首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rubisco activase (RCA) is an ancillary photosynthetic protein essential for Rubisco activity. Some data suggest that post‐translational modifications (such as reduction of disulphide bridges) are involved in the regulation of RCA activity. However, despite the key role of protein phosphorylation in general metabolic regulation, RCA phosphorylation has not been well characterised. We took advantage of phosphoproteomics and gas exchange analyses with instant sampling adapted to Arabidopsis rosettes to examine the occurrence and variations of phosphopeptides associated with RCA in different photosynthetic contexts (CO2 mole fraction, light and dark). We detected two phosphopeptides from RCA corresponding to residues Thr 78 and Ser 172, and show that the former is considerably more phosphorylated in the dark than in the light, while the latter show no light/dark pattern. The CO2 mole fraction did not influence phosphorylation of either residue. Phosphorylation thus appears to be a potential mechanism associated with RCA dark inactivation, when Rubisco‐catalysed carboxylation is arrested. Since Thr 78 and Ser 172 are located in the N and Walker domains of the protein, respectively, the involvement of phosphorylation in protein–protein interaction and catalysis is likely.  相似文献   

2.
The role of Rubisco activase in steady-state and non-steady-state photosynthesis was analyzed in wild-type (Oryza sativa) and transgenic rice that expressed different amounts of Rubisco activase. Below 25°C, the Rubisco activation state and steady-state photosynthesis were only affected when Rubisco activase was reduced by more than 70%. However, at 40°C, smaller reductions in Rubisco activase content were linked to a reduced Rubisco activation state and steady-state photosynthesis. As a result, overexpression of maize Rubisco activase in rice did not lead to an increase of the Rubisco activation state, nor to an increase in photosynthetic rate below 25°C, but had a small stimulatory effect at 40°C. On the other hand, the rate at which photosynthesis approached the steady state following an increase in light intensity was rapid in Rubisco activase-overexpressing plants, intermediate in the wild-type, and slowest in antisense plants at any leaf temperature. In Rubisco activase-overexpressing plants, Rubisco activation state at low light was maintained at higher levels than in the wild-type. Thus, rapid regulation by Rubisco activase following an increase in light intensity and/or maintenance of a high Rubisco activation state at low light would result in a rapid increase in Rubisco activation state and photosynthetic rate following an increase in light intensity. It is concluded that Rubisco activase plays an important role in the regulation of non-steady-state photosynthesis at any leaf temperature and, to a lesser extent, of steady-state photosynthesis at high temperature.  相似文献   

3.
4.
5.
Regulation of Rubisco activity in vivo   总被引:8,自引:0,他引:8  
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is not able to achieve and maintain adequate CO2 and Mg2+ activation under physiological conditions. Higher plants and green algae contain Rubisco activase, a soluble protein which not only facilitates Rubisco activation in situ but also regulates enzyme activity in response to irradiance and other factors. Regulation of Rubisco activity by modulation of activation state coordinates the rate of CO2 fixation with the rate of substrate regeneration. This regulation may be required to ensure that the levels of photosynthetic metabolites in the chloroplast are optimal for photosynthesis under a variety of environrmental conditions. Some plant species also appear to regulate Rubisco activity by synthesizing 2-carboxyarabinitol 1-phosphate, an inhibitor of Rubisco in the dark. This inhibitor may function primarily as a regulator of metabolite binding in the dark rather than as a modulator of Rubisco activity in the light.  相似文献   

6.
Jin SH  Hong J  Li XQ  Jiang DA 《Annals of botany》2006,97(5):739-744
BACKGROUND AND AIMS: Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase (RCA) is a nuclear-encoded chloroplast protein that modifies the conformation of Rubisco, releases inhibitors from active sites, and increases enzymatic activity. It appears to have other functions, e.g. in gibberellin signalling and as a molecular chaperone, which are related to its distribution within the chloroplast. The aim of this research was to resolve uncertainty about the localization of RCA, and to determine whether the distributions of Rubisco and RCA were altered when RCA content was reduced. The monocotyledon, Oryza sativa was used as a model species. METHODS: Gas exchange and Rubisco were measured, and the sub-cellular locations of Rubisco and RCA were determined using immunogold-labelling electron microscopy, in wild-type and antisense rca rice plants. KEY RESULTS: In antisense rca plants, net photosynthetic rate and the initial Rubisco activity decreased much less than RCA content. Immunocytolocalization showed that Rubisco in wild-type and antisense plants was localized in the stroma of chloroplasts. However, the amount of Rubisco in the antisense rca plants was greater than in the wild-type plants. RCA was detected in both the chloroplast stroma and in the thylakoid membranes of wild-type plants. The percentage of RCA labelling in the thylakoid membrane was shown to be substantially decreased, while the fraction in the stroma was increased, by the antisense rca treatment. CONCLUSIONS: From the changes in RCA distribution and alterations in Rubisco activity, RCA in the stroma of the chloroplast probably contributes to the activation of Rubisco, and RCA in thylakoids compensates for the reduction of RCA in the stroma, allowing steady-state photosynthesis to be maintained when RCA is depleted. RCA may also have a second role in protecting membranes against environmental stresses as a chaperone.  相似文献   

7.
A dynamic model of leaf CO2 assimilation was developed as an extension of the canonical steady‐state model, by adding the effects of energy‐dependent non‐photochemical quenching (qE), chloroplast movement, photoinhibition, regulation of enzyme activity in the Calvin cycle, metabolite concentrations, and dynamic CO2 diffusion. The model was calibrated and tested successfully using published measurements of gas exchange and chlorophyll fluorescence on Arabidopsis thaliana ecotype Col‐0 and several photosynthetic mutants and transformants affecting the regulation of Rubisco activity (rca‐2 and rwt43), non‐photochemical quenching (npq4‐1 and npq1‐2), and sucrose synthesis (spsa1). The potential improvements on CO2 assimilation under fluctuating irradiance that can be achieved by removing the kinetic limitations on the regulation of enzyme activities, electron transport, and stomatal conductance were calculated in silico for different scenarios. The model predicted that the rates of activation of enzymes in the Calvin cycle and stomatal opening were the most limiting (up to 17% improvement) and that effects varied with the frequency of fluctuations. On the other hand, relaxation of qE and chloroplast movement had a strong effect on average low‐irradiance CO2 assimilation (up to 10% improvement). Strong synergies among processes were found, such that removing all kinetic limitations simultaneously resulted in improvements of up to 32%.  相似文献   

8.
The Rubisco activase amino acid sequences of spinach and tobacco are 79% identical, yet the tobacco protein does not facilitate the activation of the uncarbamylated, ribulose bisphosphate bound form of spinach ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.39) and vice versa. In contrast, combinations of the spinach Rubisco activase with Rubisco from non-Solanaceae species and combinations of tobacco Rubisco activase with Rubisco from other Solanaceae species are almost as effective as the analogous combination. To examine the basis of the preference of an activase protein for either Solanaceae or non-Solanaceae Rubisco, several recombinant chimeric proteins were obtained by combining regions from the cDNAs of spinach and tobacco activase and expression in Escherichia coli. The chimeric proteins were analyzed for ATP hydrolysis and ability to activate spinach and tobacco Rubisco. Comparisons of Rubisco preference with composition of the various activase chimeras indicate that the major determinants of Rubisco preference seem to be localized in the carboxyl-terminal region.  相似文献   

9.
The temperature response of C(3) and C(4) photosynthesis   总被引:1,自引:0,他引:1  
We review the current understanding of the temperature responses of C(3) and C(4) photosynthesis across thermal ranges that do not harm the photosynthetic apparatus. In C(3) species, photosynthesis is classically considered to be limited by the capacities of ribulose 1.5-bisphosphate carboxylase/oxygenase (Rubisco), ribulose bisphosphate (RuBP) regeneration or P(i) regeneration. Using both theoretical and empirical evidence, we describe the temperature response of instantaneous net CO(2) assimilation rate (A) in terms of these limitations, and evaluate possible limitations on A at elevated temperatures arising from heat-induced lability of Rubisco activase. In C(3) plants, Rubisco capacity is the predominant limitation on A across a wide range of temperatures at low CO(2) (<300 microbar), while at elevated CO(2), the limitation shifts to P(i) regeneration capacity at suboptimal temperatures, and either electron transport capacity or Rubisco activase capacity at supraoptimal temperatures. In C(4) plants, Rubisco capacity limits A below 20 degrees C in chilling-tolerant species, but the control over A at elevated temperature remains uncertain. Acclimation of C(3) photosynthesis to suboptimal growth temperature is commonly associated with a disproportional enhancement of the P(i) regeneration capacity. Above the thermal optimum, acclimation of A to increasing growth temperature is associated with increased electron transport capacity and/or greater heat stability of Rubisco activase. In many C(4) species from warm habitats, acclimation to cooler growth conditions increases levels of Rubisco and C(4) cycle enzymes which then enhance A below the thermal optimum. By contrast, few C(4) species adapted to cooler habitats increase Rubisco content during acclimation to reduced growth temperature; as a result, A changes little at suboptimal temperatures. Global change is likely to cause a widespread shift in patterns of photosynthetic limitation in higher plants. Limitations in electron transport and Rubisco activase capacity should be more common in the warmer, high CO(2) conditions expected by the end of the century.  相似文献   

10.
This investigation was performed to study the influence of benomyl on photosynthetic pigments and enzymes in soybean leaves. Chlorophyll and pheophytin levels were reduced by benomyl 45 days after greening. These results indicate that chlorophylla andb, and pheophytin must be controlled by benomyl. SDS-PAGE analysis showed that 50 and 14.5 kD polypeptides represented as the large and small subunits of rubisco. In the both of these subunits, the band intensity of the control was significantly higher than that after benomyl treatment, indicating that these two subunits are affected by benomyl. Benomyl strongly inhibited both the activity and content of rubisco as its concentration was gradually increased. However, it remains unclear whether this reduction of rubisco level was due to a reduced level of rubisco activase. Two major polypeptides of 46 and 42 kD were identified as rubisco activase subunits by SDS-PAGE. The intensity of these two bands was shown to be higher in the control than after benomyl treatment. These results indicate that the rubisco decrease resulting from increased benomyl concentrations was caused by rubisco activase. A significant decrease in both the activity and content of rubisco activase by benomyl was also observed. These results suggest that the decrease in rubisco level caused by benomyl is accompanied by a decrease in both the activity and content of rubisco activase.  相似文献   

11.
The senescence rate of the subtending leaves in deflowered and control plants of pigeon pea ICajanus cajan (L.) Millsp. cv., Prabhat] and chick pea ( Cicer arietinum L. cv. JG 62) were examined during the course of natural and induced senescence, at several stages of pod growth. The leaves from the top 5 nodes on the main axis in pigeon pea and the top 8 nodes on the main axis in chick pea were used throughout the experiments. The natural senescence was characterized in leaves taken directly from the field-growing plants. For the study of induced senescence, the leaves were excised from both control and deflowered plants at various stages of pod growth and placed in test tubes containing water under dark conditions. Senescence was assessed in terms of peroxidase activity and contents of tola] chlorophyll, soluble amino acids and total protein. During natural ageing in the field, the leaves from deflowered plants exhibited delayed senescence in both the species. In contrast, the rate of ageing during induced senescence was higher in the leaves of deflowered plants than in the controls. Although of the same chronological age when excised for induced senescence, the leaves of deflowered plants were evideatly metabolically different from the controls, due to the fact that deflowered plants did not support the development of pods. This difference probably determined the subsequent rate of induced senescence.  相似文献   

12.
13.
Rubisco activase (Rca) facilitates the release of sugar‐phosphate inhibitors at Rubisco catalytic sites during CO2 fixation. Most plant species express two Rca isoforms, the larger Rca‐α and the shorter Rca‐β, either by alternative splicing from a single gene or expression from separate genes. The mechanism of Rubisco activation by Rca isoforms has been intensively studied in C3 plants. However, the functional role of Rca in C4 plants where Rubisco and Rca are located in a much higher [CO2] compartment is less clear. In this study, we selected four C4 bioenergy grasses and the model C4 grass setaria (Setaria viridis) to investigate the role of Rca in C4 photosynthesis. All five C4 grass species contained two Rca genes, one encoding Rca‐α and the other Rca‐β, which were positioned closely together in the genomes. A variety of abiotic stress‐related motifs were identified in the Rca‐α promoter of each grass, and while the Rca‐β gene was constantly highly expressed at ambient temperature, Rca‐α isoforms were expressed only at high temperature but never surpassed 30% of Rca‐β content. The pattern of Rca‐α induction on transition to high temperature and reduction on return to ambient temperature was the same in all five C4 grasses. In sorghum (Sorghum bicolor), sugarcane (Saccharum officinarum), and setaria, the induction rate of Rca‐α was similar to the recovery rate of photosynthesis and Rubisco activation at high temperature. This association between Rca‐α isoform expression and maintenance of Rubisco activation at high temperature suggests that Rca‐α has a functional thermo‐protective role in carbon fixation in C4 grasses by sustaining Rubisco activation at high temperature.  相似文献   

14.
Analysis of total nitrogen, chlorophyll content, ribulose-1,5-bisphosphate carboxylase/oxygenase activity and net photosynthesis rate was carried out on the leaves that support the developing pods in pigeon pea [ Cajanus cajan (L.) Millsp. cv. Prabhat] at several stages during pod filling. A continuous loss in all the above-mentioned parameters was observed during the course of pod development. When no pods were allowed to develop by continuous flower removal treatment, there was a considerable delay in loss of all these metabolic parameters. Excision of pods after their mid-development resulted not only in no further loss, but also in a significant recovery both of total nitrogen and of other investigated characteristics.  相似文献   

15.
Photosynthetic rates and photosynthate partitioning were studied in three-week-old soybean [Glycine max (L.) Merr. cv. Williams] plants exposed to either ambient (35 Pa) or elevated (70 Pa) CO2 in controlled environment chambers. Ambient CO2-grown plants also were given a single 24 h treatment with 70 Pa CO2 1 d prior to sampling. Photosynthetic rates of ambient CO2-grown plants initially increased 36% when the measurement CO2 was doubled from 35 to 70 Pa. Photosynthetic rates of the third trifoliolate leaf, both after 1 and 21 d of elevated CO2 treatment, were 30 to 45% below those of ambient CO2-grown plants when measured at 35 Pa CO2. These reduced photosynthetic rates were not due to increased stomatal resistance and were observed for 2 to 8 h after plants given 1 d of CO2 enrichment were returned to ambient CO2. Initial and total ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) activities, percent activation, Rubisco protein, soluble protein and leaf chlorophyll content were similar in all CO2 treatments. Quantum yields of photosynthesis, determined at limiting irradiances and at 35 Pa CO2, were 0.049±0.003 and 0.038±0.005 mol CO2 fixed per mol quanta for ambient and elevated CO2-grown plants, respectively (p<0.05). Leaf starch and sucrose levels were greater in plants grown at 70 than at 35 Pa CO2. Starch accumulation rates during the day were greater in ambient CO2-grown plants than in plants exposed to elevated CO2 for either 1 or 21 d. However, the percentage of C partitioned to starch relative to total C fixed was unaffected by 1 d of CO2 enrichment. The above results showed that both photosynthetic and starch accumulation rates of soybean leaflets measured at 35 Pa CO2 were temporarily reduced after 1 and 21 d of CO2 enrichment. The biochemical mechanism affecting these responses was not identified.Abbreviations SLW- specific leaf weight (g m–2) - Rubisco- ribulose 1,5-bisphosphate carboxylase/oxygenase - Rul- 5bisP, ribulose 1,5 bisphosphate - DAP- days after planting - SAR- starch accumulation rate - Ci- intercellular CO2 concentration  相似文献   

16.
During the past few years the investigations concerning Rubisco and the changes of its activity and properties at elevated temperature were reconsidered with special reference to the important role of Rubisco activase and Rubisco binding protein. The major changes in Rubisco, Rubisco activase and Rubisco binding protein reported recently are presented in this review. New information on these proteins, including their changes under heat stress conditions, is discussed together with open questions.  相似文献   

17.
水稻 (OryzasativaL .)转绿型白化突变系W2 5在转绿过程中叶绿素、可溶性蛋白质和Rubisco含量的动态变化过程表明 ,白化突变体内叶绿素、可溶性蛋白质和Rubisco含量极低 ,随着转绿过程各组分含量迅速提高 ,转绿至第 30天时超过野生种 2 177s;Rubisco初始活力与Rubisco活化酶含量呈极显著正相关。Rubisco活化酶基因表达的研究结果表明 ,突变体的Rubisco活化酶表达高于野生种 2 177s。在转绿过程中 ,Rubisco活化酶含量的提高要先于Rubisco和光合速率  相似文献   

18.
Inhibition of the net photosynthetic CO2 assimilation rate (Pn) by high temperature was examined in oak (Quercus pubescens L.) leaves grown under natural conditions. Combined measurements of gas exchange and chlorophyll (Chl) a fluorescence were employed to differentiate between inhibition originating from heat effects on components of the thylakoid membranes and that resulting from effects on photosynthetic carbon metabolism. Regardless of whether temperature was increased rapidly or gradually, Pn decreased with increasing leaf temperature and was more than 90% reduced at 45 °C as compared to 25 °C. Inhibition of Pn by heat stress did not result from reduced stomatal conductance (gs), as heat‐induced reduction of gs was accompanied by an increase of the intercellular CO2 concentration (Ci). Chl a fluorescence measurements revealed that between 25 and 45 °C heat‐dependent alterations of thylakoid‐associated processes contributed only marginally, if at all, to the inhibition of Pn by heat stress, with photosystem II being remarkably well protected against thermal inactivation. The activation state of ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco) decreased from about 90% at 25 °C to less than 30% at 45 °C. Heat stress did not affect Rubisco per se, since full activity could be restored by incubation with CO2 and Mg2+. Western‐blot analysis of leaf extracts disclosed the presence of two Rubisco activase polypeptides, but heat stress did not alter the profile of the activase bands. Inhibition of Pn at high leaf temperature could be markedly reduced by artificially increasing Ci. A high Ci also stimulated photosynthetic electron transport and resulted in reduced non‐photochemical fluorescence quenching. Recovery experiments showed that heat‐dependent inhibition of Pn was largely, if not fully, reversible. The present results demonstrate that in Q. pubescens leaves the thylakoid membranes in general and photosynthetic electron transport in particular were well protected against heat‐induced perturbations and that inhibition of Pn by high temperature closely correlated with a reversible heat‐dependent reduction of the Rubisco activation state.  相似文献   

19.
Temperature dependence of two parameters in a photosynthesis model   总被引:5,自引:2,他引:5  
The temperature dependence of the photosynthetic parameters Vcmax, the maximum catalytic rate of the enzyme Rubisco, and Jmax, the maximum electron transport rate, were examined using published datasets. An Arrehenius equation, modified to account for decreases in each parameter at high temperatures, satisfactorily described the temperature response for both parameters. There was remarkable conformity in Vcmax and Jmax between all plants at Tleaf < 25 °C, when each parameter was normalized by their respective values at 25 °C (Vcmax0 and Jmax0), but showed a high degree of variability between and within species at Tleaf > 30 °C. For both normalized Vcmax and Jmax, the maximum fractional error introduced by assuming a common temperature response function is < ± 0·1 for most plants and < ± 0·22 for all plants when Tleaf < 25 °C. Fractional errors are typically < ± 0·45 in the temperature range 25–30 °C, but very large errors occur when a common function is used to estimate the photosynthetic parameters at temperatures > 30 °C. The ratio Jmax/Vcmax varies with temperature, but analysis of the ratio at Tleaf = 25 °C using the fitted mean temperature response functions results in Jmax0/Vcmax0 = 2·00 ± 0·60 (SD, n = 43).  相似文献   

20.
This study establishes a topographical framework for functional investigations on the regulation of lipid biosynthesis and its interaction with embryo photosynthesis in developing soybean seed. Structural observations, combined with molecular and functional parameters, revealed the gradual transformation of chloroplasts into storage organelles, starting from inner regions going outwards. This is evidenced by electron microscopy, confocal laser scanning microscopy, in situ hybridization and histochemical/biochemical data. As a consequence of plastid differentiation, photosynthesis becomes distributed along a gradient within the developing embryo. Electron transport rate, effective quantum yield and O2 production rate are maximal in the embryo periphery, as documented by imaging pulse-amplitude-modulated fluorescence and O2 release via microsensors. The gradual loss of photosynthetic capacity was accompanied by a similarly gradual accumulation of starch and lipids. Noninvasive nuclear magnetic resonance spectroscopy of mature seeds revealed steep gradients in lipid deposition, with the highest concentrations in inner regions. The inverse relationship between photosynthesis and lipid biosynthesis argues against a direct metabolic involvement of photosynthesis in lipid biosynthesis during the late storage stage, but points to a role for photosynthetic oxygen release. This hypothesis is verified in a companion paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号