首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Thioredoxin-dependent redox regulation of p53-mediated p21 activation   总被引:18,自引:0,他引:18  
Thioredoxin (TRX) is a dithiol-reducing enzyme that is induced by various oxidative stresses. TRX regulates the activity of DNA-binding proteins, including Jun/Fos and nuclear factor-kappaB. TRX also interacts with an intranuclear reducing molecule redox factor 1 (Ref-1), which enhances the activity of Jun/Fos. Here, we have investigated the role of TRX in the regulation of p53 activity. Electrophoretic mobility shift assay showed that TRX augmented the DNA binding activity of p53 and also further potentiated Ref-1-enhanced p53 activity. Luciferase assay revealed that transfection of TRX enhanced p53-dependent expression of p21 and further intensified Ref-1-mediated p53 activation. Furthermore, Western blot analysis revealed that p53-dependent induction of p21 protein was also facilitated by transfection with TRX. Overexpression of transdominant negative mutant TRX (mTRX) suppressed the effects of TRX or Ref-1, showing a functional interaction between TRX and Ref-1. cis-Diamminedichloroplatinum (II) (CDDP) induced p53 activation and p21 transactivation. The p53-dependent p21 transactivation induced by CDDP was inhibited by mTRX overexpression, suggesting that TRX-dependent redox regulation is physiologically involved in p53 regulation. CDDP also stimulated translocation of TRX from the cytosol into the nucleus. Hence, TRX-dependent redox regulation of p53 activity indicates coupling of the oxidative stress response and p53-dependent repair mechanism.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
11.
As a transition metal capable of undergoing one-electron oxidation-reduction conversions, copper (Cu) is essential for life and fulfills important catalytic functions. Paradoxically, the same redox properties of copper can make it extremely dangerous because it can catalyze production of free radical intermediates from molecular oxygen. Factors involved in regulation of redox activity of albumin-bound copper have not been well characterized. In the present study, effects of modification of the albumin cysteine-34 (Cys-34) and binding of nonesterified fatty acids on the redox-cycling activity of the complex of copper with human serum albumin (Cu/HSA) were studied. Because ascorbate is the most abundant natural reductant/scavenger of free radicals in blood plasma, the electron paramagnetic resonance assay of ascorbate radical formation was used as a method to monitor Cu/HSA redox-cycling activity. At Cu/HSA ratios below 1:1, the bound Cu was virtually redox inactive, as long as Cys-34 was in reduced state (Cu/HSA-SH). Alkylation, nitrosylation, or oxidation of Cu/HSA resulted in the appearance of redox-cycling activity. Experiments with ultrafiltration of Cu/HSA alkylated with N-ethylmaleimide (Cu/HSA-NEM) showed that at Cu/HSA-NEM ratios below 1:1, the ascorbate radicals were produced by Cu tightly bound to HSA rather than by Cu released in solution. The rate of ascorbate radical production in HSA-NEM and S-nitrosylated HSA (HSA-NO) was, however, more than one order of magnitude lower than that in a solution containing equivalent concentration of free copper ions. While Cu/HSA-SH was redox inactive, binding of oleic or linoleic acids induced Cu-dependent redox-cycling with maximal activity reached at a fatty acid to protein molar ratio of 3:1 for oleic acid and 2:1 for linoleic acid. Binding of fatty acids caused profound conformational changes and facilitated oxidation of the Cys-34 SH-group at essentially the same ratios as those that caused redox-cycling activity of Cu/HSA. We conclude that fatty acids regulate anti-/prooxidant properties of Cu-albumin via controlling redox status of Cys-34.  相似文献   

12.
13.
14.
15.
The skeletal muscle Ca(2+)-release channel (ryanodine receptor type 1 (RyR1)) is a redox sensor, susceptible to reversible S-nitrosylation, S-glutathionylation, and disulfide oxidation. So far, Cys-3635 remains the only cysteine residue identified as functionally relevant to the redox sensing properties of the channel. We demonstrate that expression of the C3635A-RyR1 mutant in RyR1-null myotubes alters the sensitivity of the ryanodine receptor to activation by voltage, indicating that Cys-3635 is involved in voltage-gated excitation-contraction coupling. However, H(2)O(2) treatment of C3635A-RyR1 channels or wild-type RyR1, following their expression in human embryonic kidney cells, enhances [(3)H]ryanodine binding to the same extent, suggesting that cysteines other than Cys-3635 are responsible for the oxidative enhancement of channel activity. Using a combination of Western blotting and sulfhydryl-directed fluorescent labeling, we found that two large regions of RyR1 (amino acids 1-2401 and 3120-4475), previously shown to be involved in disulfide bond formation, are also major sites of both S-nitrosylation and S-glutathionylation. Using selective isotopecoded affinity tag labeling of RyR1 and matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy, we identified, out of the 100 cysteines in each RyR1 subunit, 9 that are endogenously modified (Cys-36, Cys-315, Cys-811, Cys-906, Cys-1591, Cys-2326, Cys-2363, Cys-3193, and Cys-3635) and another 3 residues that were only modified with exogenous redox agents (Cys-253, Cys-1040, and Cys-1303). We also identified the types of redox modification each of these cysteines can undergo. In summary, we have identified a discrete subset of cysteines that are likely to be involved in the functional response of RyR1 to different redox modifications (S-nitrosylation, S-glutathionylation, and oxidation to disulfides).  相似文献   

16.
We reported that the first two cysteine residues out of three present in paired domain (PD), a DNA-binding domain, are responsible for redox regulation of Pax-8 DNA binding activity. We show that glutathionylation of these cysteines has a regulatory role in PD binding. Wild-type PD and its mutants with substitution of cysteine to serine were synthesized and named CCC, CSS, SCS, SSC, and SSS according to the positions of substituted cysteines. They were incubated in a buffer containing various ratios of GSH/GSSG and subjected to gel shift assay. Binding of CCC, CSS, and SCS was impaired with decreasing GSH/GSSG ratio, whereas that of SSC and SSS was not affected. Because [3H]glutathione was incorporated into CCC, CSS, and SCS, but not into SSC and SSS, the binding impairment was ascribed to glutathionylation of the redox-reactive cysteines. This oxidative inactivation of PD binding was reversed by a reductant dithiothreitol and by redox factor (Ref)-1 in vitro. To explore the glutathionylation in cells, Chinese hamster ovary cells overexpressing CSS and SCS were labeled with [35S]cysteine in the presence of cycloheximide. Immunoprecipitation with an antibody against PD revealed that treatment of the cells with an oxidant diamide induced the 35S incorporation into both mutants, suggesting the PD glutathionylation in cells. Since the two cysteine residues in PD are conserved in all Pax members, this novel posttranslational modification of PD would provide a new insight into molecular basis for modulation of Pax function.  相似文献   

17.
18.
Apurinic/Apyrmidinic Endonuclease 1/Redox Factor-1 (APE1/Ref-1) is a reductant which is important for vascular homeostasis. SIRTUIN1 (SIRT1) is a lysine deacetylase that also promotes endothelium-dependent vasorelaxation. We asked if APE1/Ref-1 governs the redox state and activity of SIRT1, and whether SIRT1 mediates the effect of APE1/Ref-1 on endothelium-dependent vascular function. APE1/Ref-1 maintains sulfhydryl (thiol) groups of cysteine residues in SIRT1 in the reduced form and promotes endothelial SIRT1 activity. APE1/Ref-1 stimulates SIRT1 activity by targeting highly conserved vicinal thiols 371 and 374 which form a zinc tetra-thiolate motif in the deacetylase domain of SIRT1. Cysteine residues in the N-terminal redox domain of APE1/Ref-1 are essential for reducing SIRT1 and stimulating its activity. APE1/Ref-1 protects endothelial SIRT1 from hydrogen peroxide-induced oxidation of sulfhydryls and from inactivation. APE1/Ref-1 also promotes lysine deacetylation of the SIRT1 target endothelial nitric oxide synthase (eNOS). SIRT1 mutated at cysteines 371 and 374, which renders it non-reducible by APE1/Ref-1, prevents lysine deacetylation of eNOS by APE1/Ref-1. SIRT1 free thiol (reduced sulfhydryl) content and deacetylase activity are diminished in all examined tissues of APE1/Ref-1+/− mice, including the vasculature. Overexpression of SIRT1 in aortas of APE1/Ref-1+/− mice restores endothelium-dependent vasorelaxation and bioavailable nitric oxide (NO) to levels similar to those observed in wild-type mice. Thus, APE1/Ref-1, by maintaining functionally important cysteine sulfhydryls in SIRT1 in the reduced form, promotes endothelial SIRT1 activity. This reductive activation of endothelial SIRT1 by APE1/Ref-1 mediates the effect of APE1/Ref-1 on eNOS acetylation, promoting endothelium-derived NO and endothelium-dependent vasorelaxation.  相似文献   

19.
Role of redox factor-1 in hyperhomocysteinemia-accelerated atherosclerosis   总被引:3,自引:0,他引:3  
Hyperhomocysteinemia (HHcy) is an independent risk factor for atherosclerosis. We have previously shown that homocysteine can induce monocyte chemoattractant protein-1 (MCP-1) secretion via reactive oxygen species (ROS) in human monocytes in vitro. In the present study, we investigated whether redox factor-1 (Ref-1) is involved in HHcy-accelerated atherosclerosis. We used a mild HHcy animal model, aortic roots and peritoneal macrophages were isolated for immunohistochemistry and Western blotting, from apoE-/- and C57BL/6J mice fed a high Hcy diet (1.8 g/L) for 4 or 12 weeks. Four-week HHcy apoE-/- mice showed more plaques and significantly increased immunostaining of Ref-1 and MCP-1 in foam cells, and HHcy mice showed enhanced Ref-1 expression in peritoneal macrophages. To explore the mediating mechanism, incubation with Hcy (100 microM) increased Ref-1 protein level and translocation in human monocytes in vitro. In addition, Hcy-induced NADPH oxidase activity mediated the upregulation of Ref-1. Furthermore, overexpressed Ref-1 upregulated NF-kappaB and MCP-1 promoter activity, and antisense Ref-1 reduced Hcy-induced NF-kappaB DNA-binding activity and MCP-1 secretion. These data indicate that Hcy-induced ROS upregulate the expression and translocation of Ref-1 via NADPH oxidase, and then Ref-1 increases NF-kappaB activity and MCP-1 secretion in human monocytes/macrophages, which may accelerate the development of atherosclerosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号