首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Two strains of Kluyveromyces marxianus (A1 and A2) isolated from ‘aguamiel’ (agave sap) and one strain of K. lactis var. lactis (P7) isolated from ‘pulque’ (its fermented product), were studied to make a survey of inulinase production. The strains of K. marxianus A1 and A2 were the best producers of inulinase, giving up to 2.5 times more enzyme than the control hyperproducing strain K. marxianus CDBB-L-278, and showed lower catabolic repression than this. One strain isolated from pulque was identified as K. lactis var. lactis and was also an excellent inulinase producer, being the first strain of this species reported as such. These strains were very good inulinase producers and they had low susceptibility to catabolic repression probably because the source from which they were isolated was rich in sucrose and oligofructans. They can be used in the transformation of inulin to produce fructose and/or oligofructans.  相似文献   

2.
Wild killer yeasts have been identified as inhibitory to strains used as starters in the production of alcoholic beverages such as beer and wine; therefore, killer or killer-resistant strains have been sought for use in alcoholic fermentations. In the current paper a total of 16 strains belonging to six species were isolated. From two samples of Agave sap (aguamiel) the following yeast strains were isolated: Candida lusitaneae (1), Kluyveromyces marxianus var. bulgaricus (2), and Saccharomyces cerevisiae (capensis) (1). Additionally, in seven samples of pulque (the fermented product), the species C. valida (six strains), S. cerevisiae (chevalieri) (4), S. cerevisiae (capensis) (1), and K. marxianus var. lactis (1) were found. The killer strains were C. valida and K. marxianus var. lactis from pulque and K. marxianus var. bulgaricus from aguamiel. One strain of S. cerevisiae (chevalieri) isolated from pulque which did not show killer activity was, on the other hand, resistant to other killer strains and it had a remarkable ethanol tolerance, suggesting that this strain could be used for alcohol production.  相似文献   

3.
The sexual or teleomorphic state of yeasts has only been described in a few clinically involved species, mainly those of the Saccharomycetaceae family. With the aim of gathering information on their incidence in human pathology, a study has been made of a total of 2,135 strains isolated from clinical samples and cultivated in McClary agar. From these, 8 strains in teleomorphic state were identified: Kluyveromyces marxianus [1], Pichia anomala [2], Pichia farinosa [1], Pichia membranaefaciens [1] and Saccharomyces cerevisiae [3]. The two strains of P. anomala were responsible for fungemia; K. marxianus and the two strains of S. cerevisiae produced vaginitis; the other strains were oral cavity colonizers.  相似文献   

4.
Summary Our previous work showed that NADP+-dependent glutamate dehydrogenase from K. marxianus behaves similarly to its counterpart in S. cerevisiae. It suggested that the ammonia assimilation pathway might be different between K. marxianus and the genetic closed species K. lactis. In the present work, we analyzed the genetic similarity among the GDH gene family in K. marxianus and closed yeasts. Specific primers for GDH genes were designed based on the K. marxianus sequences deposited in the Génolevures Database. One of them, for the KmGDH2 gene, proved to be specific for K. marxianus DNA samples, which confirmed the molecular identification of environmental yeast isolates, and can be proposed for rapid screening of this yeast from environmental samples. The nucleotide sequence revealed that KmGDH2 belongs to the S. cerevisiae GDH1 gene family together with KlGDH gene.  相似文献   

5.
Hybridization studies between strains of Kluyveromyces marxianus and the remaining species of the genus involving the use of auxotrophic mutants, are reported. K. marxianus was found to be interfertile with K. bulgaricus, K. cicerisporus, K. dobzhanskii, K. drosophilarum, K. fragilis, K. lactis, K. phaseolosporus, K. vanudenii and K. wikenii. Accepting interfertility as criterion for conspecificity, these nine syngamous taxa are relegated to the status of biotypes or physiologic races of a single species K. marxianus.  相似文献   

6.
The molecular characterization of 14 strains of Kluyveromyces marxianus isolated from Agave fourcroydes (Lem.) in Yucatan, Mexico, was performed by AP-PCR analysis, PCR-RFLP of 5.8S-ITS, and complete NTS regions. A sequence analysis of the D1/D2 domain of the 26S rDNA was also carried out in six selected strains. The AP-PCR approach had the highest discrimination power for the molecular characterization of new henequen K. marxianus strains. PCR-RFLP of 5.8S-ITS regions did not reveal polymorphisms in this group of strains. The restriction enzyme digestion analysis of NTS region enables the separation among strains which coincides with ascospore shape groups. The molecular tools used in this article may be useful to confirm a preliminary screen of yeasts isolated from henequen without the use of growth characteristics or morpho-physiological tests.  相似文献   

7.
Molecular karyotyping and Southern blot hybridization were used to investigate chromosomal polymorphism of the LAC genes controlling lactose fermentation in Kluyveromyces marxianus strains isolated from various dairy products and natural sources in Russia and CIS countries. Profound polymorphism of karyotype patterns and accumulation of LAC genes were observed in dairy K. marxianus strains. K. marxianus strains isolated from dairy products intensively fermented lactose at 37°C after one day of cultivation, while non-dairy strains exhibited delayed lactose fermentation or did not ferment it at all. Based on the fermentation tests, twelve K. marxianus strains were selected, which are of interest as potential probiotic microorganisms suitable for further molecular genetic studies and breeding.  相似文献   

8.
Pulsed field gel electrophoresis using OFAGE, TAFE, and CHEF systems has been used to more fully characterize karyotypic variation within the two closely related fungal species of Ophiostoma ulmi sensu lato. Twelve wild-type and laboratory strains, representing the less agressive species O. ulmi and both of the biotypes of the more aggressive species O. novo-ulmi were studied and their karyotypes determined. Depending on the strain, a minimum of four to a minimum of eight chromosomal DNA bands were present that fall into three distinct size classes, with one exception. Strain CESSI6K (O. novo-ulmi, North American aggressive subgroup) contains a unique chromosomal DNA band which comigrated near a Saccharomyces cerevisiae chromosome of 0.95 Mb. This unique band was the smallest O. ulmi s. l. chromosomal DNA observed. Seven of the twelve strains shared a common chromosomal DNA banding pattern, whereas each of the other five had a unique karyotype. There was no correlation between chromosome profile and species, as some O. novo-ulmi and O. ulmi strains shared common electrophoretic karyotypes.  相似文献   

9.
The lactic yeast Kluyveromyces marxianus var.marxianus (formerly K. fragilis) autolyzates at faster rate than Saccharomyces cerevisiae. During K. marxianus autolysis, quite similar release kinetics were observed for intracellular space markers (potassium ions, nucleotides), cell-wall components (polysaccharides, N-acetyl-D-Glucosamine) and non specific products (amino nitrogen). By Scanning Electronic Microscopy examination, no cell burst was observed, but a variation in cell shape (from ellipsoidal to cylindrical), as well as a 43% decrease in the internal volume were observed. The mechanism proposed for S. cerevisiae autolysis appeared also likely for K. marxianus.Abbreviations NacGlc N-acetyl-D-glucosamine - x total biomass (dry cellular weight) concentration  相似文献   

10.
The replicating plasmid, pDblet, transformed the budding yeast Kluyveromyces marxianus to an efficiency of 104 transformant g–1 DNA. Transformed cells showed 1% of segregation rate without affecting their growth rate of 0.69 h–1 and glucose consumption. These results were similar or better than the commonly used pE1 plasmid and suggests that pDblet can be used for cloning genes in K. marxianus.  相似文献   

11.
Efficient plasmid transformation of Kluyveromyces marxianus cells of 1.9 × 103 transformant μg−1 DNA with an episomal plasmid was achieved by the use of a simple lithium acetate method with the addition of 10 mM DTT and an increased heat shock temperature of 47 °C. This method is shown to be also efficient for replicative plasmids. Therefore, we suggest its use as a routine method to transform K. marxianus cells. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Through preliminary plate tests,Kluyveromyces marxianus was found to be much more resistant to toxic heavy metals compared to aCUP1 R strain ofSaccharomyces cerevisiae. Specific growth rate and maximum dry weights affected by increasing metal concentrations were determined to obtain precise patterns of resistance. Metal biosorption was also monitored during the course of growth in synthetic media containing respective metals at 0.5 mM final concentration. Although Zn- and Co-binding was negligible, as much as 90% of silver, 60% of copper, and 65% of cadmium were found to be absorbed by the end of active growth. Analysis of the protein profiles ofS. cerevisiae andK. marxianus on metal exposure suggested constitutive production of metallothionein inK. marxianus. Furthermore, a smaller protein synthesized byK. marxianus on induction by silver or cadmium accounts for the high resistance of the organism to these metals.  相似文献   

13.
We demonstrate herein the ability of Kluyveromyces marxianus to be an efficient ethanol producer and host for expressing heterologous proteins as an alternative to Saccharomyces cerevisiae. Growth and ethanol production by strains of K. marxianus and S. cerevisiae were compared under the same conditions. K. marxianus DMKU3-1042 was found to be the most suitable strain for high-temperature growth and ethanol production at 45°C. This strain, but not S. cerevisiae, utilized cellobiose, xylose, xylitol, arabinose, glycerol, and lactose. To develop a K. marxianus DMKU3-1042 derivative strain suitable for genetic engineering, a uracil auxotroph was isolated and transformed with a linear DNA of the S. cerevisiae ScURA3 gene. Surprisingly, Ura+ transformants were easily obtained. By Southern blot hybridization, the linear ScURA3 DNA was found to have inserted randomly into the K. marxianus genome. Sequencing of one Lys transformant confirmed the disruption of the KmLYS1 gene by the ScURA3 insertion. A PCR-amplified linear DNA lacking K. marxianus sequences but containing an Aspergillus α-amylase gene under the control of the ScTDH3 promoter together with an ScURA3 marker was subsequently used to transform K. marxianus DMKU3-1042 in order to obtain transformants expressing Aspergillus α-amylase. Our results demonstrate that K. marxianus DMKU3-1042 can be an alternative cost-effective bioethanol producer and a host for transformation with linear DNA by use of S. cerevisiae-based molecular genetic tools.  相似文献   

14.
The dairy yeast Kluyveromyces marxianus is a promising cell factory for producing bioethanol and heterologous proteins, as well as a robust synthetic biology platform host, due to its safe status and beneficial traits, including fast growth and thermotolerance. However, the lack of high-efficiency transformation methods hampers the fundamental research and industrial application of this yeast. Protoplast transformation is one of the most commonly used fungal transformation methods, but it yet remains unexplored in K. marxianus. Here, we established the protoplast transformation method of K. marxianus for the first time. A series of parameters on the transformation efficiency were optimized: cells were collected in the late-log phase and treated with zymolyase for protoplasting; the transformation was performed at 0 °C with carrier DNA, CaCl2, and PEG; after transformation, protoplasts were recovered in a solid regeneration medium containing 3–4% agar and 0.8 m sorbitol. By using the optimized method, plasmids of 10, 24, and 58 kb were successfully transformed into K. marxianus. The highest efficiency reached 1.8 × 104 transformants per μg DNA, which is 18-fold higher than the lithium acetate method. This protoplast transformation method will promote the genetic engineering of K. marxianus that requires high-efficiency transformation or the introduction of large DNA fragments.  相似文献   

15.
Summary The plasmid pKBT1 was derived by in vivo recE4-independent recombinational event(s) yielding a structure containing regions of plasmid and chromosomal origin. BamHI digests of plasmid pUB110 (Kanr/Neor) and Bg/II digests of pTL12 (Tmpr, leuA) were mixed, ligated and used to transform competent cells of a recE4 strain of Bacillus subtilis. Kanamycin-resistant transformants were electrophoretically screened for hybrid plasmids. Plasmid pKBT1 (8.0 kb) was smaller than pTL12 (10.4 kb) but larger than monomeric pUB110 (4.5 kb). Plasmid PKBT1 was stably maintained in recE4 strains of B. subtilis and conferred kanamycin resistance but did not specify trimethoprim resistance or leucine prototrophy. At least 86% of the pUB110 monomer length was present in pKBT1 and was completely contained within a single 5.58 kb HindIII fragment. The other segment of pKBT1 was of chromosomal origin as evidenced by lack of homology to pTL12 and strong hybridization to B. subtilis chromosomal DNA. At least one of the in vivo recE4-independent event(s) which produced pKBT1 must have involved intermolecular recombination between transforming and chromosomal DNA. This finding differs from previous reports in which recE4-independent recombination involving pUB110 sequences was a strictly intramolecular event.  相似文献   

16.
Restriction profiles of chromosomal DNA were studied in different Acidithiobacillus ferrooxidans strains grown on medium with Fe2+ and further adapted to another oxidation substrate (S0, FeS2, or sulfide ore concentrates). The restriction endonuclease XbaI digested the chromosomal DNA from different strains into different numbers of fragments of various sizes. Adaptation of two strains (TFBk and TFN-d) to new oxidation substrates resulted in structural changes in XbaI-restriction patterns of their chromosomal DNA. Such changes in the DNA restriction patterns occurred in strain TFBk after the adaptation to precyanidated gravitational pyrite-arsenopyrite concentrate (no. 1) from the Nezhdaninskoe deposit or to copper-containing ore from the Udokanskoe deposit and also in strain TFN-d adapted to untreated pyrite-arsenopyrite concentrate (no. 2) from the Nezhdaninskoe deposit. No changes in the number or size of the XbaI-restriction patterns of chromosomal DNA were revealed in either strain TFBk cultivated on media with pyrite from the Angren and Tulun deposits or in strains TFN-d and TFO grown on media with S0 and pyrite. Neither were changes observed in the XbaI-restriction patterns of the DNA from strain TFV-1, isolated from the copper ore of the Volkovskoe deposit, when Fe2+ was substituted with alternative substrates—S0, pyrite or concentrate no. 2 from the ore of the Nezhdaninskoe deposit. In strain TFO, no differences in the XbaI-restriction patterns of the chromosomal DNA were revealed between the culture grown on medium containing concentrate no. 2 or the concentrate of surface-lying ore from the Olimpiadinskoe deposit and the culture grown on medium with Fe2+. When strain TFO was cultivated on the ore concentrate from deeper horizons of the Olimpiadinskoe deposit, which are characterized by lower oxidation degrees and high antimony content, mutant TFO-2 differing from the parent strain in the chromosomal DNA structure was isolated. The correlation between the lability of the chromosomal DNA structure in A. ferrooxidans strains and the physical and chemical peculiarities of the isolation substrate and habitat is discussed.  相似文献   

17.
Kluyveromyces marxianus has the capability of producing xylitol from xylose because of the endogenous xylose reductase (KmXYL1) gene. In this study, we cloned KmXYL1 genes and compared amino acid sequences of xylose reductase (XR) from four K. marxianus strains (KCTC 7001, KCTC 7155, KCTC 17212, and KCTC 17555). Four K. marxianus strains showed high homologies (99%) of amino acid sequences with those from other reported K. marxianus strains and around 60% homologies with that from Scheffersomyces stipitis. For XR enzymatic activities, four K. marxianus strains exhibited thermostable XR activities up to 45°C and K. marxianus KCTC 7001 showed the highest XR activity. When reaction temperatures were increased from 30 to 45°C, NADH-dependent XR activity from K. marxianus KCTC 7001 was highly increased (46%). When xylitol fermentations were performed at 30 or 45°C, four K. marxianus strains showed very poor xylitol production capabilities regardless fermentation temperatures. Xylitol productions from four K. marxianus strains might be limited because of low xylose uptake rate or cell growth although they have high thermostable XR activities.  相似文献   

18.
The Kluyveromyces marxianus strains CBS 6556, CBS 397 and CBS 712T were cultivated on a defined medium with either glucose, lactose or sucrose as the sole carbon source, at 30 and 37°C. The aim of this work was to evaluate the diversity within this species, in terms of the macroscopic physiology. The main properties evaluated were: intensity of the Crabtree effect, specific growth rate, biomass yield on substrate, metabolite excretion and protein secretion capacity, inferred by measuring extracellular inulinase activity. The strain Kluyveromyces lactis CBS 2359 was evaluated in parallel, since it is the best described Kluyveromyces yeast and thus can be used as a control for the experimental setup. K. marxianus CBS 6556 presented the highest specific growth rate (0.70 h−1) and the highest specific inulinase activity (1.65 U mg−1 dry cell weight) among all strains investigated, when grown at 37°C with sucrose as the sole carbon source. The lowest metabolite formation and highest biomass yield on substrate (0.59 g dry cell weight g sucrose−1) was achieved by K. marxianus CBS 712T at 37°C. Taken together, the results show a systematic comparison of carbon and energy metabolism among three of the best known K. marxianus strains, in parallel to K. lactis CBS 2359.  相似文献   

19.
Superoxide dismutase (SOD) activity is one major defense line against oxidative stress for all of the aerobic organisms, and industrial production of this enzyme is highly demanded. The Cu/Zn superoxide dismutase gene (KmSOD1) of Kluyveromyces marxianus L3 was cloned and characterized. The deduced KmSod1p protein shares 86% and 71% of identity with Kluyveromyces lactis and Saccharomyces cerevisiae Sod1p, respectively. The characteristic motifs and the amino acid residues involved in coordinating copper and zinc and in enzymatic function were conserved. To the aim of developing a microbial production of Cu/Zn superoxide dismutase, we engineered the K. marxianus L3 strain with the multicopy plasmid YG-KmSOD1 harboring the KmSOD1 gene. The production of KmSOD1p in K. marxianus L3 and K. marxianus L3 (pYG-KmSOD1) in response to different compositions of the culture medium was evaluated. The highest specific activity (472 USOD mgprot −1) and the highest volumetric yield (8.8 × 105 USOD l−1) were obtained by the recombinant strain overexpressing KmSOD1 in the presence of Cu2+ and Zn2+ supplements to the culture media. The best performing culture conditions were positively applied to a laboratory scale fed-batch process reaching a volumetric yield of 1.4 × 106 USOD l−1. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
【背景】马克斯克鲁维酵母(Kluyveromyces marxianus)具有完整的木糖代谢途径,可以高效利用木质纤维素中的木糖,因此对其糖转运蛋白基因的研究或可有效解决酵母木糖转运的相关问题。【目的】根据马克斯克鲁维酵母DMKU3-1042中KLMA_70145和KLMA_80101基因位点的功能预测,获得马克斯克鲁维酵母GX-UN120相应的糖转运蛋白基因序列并探究其功能。【方法】将转运蛋白基因分别克隆表达至酿酒酵母EBY.VW4000中考察重组菌株生长特性,以此间接评价对应转运蛋白的转运能力。【结果】Km_SUT2基因编码的糖转运蛋白可有效提高宿主细胞转运木糖、阿拉伯糖、山梨糖、核糖、乳糖和葡萄糖的能力,但却不能转运甘露糖、果糖、蔗糖和半乳糖。类似地,Km_SUT3基因编码的糖转运蛋白可提高细胞转运木糖、阿拉伯糖、山梨糖、半乳糖、核糖、乳糖和葡萄糖的能力,但却不能转运甘露糖和果糖。然而在葡萄糖存在的条件下,重组菌株对各种碳源的利用均受抑制,但Km_SUT3转运木糖和核糖过程中受葡萄糖的抑制作用较小。【结论】马克斯克鲁维酵母GX-UN120中转运蛋白Km_SUT2和Km_SUT3可...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号