首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Estrogen is thought to play a protective role against neurodegeneration through a variety of mechanisms including the activation of growth factors, the control of synaptic plasticity, and the reduction of response to various insults, such as iron and glutamate. Increasing evidence indicates an increased level of extracellular glutamate and a down-regulation of glutamate transporters in Alzheimer's disease (AD). In this study, we show that glutamate uptake in astrocytes derived from Alzheimer's patients is significantly lower than that from non-demented controls. Estrogen treatment increases glutamate uptake in a dose-dependent pattern. Two glutamate transporters, GLT-1 and GLAST, are expressed in the astrocytes. Up-regulation of the glutamate transporters is induced by estrogen treatment in AD astrocytes only. Our data suggest that the action of estrogen on glutamate uptake by astrocytes might contribute to its potential neuroprotective role in AD.  相似文献   

3.
One of the pathways implicated in a fine-tuning control of synaptic transmission is activation of the receptors located at the presynaptic terminal. Here we investigated the intracellular events in rat brain cortical and hippocampal nerve terminals occurring under the activation of presynaptic glutamate receptors by exogenous glutamate and specific agonists of ionotropic receptors, NMDA and kainate. Involvement of synaptic vesicles in exocytotic process was assessed using [3H]GABA and pH-sensitive fluorescent dye acridine orange (AO). Glutamate as well as NMDA and kainate were revealed to induce [3H]GABA release that was not blocked by NO-711, a selective blocker of GABA transporters. AO-loaded nerve terminals responded to glutamate application by the development of a two-phase process. The first phase, a fluorescence transient completed in ∼1 min, was similar to the response to high K+. It was highly sensitive to extracellular Ca2+ and was decreased in the presence of the NMDA receptor antagonist, MK-801. The second phase, a long-lasting process, was absolutely dependent on extracellular Na+ and attenuated in the presence of CNQX, the kainate receptor antagonist. NMDA as well as kainate per se caused a rapid and abrupt neurosecretory process confirming that both glutamate receptors, NMDA and kainate, are involved in the control of neurotransmitter release. It could be suggested that at least two types ionotropic receptor are attributed to glutamate-induced two-phase process, which appears to reflect a rapid synchronous and a more prolonged asynchronous vesicle fusion.  相似文献   

4.
Structural organization of the frontal area cortex (fields 8 and 47) in the left and right cerebral hemispheres has been studied cytoarchitectonically in mentally sound and sick persons of various age groups (34-40, 50-60 and 80-90 years). In sections 20 mcm thick, stained with cresyl-violet, in 0.001 mm3 of the cerebral substance (layers III and V) arrangement density is estimated for all pyramidal neurons, for all gliocytes, neurons surrounded with satellite glia and separately for perineuronal gliocytes, as well as per cent ratio of all the parameters obtained. In the process of normal and pathological ageing certain changes, both common for these two processes and specific for each of them, take place in the structural organization of the fields 8 and 47. Under normal ageing the changes are more distinct in the field 8, in the layer III, and at Alzheimer's disease there is a slight prevalence of them in the associative field 47, in the layer V.  相似文献   

5.
Zuo DY  Zhang YH  Cao Y  Wu CF  Tanaka M  Wu YL 《Life sciences》2006,78(19):2172-2178
The present study was designed to investigate the effects of acute and chronic administration of MK-801 (0.6 mg/kg), a noncompetitive NMDA-receptor antagonist on extracellular glutamate (Glu) and ascorbic acid (AA) release in the prefrontal cortex (PFC) of freely moving mice using in vivo microdialysis with open-field behavior. In line with earlier studies, acute administration of MK-801 induced an increase of Glu in the PFC. We also observed single MK-801 treatment increased AA release in the PFC. In addition, our results indicated that the basal AA levels in the PFC after MK-801 administration for 7 consecutive days were significantly decreased, and basal Glu levels also had a decreased tendency. After chronic administration (0.6 mg/kg, 7 days), MK-801 (0.6 mg/kg) challenge significantly decreased dialysate levels of AA and Glu. Our study also found that both acute and chronic administration of MK-801 induced hyperactivity in mice, but the intensity of acute administration was more than that of chronic administration. Furthermore, in all acute treatment mice, individual changes in Glu dialysate concentrations and the numbers of locomotion were positively correlated. In conclusion, this study may provide new evidence that a single MK-801 administration induces increases of dialysate AA and Glu concentrations in the PFC of freely moving mice, which are opposite to those induced by repeated MK-801 administration, with an unknown mechanism. Our results suggested that redox-response might play an important role in the model of schizophrenic symptoms induced by MK-801.  相似文献   

6.
The density and functional activity of theN-methyl-D-aspartate (NMDA)-sensitive glutamate receptor was examined in various brain areas of 3-, 18- and 24-month-old rats. The total numbers of binding sites for the NMDA receptor antagonists [3H]CGP 39653 and [3H]MK 801 binding sites were decreased in the hippocampus, cerebral cortex and striatum of 18- and 24-month-old rats, relative to 3-month-old animals. In the hippocampus of 18-month-old rats, the reduced number of NMDA receptors was associated with an increased sensitivity of [3H]MK 801 binding to the stimulatory action of glycine and glutamate. Thus, 10 M glycine and 10 M glutamate increased [3H]MK 801 binding in the hippocampus of 18-month-old rats by 75 and 160%, respectively; in 3-month-old animals, the same concentration of these amino acids increased binding by 37 and 95%, respectively. The sensitivity of [3H]MK 801 binding to glycine and glutamate was not increased in the cerebral cortex and striatum of aged rats. Moreover, an increased efficacy of glycine and glutamate in stimulating the binding of [3H]MK 801 in the hippocampus was no longer apparent in the 24-month-old rats. The increased sensitivity of [3H]MK 801 binding to glycine and glutamate in the hippocampus of 18-month-old rats may reflect an increase in NMDA receptor activity to compensate for the decrease in receptor number.  相似文献   

7.
The second messenger cyclic guanosine monophosphate (cGMP) plays many roles during nervous system development. Consequently, cGMP production shows complex patterns of regulation throughout early development. Elevated glutamate levels are known to increase cGMP levels in the mature nervous system. A number of clinical conditions including ischemia and perinatal asphyxia can result in elevated glutamate levels in the developing brain. To investigate the effects of elevated glutamate levels on cGMP in the developing cortex we exposed mouse brain slices to glutamate or N‐methyl D ‐aspartate (NMDA). We find that at early postnatal stages when the endogenous production of cGMP is high, glutamate or NMDA exposure results in a significant lowering of the overall production of cGMP in the cortex, unlike the situation in the mature brain. However, this response pattern is complex with regional and cell‐type specific exceptions to the overall lowered cGMP production. These data emphasize that the response of the developing brain to physiological disturbances can be different from that of the mature brain, and must be considered in the context of the developmental events occurring at the time of disturbance. © 2009 Wiley Periodicals, Inc. Develop Neurobiol, 2009  相似文献   

8.
This study aims to determine whether the regulation of extracellular glutamate is altered during aging and its possible consequences on synaptic transmission and plasticity. A decrease in the expression of the glial glutamate transporters GLAST and GLT‐1 and reduced glutamate uptake occur in the aged (24–27 months) Sprague–Dawley rat hippocampus. Glutamatergic excitatory postsynaptic potentials recorded extracellularly in ex vivo hippocampal slices from adult (3–5 months) and aged rats are depressed by DL‐TBOA, an inhibitor of glutamate transporter activity, in an N‐Methyl‐d‐ Aspartate (NMDA)‐receptor‐dependent manner. In aged but not in young rats, part of the depressing effect of DL‐TBOA also involves metabotropic glutamate receptor (mGluRs) activation as it is significantly reduced by the specific mGluR antagonist d‐methyl‐4‐carboxy‐phenylglycine (MCPG). The paired‐pulse facilitation ratio, a functional index of glutamate release, is reduced by MCPG in aged slices to a level comparable to that in young rats both under control conditions and after being enhanced by DL‐TBOA. These results suggest that the age‐associated glutamate uptake deficiency favors presynaptic mGluR activation that lowers glutamate release. In parallel, 2 Hz‐induced long‐term depression is significantly decreased in aged animals and is fully restored by MCPG. All these data indicate a facilitated activation of extrasynaptic NMDAR and mGluRs in aged rats, possibly because of an altered distribution of glutamate in the extrasynaptic space. This in turn affects synaptic transmission and plasticity within the aged hippocampal CA1 network.  相似文献   

9.
The effects of continuous infusion of NMDA receptor antagonist MK-801 on the modulation of NMDA receptor subunits NR1, NR2A, NR2B, and NR2C were investigated by using in situ hybridization study. Differential assembly of NMDA receptor subunits determines their functional characteristics. Continuous intracerebroventricular (i.c.v.) infusion with MK-801 (1 pmol/10 l/h) for 7 days resulted in significant modulations in the NR1, NR2A, and NR2B mRNA levels without producing stereotypic motor syndromes. The levels of NR1 mRNA were significantly increased (9-20%) in the cerebral cortex, striatum, septum, and CA1 of hippocampus in MK-801-infused rats. The levels of NR2A mRNA were significantly decreased (11-16%) in the CA3 and dentate gyrus of hippocampus in MK-801-infused rats. In contrast to NR2A, NR2B subunit mRNA levels were increased (10-14%) in the cerebral cortex, caudate putamen, and thalamus. However, no changes of NR2C subunits in cerebellar granule layer were observed. Using quantitative ligand autoradiography, the binding of NMDA receptor ligand [3H]MK-801 was increased (12-25%) significantly in almost all brain regions except in the thalamus and cerebellum after 7 days infusion with MK-801. These results suggest that region-specific changes of NMDA receptor subunit mRNA and [3H]MK-801 binding are involved in the MK-801-infused adult rats.  相似文献   

10.
Anticonvulsant action of MK-801, a novel noncompetitive antagonist of N-methyl-d-aspartate (NMDA) receptor, was examined in genetically epileptic E1 mice. Systemic injection of MK-801 (0.1–1.0 mg/kg) potently suppressed generalized tonic-clonic convulsions of in a dose-dependent manner (ED50, 0.17 mg/kg). This anticonvulsant effect of MK-801 appeared at a dose which did not induced any obvious behavioral changes. Following the administration of a fully anticonvulsant dose of MK-801 (1 mg/kg), amino acid analysis revealed a significantly elevated level of glycine in the hippocampus. Levels of other amino acids including glutamate, aspartate, taurine, glutamine, alanine, and -aminobutyrate were not changed either in the hippocampus or in the cerebral cortex. This study suggests that NMDA system may play an essential role in seizure-triggering mechanisms in E1 mouse.  相似文献   

11.
Zhu BG  Zhu DH  Chen YZ 《生理学报》1998,50(3):345-348
采用大鼠大脑皮层突触体,人神经母细胞瘤细胞2株SK-N-SH及人多形胶质瘤细胞株BT-325作氚标谷氨酸高亲和摄取实验,探讨蛋白激酶C及蛋白激酶A对于神经元性及胶质细胞性谷氨酸摄取的影响。  相似文献   

12.
Astrocytes control tissue equilibrium and hence define the homoeostasis and function of the CNS (central nervous system). Being principal homoeostatic cells, astroglia are fundamental for various forms of neuropathology, including AD (Alzheimer''s disease). AD is a progressive neurodegenerative disorder characterized by the loss of cognitive functions due to specific lesions in mnesic-associated regions, including the mPFC (medial prefrontal cortex). Here, we analyzed the expression of GS (glutamine synthetase) and GLT-1 (glutamate transporter-1) in astrocytes in the mPFC during the progression of AD in a triple-transgenic mouse model (3xTg-AD). GS is an astrocyte-specific enzyme, responsible for the intracellular conversion of glutamate into glutamine, whereas the removal of glutamate from the extracellular space is accomplished mainly by astroglia-specific GLT-1. We found a significant decrease in the numerical density (Nv, cells/mm3) of GS-positive astrocytes from early to middle ages (1–9 months; at the age of 1 month by 17%, 6 months by 27% and 9 months by 27% when compared with control animals) in parallel with a reduced expression of GS (determined by Western blots), which started at the age of 6 months and was sustained up to 12 months of age. We did not, however, find any changes in the expression of GLT-1, which implies an intact glutamate uptake mechanism. Our results indicate that the decrease in GS expression may underlie a gradual decline in the vital astrocyte-dependent glutamate–glutamine conversion pathway, which in turn may compromise glutamate homoeostasis, leading towards failures in synaptic connectivity with deficient cognition and memory.  相似文献   

13.
Summary In the present study the binding of [3H]MK-801 to glutamatergic receptors of the NMDA type was compared in spontaneously hypertensive (SHR) and normotensive (WKY) rats in various brain structures (including nucleus tractus solitarii) by quantitative receptor autoradiography. Additionally, blood pressure changes after treatment with the NMDA antagonist MK-801 were studied in both strains. There were no differences between SHR and WKY rats either in the level of [3H]MK-801 binding or in the hypertensive reaction to MK-801.  相似文献   

14.
We studied the role of 5-HT(1A) receptors in controlling the release of glutamate (GLU) in the medial prefrontal cortex (mPFC) of conscious rats with the in vivo microdialysis technique. The effect of the 5-HT(1A) receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin infused in the prefrontal cortex was examined under basal conditions and on the rise of extracellular GLU (+106%) induced by co-infusion of the competitive N-methyl-d-aspartate receptor antagonist 3-[(R)-2-carboxypiperazin-4yl]-propyl-1-phosphonic acid (CPP). 8-OH-DPAT (0.3 and 3 microm) had no effect on basal extracellular GLU, but the higher concentration completely abolished the rise of extracellular GLU induced by CPP. CPP also increased extracellular serotonin (5-HT) in the mPFC (+50%) and this effect was antagonized by 3 microm 8-OH-DPAT which, by itself, had no effect on basal 5-HT release. The effects of 8-OH-DPAT on extracellular GLU and 5-HT were reversed by the 5-HT(1A) receptor antagonist WAY100 635 (100 microm), indicating a selective involvement of 5-HT(1A) receptors. WAY100 635 had no effect by itself. These results show that the stimulation of cortical 5-HT(1A) receptors prevents the CPP-evoked rise of extracellular GLU and 5-HT and suggest that these effects may contribute to the ability of intracortical 8-OH-DPAT to counteract cognitive deficits caused by the blockade of NMDA receptors.  相似文献   

15.
Diabetes has been reported to affect salivary glands adversely in humans and experimental models. Glutamate oxaloacetate transaminase (GOT), glutamate pyruvate transaminase (GPT) and lactate dehydrogenase (LDH) are salivary enzymes that also are widely distributed in animal tissues. We determined GOT and GPT levels in saliva samples of 100 type 1 and 30 type 2 diabetic patients using reflectance spectrophotometry and compared them to 30 age and sex matched healthy controls. Statistically significant differences were observed in the mean values of GOT and GPT in type 1 diabetics compared to type 2 and control groups. Significantly higher GOT levels were found in the 1–20 year age group of type 1 diabetics. Our findings suggest that salivary gland damage is due to the same immunological attack that affects pancreatic β cells and results in type 1 diabetes.  相似文献   

16.
It has been proposed that assembly of the final NMDA receptor complex may be modified by prenatal ethanol exposure, resulting in long-term alterations of NMDA receptor pharmacology. We investigated the effect of prenatal and postnatal ethanol exposure on the developmental profile of mRNAs encoding NMDA receptor subunits in rat hippocampus. Female Sprague-Dawley rats were chronically intoxicated for 4 weeks with a 10% (v/v) ethanol solution administered throughout pregnancy and lactation. Hippocampus and cerebellum were isolated from pups (postnatal days 1-28) of the ethanol-exposed and ad libitum groups. Our results, using a semiquantitative RT-PCR technique, showed a selective effect of ethanol exposure on the various NMDA receptor subunits. Ethanol exposure significantly increased the levels of NR1(1XX), NR1(X11) and NR2(D) mRNAs on postnatal days 7 and 14 and decreased the level of NR2(C) on postnatal day 1. Immunoblot analyses demonstrated that NR2(D) protein levels were increased on postnatal day 7 after ethanol exposure. However, the developmental profile of mRNAs encoding for NR2(A-B), NR3(L/S), GBP and Gly/TCP-BP subunits were not affected. Moreover, no significant effects of ethanol exposure were observed on the developmental transition from expression of NR1(0XX) to NR(1XX) splice variants occurring in the cerebellum on postnatal day 19. Unexpectedly, [(3) H]MK-801 binding experiments showed that ethanol exposure increased the B (max) values of high-affinity sites on postnatal days 14 and 28, with no change of K (d) values. These findings indicate that prenatal and/or postnatal ethanol exposure alters the hippocampal levels of mRNAs encoding for certain subunits and the density of high-affinity [(3) H]MK-801 binding sites. As these subunits have been shown to modulate the functional properties of NMDA receptors, these results suggest that this altered expression could be involved in the neurodevelopmental disorders associated with fetal ethanol exposure.  相似文献   

17.
Schizophrenia is a mental illness affecting the normal lifestyle of adults and early adolescents incurring major symptoms as jumbled speech, involvement in everyday activities eventually got reduced, patients always struggle with attention and memory, reason being both the genetic and environmental factors responsible for altered brain chemistry and structure, resulting in schizophrenia and associated orphan diseases. The network biology describes the interactions among genes/proteins encoding molecular mechanisms of biological processes, development, and diseases. Besides, all the molecular networks, protein-protein Interaction Networks have been significant in distinguishing the pathogenesis of diseases and thereby drug discovery. The present meta-analysis prioritizes novel disease indications viz. rare and orphan diseases associated with target Glutamate Ionotropic Receptor NMDA Type Subunit 1, GRIN1 using text mining knowledge-based tools. Furthermore, ZINC database was virtually screened, and binding conformation of selected compounds was performed and resulted in the identification of Narciclasine (ZINC04097652) and Alvespimycin (ZINC73138787) as potential inhibitors. Furthermore, docked complexes were subjected to MD simulation studies which suggests that the identified leads could be a better potential drug to recuperate schizophrenia.  相似文献   

18.
The biochemical and pharmacological properties of [3H]MK-801 binding to the N-methyl-d-aspartate (NMDA) receptor-channel in homogenates of mouse, guinea pig and dog brain, dog cerebral cortex and rat spinal cord were determined using radioligand binding techniques. Specific [3H]MK-801 binding increased linearily with increasing tissue concentration and in general represented 80–93% of the total binding at 6–8 nM radioligand concentration. [3H]MK-801 interacted with brain and spinal homogenates with high affinity. The dissociation constants (K d ) for all tissues studied were similar ranging between 7.9 and 11.9 nM, whereas the maximum number of binding sites (Bmax) showed a wide, tissue-dependent range (0.1–6.75 pmol/mg protein). The rank order of tissue enrichment was found to be as follows: mouse brain>>dog cerebral cortex>>dog brain>> guinea pig brain>>rat spinal cord. Specific [3H]MK-801 binding in rodent and dog brain, dog cerebral cortex and rat spinal cord exhibited a similar pharmacological profile 9correlation coefficients=0.93–0.99). The rank order of potency of unlabelled compounds competing for [3H]MK-801 binding was: (+)MK-801>(–)MK-801>phencyclidine>(–)cyclazocine>>(+)cyclazocine ketamine>(+)N-allyl-N-normetazocine>(–)N-allyl-N-normetazocine>(–)pentazocine>(+)pentazocine. NMDA, Kainate, quisqualate and several other compounds failed to inhibit [3H]MK-801 binding at 100 M. In modulation studies conducted on extensively washed dog cortex membranes, Mg2+ ions stimulated [3H]MK-801 binding at 10 M-1 mM (EC50=91.5 M) and then inhibited the binding from 1 mM to 10 mM (IC50=3.1 mM). Glycine stimulated [3H]MK-801 binding at 30 nM-1 mM (EC50=256 nM). In contrast, Zn2+ ions inhibited the binding of [3H]MK-801 binding site exhibited similar pharmacological and biochemical properties. These data appear to suggest that the pharmacological profile of the NMDA-receptor-channel is species and tissue independent.  相似文献   

19.
Adenosine, by acting on adenosine A(1) and A(2A) receptors, exerts opposite modulatory roles on striatal extracellular levels of glutamate and dopamine, with activation of A(1) inhibiting and activation of A(2A) receptors stimulating glutamate and dopamine release. Adenosine-mediated modulation of striatal dopaminergic neurotransmission could be secondary to changes in glutamate neurotransmission, in view of evidence for a preferential colocalization of A(1) and A(2A) receptors in glutamatergic nerve terminals. By using in vivo microdialysis techniques, local perfusion of NMDA (3, 10 microm), the selective A(2A) receptor agonist 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine (CGS 21680; 3, 10 microm), the selective A(1) receptor antagonist 8-cyclopentyl-1,3-dimethylxanthine (CPT; 300, 1000 microm), or the non-selective A(1)-A(2A) receptor antagonist in vitro caffeine (300, 1000 microm) elicited significant increases in extracellular levels of dopamine in the shell of the nucleus accumbens (NAc). Significant glutamate release was also observed with local perfusion of CGS 21680, CPT and caffeine, but not NMDA. Co-perfusion with the competitive NMDA receptor antagonist dl-2-amino-5-phosphonovaleric acid (APV; 100 microm) counteracted dopamine release induced by NMDA, CGS 21680, CPT and caffeine. Co-perfusion with the selective A(2A) receptor antagonist MSX-3 (1 microm) counteracted dopamine and glutamate release induced by CGS 21680, CPT and caffeine and did not modify dopamine release induced by NMDA. These results indicate that modulation of dopamine release in the shell of the NAc by A(1) and A(2A) receptors is mostly secondary to their opposite modulatory role on glutamatergic neurotransmission and depends on stimulation of NMDA receptors. Furthermore, these results underscore the role of A(1) vs. A(2A) receptor antagonism in the central effects of caffeine.  相似文献   

20.
Glutamate carboxypeptidase II (GCPII), a glial ectoenzyme, is responsible for N-acetylaspartylglutamate (NAAG) hydrolysis. Its regulation in crayfish nervous tissue was investigated by examining uptake of [3H]glutamate derived from N-acetylaspartyl-[3H]glutamate ([3H]NAAG) to measure GCPII activity. Electrical stimulation (100 Hz, 10 min) during 30 min incubation with [3H]NAAG increased tissue [3H]glutamate tenfold. This was prevented by 2-(phosphonomethyl)-pentanedioic acid (2-PMPA), a GCPII inhibitor, suggesting that stimulation increased the hydrolysis of [3H]NAAG and metabolic recycling of [3H]glutamate. Antagonists of glial group II metabotropic glutamate receptors (mGLURII), NMDA receptors and acetylcholine (ACh) receptors that mediate axon-glia signaling in crayfish nerve fibers decreased the effect of stimulation by 58-83%, suggesting that glial receptor activation leads to stimulation of GCPII activity. In combination, they reduced [3H]NAAG hydrolysis during stimulation to unstimulated control levels. Agonist stimulation of mGLURII mimicked the effect of electrical stimulation, and was prevented by antagonists of GCPII or mGLURII. Raising extracellular K+ to three times the normal level stimulated [3H]NAAG release and GCPII activity. These effects were also blocked by antagonists of GCPII and mGLUR(II). No receptor antagonist or agonist tested or 2-PMPA affected uptake of [3H]glutamate. We conclude that NAAG released from stimulated nerve fibers activates its own hydrolysis via stimulation of GCPII activity mediated through glial mGLURII, NMDA and ACh receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号