首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The non-consumptive effects of predators on prey can affect prey phenotypes, potentially having important consequences for communities due to trait-mediated indirect interactions. Predicting non-consumptive effects and their impacts on communities can be difficult because predators can affect resources directly through nutrient cycling and indirectly by altering prey resource use, which can lead to complex interactions among resources and consumers. In this study we examined the effects of caged dragonfly predators on aquatic resources in the presence and absence of two focal herbivores, the tadpoles of Neotropical tree frogs Agalychnis callidryas and Dendropsophus ebraccatus. We crossed the presence/absence of caged dragonflies with four tadpole treatments: no tadpoles, each tadpole species alone, and both species together to examine interactions among tadpole composition, predator presence, and time on tadpole growth, resources, and zooplankton abundances. Predator effects on growth changed through ontogeny and was species-dependent. Predators initially reduced then dramatically increased A. callidryas growth, but had no effect on D. ebraccatus. Predators also increased the abundances of both periphyton and phytoplankton. However, there was no evidence of a trait-mediated trophic cascade (i.e., tadpole by predator interaction). Instead, nutrients from prey carcass subsidies likely played an increasingly important role in facilitating resources, and shaping tadpole growth, competitive interactions, and zooplankton abundances through time. In nutrient-poor aquatic systems the release of nutrients via the consumption of terrestrially derived prey items by aquatic predators may have important impacts on food webs by facilitating resources independent of the role of trait-mediated trophic cascades.  相似文献   

2.
1. Indirect interactions between populations of different prey species mediated by a shared predator population are known to affect prey dynamics. 2. Depending on the temporal and spatial scale, these indirect interactions may result in positive (apparent mutualism), neutral or negative effects (apparent competition) of the prey on each other's densities. Although there is ample evidence for the latter, evidence for apparent mutualism is scarce. 3. The effectiveness of using one species of predator for biological control of more than one pest species depends on the occurrence of such positive or negative effects. 4. We used an experimental system consisting of the two prey species Western flower thrips (Franklineilla occidentalis Pergande) and greenhouse whitefly (Trialeurodes vaporariorum Westwood) and a shared predator, the phytoseiid mite Amblyseius swirskii Athias‐Henriot. We released all three species on the same plant and studied their dynamics and distribution along rows of plants. 5. We expected that the more mobile prey species (thrips) would escape temporarily in the presence of the other prey species (whitefly) by dispersing from plants with the predator. The predator was expected to disperse slower in the presence of two prey species because of the higher availability of food. 6. Evidence was found for slower dispersal of predators and short‐term escape of thrips from predation when whiteflies were present, thus confirming the occurrence of short‐term apparent mutualism. 7. The apparent mutualism resulted in a cascade to the first trophic level: a higher proportion of fruits was damaged by thrips in the presence of whiteflies. 8. We conclude that apparent mutualism can be an important phenomenon in population dynamics, and can significantly affect biological control of pest species that share a natural enemy.  相似文献   

3.
Predators can influence prey abundance and traits by direct consumption, as well as by non-consumptive effects of visual, olfactory, or tactile cues. The strength of these non-consumptive effects (NCEs) can be influenced by a variety of factors, including predator foraging mode, temporal variation in predator cues, and the density of competing prey. Testing the relative importance of these factors for determining NCEs is critical to our understanding of predator-prey interactions in a variety of settings. We addressed this knowledge gap by conducting two mesocosm experiments in a tri-trophic intertidal oyster reef food web. More specifically, we tested how a predatory fish (hardhead catfish, Ariopsis felis) directly influenced their prey (mud crabs, Panopeus spp.) and indirectly affected basal resources (juvenile oysters, Crassostrea virginica), as well as whether these direct and indirect effects changed across a density gradient of competing prey. Per capita crab foraging rates were inversely influenced by crab density, but they were not affected by water-borne predator cues. As a result, direct consumptive effects on prey foraging rates were stronger than non-consumptive effects. In contrast, predator cue and crab density interactively influenced indirect predator effects on oyster mortality in two experiments, with trait-mediated and density-mediated effects of similar magnitude operating to enhance oyster abundance. Consistent differences between a variable predator cue environment and other predator cue treatments (no cue and constant cue) suggests that an understanding of the natural risk environment experienced by prey is critical to testing and interpreting trait-mediated indirect interactions. Further, the prey response to the risk environment may be highly dependent on prey density, particularly in prey populations with strong intra-specific interactions.  相似文献   

4.
Classical views of trophic cascades emphasize the primacy of consumptive predator effects on prey populations to the transmission of indirect effects [density-mediated indirect interactions (DMIIs)]. However, trophic cascades can also emerge without changes in the density of interacting species because of non-consumptive predator effects on prey traits such as foraging behaviour [trait-mediated indirect interactions (TMIIs)]. Although ecologists appreciate this point, measurements of the relative importance of each indirect predator effect are rare. Experiments with a three-level, rocky shore food chain containing an invasive predatory crab ( Carcinus maenas ), an intermediate consumer (the snail, Nucella lapillus ) and a basal resource (the barnacle, Semibalanus balanoides ) revealed that the strength of TMIIs is comparable with, or exceeds, that of DMIIs. Moreover, the sign and strength of each indirect predator effect depends on whether it is measured in risky or refuge habitats. Because habitat shifts are often responsible for the emergence of TMIIs, attention to the sign and strength of these interactions in both habitats will improve our understanding of the link between individual behaviour and community dynamics.  相似文献   

5.
The non-consumptive (or trait-mediated) effects of predators on prey are known to contribute substantially to the negative impact of insect predators on herbivorous insects. Our goal now is to understand what factors alter the relative importance of the consumptive (or density-mediated) and non-consumptive components of the total predator impact. This is important both for understanding the effects of predators in natural systems as well as for successfully manipulating predators for biological control in agriculture. In this study, we tested whether herbivore ontogeny influenced the contribution of consumptive and non-consumptive effects of a predator on herbivore survivorship and plant damage by the herbivores. We addressed these questions using the native plant Solanum ptychanthum Dunal (Solanaceae), the predator Podisus maculiventris Say (Heteroptera: Pentatomidae), and first-, third-, and fourth-instar Manduca sexta L. (Lepidoptera: Sphingidae). In field cage experiments, we found that first- and third-instar M. sexta were more vulnerable to predators compared to fourth instars. In the presence of predators, M. sexta caterpillars spent less time on feeding compared to caterpillars in the absence of predators. The amount of damage the plants received was reduced in the presence of the predator and the consumptive and non-consumptive components contributed approximately equally to this reduction. Thus, the non-consumptive component of the predator is important for all of the herbivore stages vulnerable to predation in our study. We conclude with a discussion of possible implications of considering non-consumptive effects of predators in biological control of agricultural pests.  相似文献   

6.
Numerous studies indicate that the behavioral responses of prey to the presence of predators can have an important role in structuring assemblages through trait-mediated indirect interactions. Few studies, however, have addressed how relative susceptibility to predation influences such interactions. Here we examine the effect of chemical cues from the common shore crab Carcinus maenas on the foraging behavior of two common intertidal gastropod molluscs. Of the two model consumers studied, Littorina littorea is morphologically more vulnerable to crab predation than Gibbula umbilicalis, and it exhibited greater competitive ability in the absence of predation threat. However, Littorina demonstrated a greater anti-predator response when experimentally exposed to predation cues, resulting in a lower level of foraging. This reversed the competitive interaction, allowing Gibbula substantially increased access to shared resources. Our results demonstrate that the susceptibility of consumers to predation can influence species interactions, and suggest that inter-specific differences in trait-mediated indirect interactions are another mechanism through which non-consumptive predator effects may influence trophic interactions.  相似文献   

7.
Trophic cascades have become a dominant paradigm in ecology, yet considerable debate remains about the relative strength of density- (consumptive) and trait-mediated (non-consumptive) effects in trophic cascades. This debate may, in part, be resolved by considering prey experience, which shapes prey traits (through genetic and plastic change) and influences prey survival (and therefore density). Here, we investigate the cascading role of prey experience through the addition of mosquitofish (Gambusia affinis) from predator-experienced or predator-naïve sources to mesocosms containing piscivorous largemouth bass (Micropterus salmoides), zooplankton, and phytoplankton. These two sources were positioned along a competition-defense tradeoff. Results show that predator-naïve mosquitofish suffered higher depredation rates, which drove a density-mediated cascade, whereas predator-experienced mosquitofish exhibited higher survival but fed less, which drove a trait-mediated cascade. Both cascades were similar in strength, leading to indistinguishable top-down effects on lower trophic levels. Therefore, the accumulation of prey experience with predators can cryptically shift cascade mechanisms from density- to trait-mediated.  相似文献   

8.
Different functional groups of generalist predators may complement each other in controlling prey populations; but intraguild interactions, common among generalist predators, may also reduce the strength of top–down control. In natural communities greater alterations to ecosystem function are expected if a whole functional group declines in abundance or is lost. Therefore studying functional group diversity is important for predicting effects of predator loss. We studied the top–down impact of web‐building spiders, hunting spiders and ants, which are highly abundant generalist predators in most terrestrial ecosystems, on prey from the herbivore and decomposer system of a grassland food web. The density of the three predator groups was manipulated by continuous removal in a three‐factorial designed field experiment, which was carried out for two years. We found no positive effect of increasing predator functional group richness on prey control. However there was evidence for strong composition effects between the functional groups. The presence of ants in predator assemblages reduced the prey suppression through mostly trait‐mediated intraguild interactions, while hunting and web‐building spiders contributed additively to prey suppression and reduced the density of herbivore and decomposer prey by 50–60%. A trophic cascade on plant biomass triggered by web‐builders and hunting spiders was diminished at levels of higher predator group diversity. In conclusion, our experiments showed that intraguild interactions strongly influence the strength of top–down control by generalist predators. Among spiders there was evidence for a positive relation between functional group richness and prey suppression but the overall outcome strongly depended on the occurrence of interference, driven by trait‐mediated indirect interactions.  相似文献   

9.
The ecological impacts of predation risk are influenced by how prey allocate foraging effort across periods of safety and danger. Foraging decisions depend on current danger, but also on the larger temporal, spatial or energetic context in which prey manage their risks of predation and starvation. Using a rocky intertidal food chain, we examined the responses of starved and fed prey (Nucella lapillus dogwhelks) to different temporal patterns of risk from predatory crabs (Carcinus maenas). Prey foraging activity declined during periods of danger, but as dangerous periods became longer, prey state altered the magnitude of risk effects on prey foraging and growth, with likely consequences for community structure (trait-mediated indirect effects on basal resources, Mytilus edulis mussels), prey fitness and trophic energy transfer. Because risk is inherently variable over time and space, our results suggest that non-consumptive predator effects may be most pronounced in productive systems where prey can build energy reserves during periods of safety and then burn these reserves as ‘trophic heat’ during extended periods of danger. Understanding the interaction between behavioural (energy gain) and physiological (energy use) responses to risk may illuminate the context dependency of trait-mediated trophic cascades and help explain variation in food chain length.  相似文献   

10.
Behavioural trophic cascades highlight the importance of indirect/risk effects in the maintenance of healthy trophic‐level links in complex ecosystems. However, there is limited understanding on how the loss of indirect top–down control can cascade through the food‐web to modify lower level predator–prey interactions. Using a reef fish food‐web, our study examines behavioural interactions among predators to assess how fear elicited by top‐predator cues (visual and chemical stimuli) can alter mesopredator behaviour and modify their interaction with resource prey. Under experimental conditions, the presence of any cue (visual, chemical, or both) from the top‐predator (coral trout Plectropomus leopardus) strongly restricted the distance swum, area explored and foraging activity of the mesopredator (dottyback Pseudochromis fuscus), while indirectly triggering a behavioural release of the resource prey (recruits of the damselfish Pomacentrus chrysurus). Interestingly, the presence of a large non‐predator species (thicklip wrasse Hemigymnus melapterus) also mediated the impact of the mesopredator on prey, as it provoked mesopredators to engage in an ‘inspection’ behaviour, while significantly reducing their feeding activity. Our study describes for the first time a three‐level behavioural cascade of coral reef fish and stresses the importance of indirect interactions in marine food‐webs.  相似文献   

11.
Few studies have examined how foraging niche shift of a predator over time cascade down to local prey communities. Here we examine patterns of temporal foraging niche shifts of a generalist predator (yellow catfish, Pelteobagrus fulvidraco) and the abundance of prey communities in a subtropical lake. We predicted that the nature of these interactions would have implications for patterns in diet shifts and growth of the predator. Our results show significant decreases in planktivory and benthivory from late spring to summer and autumn, whereas piscivory increased significantly from mid-summer until late autumn and also increased steadily with predator body length. The temporal dynamics in predator/prey ratios indicate that the predation pressure on zooplankton and zoobenthos decreased when the predation pressure on the prey fish and shrimps was high. Yellow catfish adjusted their foraging strategies to temporal changes in food availability, which is in agreement with optimal foraging theory. Meanwhile the decrease in planktivory and benthivory of yellow catfish enabled primary consumers, such as zooplankton and benthic invertebrates, to develop under low grazing pressure via trophic cascading effects in the local food web. Thus, yellow catfish shifts its foraging niche to intermediate consumers in the food web to benefit the energetic demand on growth and reproduction during summer, which in turn indirectly facilitate the primary consumers. In complex food webs, trophic interactions are usually expected to reduce the strength and penetrance of trophic cascades. However, our study demonstrates strong associations between foraging niche of piscivorous fish and abundance of prey. This relationship appeared to be an important factor in producing top-down effects on both benthic and planktonic food webs.  相似文献   

12.
1. Predation on vectors of pathogens can indirectly influence infection spread. In addition to the consumptive aspect of predation, non-consumptive, predator-induced changes in various vector traits can lead to trait-mediated indirect effects on pathogen spread, potentially operating in various directions and magnitudes. 2. A widespread non-consumptive effect of predation is the alteration of individual prey development rates. Yet, the implications of this phenomenon for the spread of vector-borne plant pathogens have not been studied. It is hypothesized that the epidemiological effects of predator-induced changes in vector development rate depend on the pattern in which the transmission biology of the vector changes along its ontogeny. 3. A general epidemiological model was developed that considers the role of predation in the infection dynamics of a plant pathogen, while incorporating vector stage structure to allow for variation in its development rate. 4. By contrasting scenarios that represent typical plant disease systems, this study confirms that the magnitude of the effect of altered development rate on infection prevalence depends on the disparity between juvenile and adult vectors in their pathogen transmission potential. 5. The model also reveals that the effect of predator-induced change in development rate can impact pathogen spread counterintuitively. Specifically, slowing down vector development can result in increased pathogen prevalence due to apparent competition between infected and uninfected vector populations. 6. More detailed, stage-specific studies of non-consumptive predator effects on vectors are likely to advance our understanding of plant disease ecology, and the development of more effective biological control practices in agriculture.  相似文献   

13.
Predators can affect prey populations and, via trophic cascades, predators can indirectly impact resource populations (2 trophic levels below the predator) through consumption of prey (density-mediated indirect effects; DMIEs) and by inducing predator-avoidance behavior in prey (trait-mediated indirect effects; TMIEs). Prey often employ multiple predator-avoidance behaviors, such as dispersal or reduced foraging activity, but estimates of TMIEs are usually on individual behaviors. We assessed direct and indirect predator effects in a mesocosm experiment using a marine food chain consisting of a predator (toadfish – Opsanus tau), prey (mud crab - Panopeus herbstii) and resource (ribbed mussel – Geukensia demissa). We measured dispersal and foraging activity of prey separately by manipulating both the presence and absence of the predator, and whether prey could or could not disperse into a predator-free area. Consumption of prey was 9 times greater when prey could not disperse, probably because mesocosm boundaries increased predator capture success. Although predator presence did not significantly affect the number of crabs that emigrated, the presence of a predator decreased resource consumption by prey, which resulted in fewer resources consumed for each prey that emigrated in the presence of a predator, and reduced the overall TMIE. When prey were unable to disperse, TMIEs on mussel survival were 3 times higher than the DMIEs. When prey were allowed to disperse, the TMIEs on resource survival increased to 11-times the DMIEs. We found that restricting the ability of prey to disperse, or focusing on only one predator-avoidance behavior, may be underestimating TMIEs. Our results indicate that the relative contribution of behavior and consumption in food chain dynamics will depend on which predator-avoidance behaviors are allowed to occur and measured.  相似文献   

14.
The effects of predators on the density of their prey can have positive indirect effects on the abundance of the preys resource via a trophic cascade. This concept has strongly influenced contemporary views of how communities are structured. However, predators also can transmit indirect effects by inducing changes in prey traits. We show that the mere presence of predator risk cues can initiate a trophic cascade in rocky shore tide pools. In large (mean surface area =9 m2), natural tide pools, we manipulated crab density and their foraging ability to examine the relative importance of lethal (density-mediated) and non-lethal (trait-mediated) predator effects to algal community development. We found that perceived predation risk reduced snail density as much as the direct predation treatment, showing that green crab predation was not an important factor regulating local snail density. Instead, snail emigration away from resident crabs appears to be the most important factor regulating local snail density. As a result, the abundance of ephemeral green algae was similar in the predation risk and direct predation treatments, suggesting that the consumption of snails by crabs plays a minimal role in mediating the trophic cascade. Increased attention to trait-mediated effects that are transmitted by predator-induced changes in prey behavior may change our view of how predators exert their strong influence on community structure.  相似文献   

15.
Predators can impact their prey via consumptive effects that occur through direct killing, and via non-consumptive effects that arise when the behaviour and phenotypes of prey shift in response to the risk of predation. Although predators'' consumptive effects can have cascading population-level effects on species at lower trophic levels there is less evidence that predators'' non-consumptive effects propagate through ecosystems. Here we provide evidence that suppression of abundance and activity of a mesopredator (the feral cat) by an apex predator (the dingo) has positive effects on both abundance and foraging efficiency of a desert rodent. Then by manipulating predators'' access to food patches we further the idea that apex predators provide small prey with refuge from predation by showing that rodents increased their habitat breadth and use of ‘risky′ food patches where an apex predator was common but mesopredators rare. Our study suggests that apex predators'' suppressive effects on mesopredators extend to alleviate both mesopredators'' consumptive and non-consumptive effects on prey.  相似文献   

16.
Predators directly and indirectly affect the density and the behavior of prey. These effects may potentially cascade down to lower trophic levels. In this study, we tested the effects of predator calls (playbacks of bird vocalizations: Tyto alba, Speotyto cunicularia, and Vanellus chilensis), predator visual stimuli (stuffed birds) and interactions of visual and auditory cues, on the behavior of frugivore phyllostomid bats in the field. In addition, we tested if the effects of predation risk cascade down to other trophic levels by measuring rates of seed dispersal of the tree Muntingia calabura. Using video recording, we found that bats significantly decreased the foraging frequency on trees when a visual cue of T. alba was present. However, no stimuli of potential predatory birds, including vocalization of T. alba, affected bat foraging frequency. There was a change in bat behavior during 7 min, but then their frequency of activity gradually increased. Consequently, the presence of T. alba decreased by up to ten times the rate of seed removal. These results indicate that risk sensitivity of frugivorous phyllostomid bats depends on predator identity and presence. Among the predators used in this study, only T. alba is an effective bat predator in the Neotropics. Sound stimuli of T. alba seem not to be a cue of predation risk, possibly because their vocalizations are used only for intraspecific communication. This study emphasizes the importance of evaluating different predator stimuli on the behavior of vertebrates, as well as the effects of these stimuli on trait-mediated trophic cascades.  相似文献   

17.
Predator diversity and abundance are under strong human pressure in all types of ecosystems. Whereas predator potentially control standing biomass and species interactions in food webs, their effects on prey biomass and especially prey biodiversity have not yet been systematically quantified. Here, we test the effects of predation in a cross‐system meta‐analysis of prey diversity and biomass responses to local manipulation of predator presence. We found 291 predator removal experiments from 87 studies assessing both diversity and biomass responses. Across ecosystem types, predator presence significantly decreased both biomass and diversity of prey across ecosystems. Predation effects were highly similar between ecosystem types, whereas previous studies had shown that herbivory or decomposition effects differed fundamentally between terrestrial and aquatic systems based on different stoichiometry of plant material. Such stoichiometric differences between systems are unlikely for carnivorous predators, where effect sizes on species richness strongly correlated to effect sizes on biomass. However, the negative predation effect on prey biomass was ameliorated significantly with increasing prey richness and increasing species richness of the manipulated predator assemblage. Moreover, with increasing richness of the predator assemblage present, the overall negative effects of predation on prey richness switched to positive effects. Our meta‐analysis revealed strong general relationships between predator diversity, prey diversity and the interaction strength between trophic levels in terms of biomass. This study indicates that anthropogenic changes in predator abundance and diversity will potentially have strong effects on trophic interactions across ecosystems. Synthesis The past centuries we have experienced a dramatic loss of top–predator abundance and diversity in most types of ecosystems. To understand the direct consequences of predator loss on a global scale, we quantitatively summarized experiments testing predation effects on prey communities in a cross‐system meta‐analysis. Across ecosystem types, predator presence significantly decreased both biomass and diversity of prey, and predation effects were highly similar. However, with increasing predator richness, the overall negative effects of predation on prey richness switched to positive ones. Anthropogenic changes in predator communities will potentially have strong effects on prey diversity, biomass, and trophic interactions across ecosystems.  相似文献   

18.
Finke DL  Denno RF 《Oecologia》2006,149(2):265-275
The ability of predators to elicit a trophic cascade with positive impacts on primary productivity may depend on the complexity of the habitat where the players interact. In structurally-simple habitats, trophic interactions among predators, such as intraguild predation, can diminish the cascading effects of a predator community on herbivore suppression and plant biomass. However, complex habitats may provide a spatial refuge for predators from intraguild predation, enhance the collective ability of multiple predator species to limit herbivore populations, and thus increase the overall strength of a trophic cascade on plant productivity. Using the community of terrestrial arthropods inhabiting Atlantic coastal salt marshes, this study examined the impact of predation by an assemblage of predators containing Pardosa wolf spiders, Grammonota web-building spiders, and Tytthus mirid bugs on herbivore populations (Prokelisia planthoppers) and on the biomass of Spartina cordgrass in simple (thatch-free) and complex (thatch-rich) vegetation. We found that complex-structured habitats enhanced planthopper suppression by the predator assemblage because habitats with thatch provided a refuge for predators from intraguild predation including cannibalism. The ultimate result of reduced antagonistic interactions among predator species and increased prey suppression was enhanced conductance of predator effects through the food web to positively impact primary producers. Behavioral observations in the laboratory confirmed that intraguild predation occurred in the simple, thatch-free habitat, and that the encounter and capture rates of intraguild prey by intraguild predators was diminished in the presence of thatch. On the other hand, there was no effect of thatch on the encounter and capture rates of herbivores by predators. The differential impact of thatch on the susceptibility of intraguild and herbivorous prey resulted in enhanced top-down effects in the thatch-rich habitat. Therefore, changes in habitat complexity can enhance trophic cascades by predator communities and positively impact productivity by moderating negative interactions among predators.  相似文献   

19.
Arthropods often engage in complex trophic interactions such as intraguild predation (IGP), true omnivory (i.e., feeding on plants and prey), and apparent competition. Theoretical treatments of the effects of such interactions on herbivore populations have been concerned almost entirely with equilibrium conditions. Yet these interactions are common in non-equilibrium settings such as agroecosystems, where they are likely to have a strong influence on pest populations. We therefore tested short-term effects of IGP and food supplementation on interactions between two predators (the phytoseiid mite Neoseiulus cucumeris and the anthocorid bug Orius laevigatus) and their shared prey, Frankliniella occidentalis, on strawberry plants. All three consumers feed on strawberry pollen, both mites and bugs prey on thrips, and the bug also feeds on the mites (IGP). Strong IGP on mites (IG prey) by the bugs (IG predator) was recorded in structurally-simple arenas. In a more complex setting (whole-plants), however, the intensity of IGP differed among plant structures. Likewise, pollen supplementation reduced both IGP and predation on thrips in a structurally simple setting. In the whole-plant experiment, IGP was more intense on pollen-bearing than pollen-free flowers. The study illustrated how spatial dynamics, generated when consumers track food sources differently in the habitat and possibly when herbivorous and IG prey alter their distribution to escape predation, led to site-specific configuration of interacting populations. The intensity of resulting trophic interactions was weakened by food supplementation and by increased complexity of the habitat.  相似文献   

20.
Abstract 1. Predatory arthropods lay their eggs such that their offspring have sufficient prey at their disposal and run a low risk of being eaten by conspecific and heterospecific predators, but what happens if the prey attacks eggs of the predator? 2. The egg distribution and time allocation of adult female predatory mites Iphiseius degenerans as affected by predation of their eggs by prey, the western flower thrips Frankliniella occidentalis, were studied on sweet pepper plants. The predatory mites attack the first instar of thrips but all active stages of thrips are capable of killing the eggs of the predator; however the predatory mite is used for biological control of thrips. 3. The majority of predatory mite eggs was laid on the underside of leaves in hair tufts (domatia). During the experiment, females spent increasing amounts of time in flowers where they fed on pollen and thrips larvae. The risk of predation on predator eggs by thrips was lower on leaves than in flowers where the majority of thrips resides. Moreover, predation risk was higher outside leaf domatia than inside. 4. This suggests that predators avoid ovipositing in places with abundant prey to prevent their eggs from being eaten by thrips.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号