the granule membrane had a Nernst proton potential of -45mV, inside negative. This potential was sensitive to the external pH, but was unaffected by K+,Na+, Ca2+, Mg2+, or other cations. The pH of zero potential was 6.25 for both methylamine and thiocyanate. Thiocyanate also had a Nernst potential of similar magnitude and sign to that of methylamine at pH 7.0, and was also sensitive to variation in external pH. Mg2+ATP was found to depolarize the granule membrane by a saturable mechanism with a K 1/2 for ATP of 40 muM. Ca2+ was only 30% as effective as Mg2+ in supporting the ATP effect. The pH optimum for this process was 6.25 and appeared to be accompanied by a marked alkalinization of the granule interior. The specificity for ATP was further tested with structural analogs of ATP and GTP. The rate of change of membrane potential in response to changes in external pH or Mg2+ATP was estimated using the fluorescent probe 9-aminoacridine. Changes came to completion in less than 1 s. This suggested that the ATP effects were not dependent on an enzymatic transformation but on an ATP-induced conformational change in the membrane. We conclude that the chromaffin granule exists in at least two proton permeability states, corresponding to the presence or absence of Mg2+ATP. These states may be related to hormone release from granules and regulation of secretion in vivo.  相似文献   

15.
The effects of imposed proton motive force on the kinetic properties of the alkalophilic Bacillus sp. strain N-6 Na+/H+ antiport system have been studied by looking at the effect of delta psi (membrane potential, interior negative) and/or delta pH (proton gradient, interior alkaline) on Na+ efflux or H+ influx in right-side-out membrane vesicles. Imposed delta psi increased the Na+ efflux rate (V) linearly, and the slope of V versus delta psi was higher at pH 9 than at pH 8. Kinetic experiments indicated that the delta psi caused a pronounced increase in the Vmax for Na+ efflux, whereas the Km values for Na+ were unaffected by the delta psi. As the internal H+ concentration increased, the Na+ efflux reaction was inhibited. This inhibition resulted in an increase in the apparent Km of the Na+ efflux reaction. These results have also been observed in delta pH-driven Na+ efflux experiments. When Na(+)-loaded membrane vesicles were energized by means of a valinomycin-induced inside-negative K+ diffusion potential, the generated acidic-interior pH gradients could be detected by changes in 9-aminoacridine fluorescence. The results of H+ influx experiments showed a good coincidence with those of Na+ efflux. H+ influx was enhanced by an increase of delta psi or internal Na+ concentration and inhibited by high internal H+ concentration. These results are consistent with our previous contentions that the Na+/H+ antiport system of this strain operates electrogenically and plays a central role in pH homeostasis at the alkaline pH range.  相似文献   

16.
Mechanisms of transport of 5-hydroxytryptamine in the pancreatic B-cell were investigated by using cell suspensions and secretory granules prepared from a transplantable rat insulinoma. (1) Cells incubated with 5-hydroxy[G-3H]tryptamine at concentrations ranging from 0.1 microM to 5 mM accumulated the radioisotope principally by a simple diffusion process. The incorporated radioactivity was recovered principally as the parent molecule and was recovered predominantly in soluble protein and secretory-granule fractions prepared from the tissue. (2) Isolated granules incubated in buffered iso-osmotic medium without ATP accumulated the amine to concentrations up to 38-fold that of the medium. This process was insensitive to reserpine and occurred over a wide range of 5-hydroxytryptamine concentrations (0.075 microM-25 mM). Above 5 mM, 5-hydroxytryptamine accumulation decreased in parallel with the breakdown of the delta pH across the granule membrane. Uptake was favoured by alkaline media and was reduced by the addition of (NH4)2SO4. In both cases a close correlation was observed between uptake and the transmembrane delta pH, a finding that suggested that 5-hydroxytryptamine permeated the membrane as the free base and equilibrated across the membrane with the delta pH. Binding of 5-hydroxytryptamine to granule constituents also played a part in this process. ATP caused a further doubling of granule 5-hydroxytryptamine uptake by a process that was sensitive to reserpine (0.5 microM). Inhibitor studies suggested that amine transport in this instance was linked to the activity of the granule membrane proton-translocating ATPase. (3) It was concluded that the uptake of amines driven by proton gradients across the insulin-granule membrane could account for the accumulation in vivo of amines in the B-cell.  相似文献   

17.
Using the distribution of weak acids to measure the pH gradient (delta pH; interior alkaline) and the distribution of the lipophilic cation [3H]tetraphenylphosphonium+ to monitor the membrane potential (delta psi; interior negative), we studied the electrochemical gradient or protons (delta mu- H+) across the membrane of Micrococcus lysodeikticus cells and plasma membrane vesicles. With reduced phenazine methosulfate as electron donor, intact cells exhibited a relatively constant delta mu- H+ (interior negative and alkaline) of -193 mV to -223 mV from pH 5.5 to pH 8.5. On the other hand, in membrane vesicles under the same conditions, delta mu- H+ decreased from a maximum value of -166 mV at pH 5.5 to -107 mV at pH 8.0 and above. This difference is related to a differential effect of external pH on the components of delta mu- H+. In intact cells, delta pH decreased from about -86 mV (i.e., 1.4 units) at pH 5.5 to zero at pH 7.8 and above, and the decreases in delta pH was accompanied by a reciprocal increase in delta psi from -110 mV at pH 5.5 to -211 mV at pH 8.0 and above. In membrane vesicles, the decrease in delta pH with increasing external pH was similar to that described for intact cells; however, delta psi increased from -82 mV at pH 5.5 to only -107 mV at pH 8.0 and above.  相似文献   

18.
At the optimal pH for growth (pH 10.5), alkalophilic Bacillus firmus RAB, an obligate aerobe, exhibits normal rates of oxidative phosphorylation despite the low transmembrane proton electrochemical gradient, about -60 mV (delta psi = -180 mV and delta pH = +120 mV). This bioenergetic problem might be resolved by use of an Na+ coupled ATP synthase; otherwise an F1F0-ATPase must be able to utilize low driving forces in this organism. The ATPase activity was extracted from everted membrane vesicles by low ionic strength treatment and purified to homogeneity by hydrophobic interaction chromatography and sucrose density gradient centrifugation. The ATPase preparation had the characteristic F1-ATPase subunit structure, with Mr values of 51,500 (alpha), 48,900 (beta), 34,400 (gamma), 23,300 (delta), and 14,500 (epsilon); the identity of the alpha and beta subunits was confirmed by immunoblotting with anti-beta of Escherichia coli and anti-B. firmus RAB F1. Methanol and octyl glucoside, agents that stimulated the low basal membrane ATPase activity 10- to 12-fold, dramatically elevated the MgATPase activity of the purified F1, more than 150-fold, to 50 mumol min-1 mg protein-1. Anti-F1 inhibited membrane ATPase activity greater than or equal to 80%. The membranes exhibited no Na+-stimulated or vanadate-sensitive ATPase activity when prepared in the absence or presence of Na+ or ATP. These findings, which are consistent with previous studies, establish that in alkalophilic bacteria, ATP hydrolysis, and presumably ATP synthesis is catalyzed by an F1F0-ATPase rather than a Na+ ATPase.  相似文献   

19.
Transport of K+ and H+ in the anaeronically and aerobically grown bacterium Serratia marcescens has been studied. The volumes of one cell of the anaerobically and aerobically grown bacterium were 3.7 X 10(-13) cm3 and 2.4 X 10(-13) cm3, respectively. Irrespective of the growth conditions the bacteria manifested the same respiration rate. However, the values of membrane potential for the anaerobically and aerobically grown bacterium were different and equal to -130 mV and -175 mV (interior negative), respectively, in the absence of an exogenic energy source. KCN + DCCD decreases delta psi down to almost zero in both species. DCCD alone decreases delta psi partially in anaerobes and increases delta psi in aerobes, whereas KCN alone reduces delta psi partially in both species. The introduction of glucose into the medium containing K+ reduces the absolute value of delta psi to [-160] mV in aerobes and to [-20] mV in anaerobes. The effect is not observed without external K+. In the presence of arsenate a delta psi is not reduced after the addition of glucose. At pH 7.5-7.8 the ATP level in aerobes grows notably faster than in anaerobes. The H+ extrusion becomes intensified when K+ uptake is activated by the increase in external osmotic pressure. Apparent Km and Vmax for K+ accumulation are 1.2 mM and 0.4 mM.min-1.g-1. The decrease of delta psi by glucose or KCN + DCCD have no effect on the K+ uptake whereas CCCP inhibits potassium accumulation. At the same time, arsenate stabilizes the delta psi value, but blocks K+ uptake. The accumulation of K+ correlates with the potassium equilibrium potential of -200 mV calculated according to the Nernst equation, whereas the delta psi measured was not more than [-25] mV. The calculated H+/ATP stoichiometry was 3.3 for aerobes. It was assumed that a constitutive K+ pump having a K+/ATP ratio equal to 2 or 3 operates in S. marcescens membranes.  相似文献   

20.
The growth of Vibrio alginolyticus and V. costicola, which possess respiration-dependent Na+ pumps, was highly resistant to the proton conductor carbonyl cyanide-m-chlorophenyl hydrazone (CCCP), in alkaline growth media, even though the membrane was rendered permeable to H+. The pH dependence of CCCP-resistant growth was similar to that of the Na+ pump. In contrast, Escherichia coli ML308-225 showed neither Na+ pump activity nor CCCP-resistant growth, even when grown in alkaline, Na+-rich media. These results suggest that certain bacteria possess the Na+ pump and are thus able to grow under the conditions where H+ circulation across the membrane does not take place. Moreover, V. alginolyticus growing in the presence of CCCP maintains normal levels of internal K+, Na+, and H+. The Na+ pump, therefore, makes the growth of these organisms resistant to CCCP by maintaining the intracellular cation environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号