首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The brain depends on both glycolysis and mitochondrial oxidative phosphorylation for maintenance of ATP pools. Astrocytes play an integral role in brain functions providing trophic supports and energy substrates for neurons. In this paper, we report that human astrocytoma cells (ADF) undergoing ischemic conditions may use both purine and pyrimidine nucleosides as energy source to slow down cellular damage. The cells are subjected to metabolic stress conditions by exclusion of glucose and incubation with oligomycin (an inhibitor of oxidative phosphorylation). This treatment brings about a depletion of the ATP pool, with a concomitant increase in the AMP levels, which results in a significant decrease of the adenylate energy charge. The presence of purine nucleosides in the culture medium preserves the adenylate energy charge, and improves cell viability. Besides purine nucleosides, also pyrimidine nucleosides, such as uridine and, to a lesser extent, cytidine, are able to preserve the ATP pool. The determination of lactate in the incubation medium indicates that nucleosides can preserve the ATP pool through anaerobic glycolysis, thus pointing to a relevant role of the phosphorolytic cleavage of the N-glycosidic bond of nucleosides which generates, without energy expense, the phosphorylated pentose, which through the pentose phosphate pathway and glycolysis can be converted to energetic intermediates also in the absence of oxygen. In fact, ADF cells possess both purine nucleoside phosphorylase and uridine phosphorylase activities.  相似文献   

2.
Some 4'-C-ethynyl-2'-deoxy purine nucleosides showed the most potent anti-HIV activity among the series of 4'-C-substituted 2'-deoxynucleosides whose 4'-C-substituents were methyl, ethyl, ethynyl and so on. Our hypothesis is that the smaller the substituent at the C-4' position they have, the more acceptable biological activity they show. Thus, 4'-C-cyano-2'-deoxy purine nucleosides, whose substituent is smaller than the ethynyl group, will have more potent antiviral activity. To prove our hypothesis, we planned to develop an efficient synthesis of 4'-C-cyano-2'-deoxy purine nucleosides (4'-CNdNs) and 4'-C-ethynyl-2'-deoxy purine nucleosides (4'-EdNs). Consequently, we succeeded in developing an efficient synthesis of six 2'-deoxy purine nucleosides bearing either a cyano or an ethynyl group at the C-4' position of the sugar moiety from 2'-deoxyadenosine and 2,6-diaminopurine 2'-deoxyriboside. Unfortunately, 4'-C-cyano derivatives showed lower activity against HIV-1, and two 4'-C-ethynyl derivatives suggested high toxicity in vivo.  相似文献   

3.
We propose that the ratio of [14C]formate-labelled purine nucleosides and bases (both intra and extracellular) to nucleic acid purines provides, in exponentially growing cultures, a sensitive index for comparative studies of purine metabolism. This ratio was 4-fold greater for an HGPRT- mutant than for the parental HGPRT+ human lymphoblast line. The major components of the labelled nucleoside and base fraction were hypoxanthine and inosine. By blocking adenosine deaminase activity with coformycin we found that approx. 90% of inosine was formed directly from IMP rather than the route IMP leads to AMP leads to adenosine leads to inosine. The ratio of labelled base + nucleosides to nucleic acids was essentially unchagned for an AK- lymphoblast line and 2-fold greater than control for an HGPRT(-)-KAK- line, demonstrating that a deficiency of adenosine kinase alone has little effect on the accumulation of purine nucleosides and bases. Although adenosine was a minor component of the nucleoside and base fraction, the adenosine fraction increased from 3 to 13% with the addition of coformycin to the HGPRT(-)-AK- line. In the parental and HGPRT- lines, adenosine was shown to be primarily phosphorylated rather than deaminated at concentrations less than 5 microM. Inhibition of IMP dehydrogenase activity by mycophenolic acid caused a 12- and 3-fold increase in the rate of production of labelled base and nucleoside in the parent and HGPRT- cells respectively. These results suggest that a mutationally induced partial deficiency in the activities converting IMP to guanine nucleotides may result in an increased catabolism of IMP.  相似文献   

4.
A bacterium, Ochrobactrum anthropi, produced a large amount of a nucleosidase when cultivated with purine nucleosides. The nucleosidase was purified to homogeneity. The enzyme has a molecular weight of about 170,000 and consists of four identical subunits. It specifically catalyzes the irreversible N-riboside hydrolysis of purine nucleosides, the K(m) values being 11.8 to 56.3 microM. The optimal activity temperature and pH were 50 degrees C and pH 4.5 to 6.5, respectively. Pyrimidine nucleosides, purine and pyrimidine nucleotides, NAD, NADP, and nicotinamide mononucleotide are not hydrolyzed by the enzyme. The purine nucleoside hydrolyzing activity of the enzyme was inhibited (mixed inhibition) by pyrimidine nucleosides, with K(i) and K(i)' values of 0.455 to 11.2 microM. Metal ion chelators inhibited activity, and the addition of Zn(2+) or Co(2+) restored activity. A 1.5-kb DNA fragment, which contains the open reading frame encoding the nucleosidase, was cloned, sequenced, and expressed in Escherichia coli. The deduced 363-amino-acid sequence including a 22-residue leader peptide is in agreement with the enzyme molecular mass and the amino acid sequences of NH(2)-terminal and internal peptides, and the enzyme is homologous to known nucleosidases from protozoan parasites. The amino acid residues forming the catalytic site and involved in binding with metal ions are well conserved in these nucleosidases.  相似文献   

5.
Enzymes with nucleoside hydrolase activity (NHs) belonging to homology group I either are markedly specific for pyrimidine nucleoside substrates or hydrolyze with comparable efficiencies the N-glycosidic bond in all common nucleosides. The biochemical and structural basis for these differences in substrate specificity is still unknown. Here we characterize the binding interactions between the slowly hydrolyzed substrate inosine and the Escherichia coli pyrimidine-specific NH YeiK using cryotrapping and X-ray crystallography. Guided by the structural features of the Michaelis complex, we show the synergic effect of two specific point mutations in YeiK that increase the catalytic efficiency toward purine nucleosides to values comparable to those of natural nonspecific NHs. We demonstrate that the integrity of an active-site catalytic triad comprised of two hydroxylated amino acids and one histidine residue is a requirement for the highly efficient hydrolysis of inosine by group I NHs. Instead, cleavage of the YeiK-preferred substrate uridine is not affected by mutations at the same locations, suggesting a different fine chemical mechanism for the hydrolysis of the two nucleoside substrates. Our study provides for the first time direct evidence that distinct subsets of amino acid residues are involved in the hydrolysis of purine or pyrimidine nucleosides in group I NHs.  相似文献   

6.
The uptake and utilization of purine nucleosides and purines in microplasmodia of Physarum polycephalum were investigated. The results revealed a unique pattern, namely that exogenous purine nucleosides are readily taken up and metabolised, while free purine bases are hardly taken up. The pathways of incorporation have been elucidated in studies with whole cells and with cell-free extracts. The ribonucleosides (adenosine, inosine and guanosine) can be converted into ribonucleotides in two ways; either directly catalysed by a kinase or by a phosphorolytic cleavage to the free base (adenine, hypoxanthine and guanine respectively) which can then be activated by a purine phosphoribosyltransferase. Apparently the purine phosphoribosyltransferases do not react with exogenous purine bases. The deoxyribonucleosides (deoxyadenosine, deoxyinosine and deoxyguanosine) are also phosphorolysed by purine nucleoside phosphorylase to adenine, hypoxanthine and guanine respectively. A portion of deoxyadenosine is directly phosphorylated to dAMP. It appears that only a minor part of the soluble nucleotide pool can be synthesised from exogenous supplied nucleosides and that none of the deoxyribonucleosides specifically label DNA. There is no catabolism of the purine moiety. In agreement with the above findings, we have found that analoguees of purine nucleosides are more toxic than their corresponding purine base analogues.  相似文献   

7.
Human purine nucleoside phosphorylase (PNP) is a ubiquitous enzyme which plays a key role in the purine salvage pathway, and PNP deficiency in humans leads to an impairment of T-cell function, usually with no apparent effect on B-cell function. PNP is highly specific for 6-oxopurine nucleosides and exhibits negligible activity for 6-aminopurine nucleosides. The catalytic efficiency for inosine is 350,000-fold greater than for adenosine. Adenine nucleosides and nucleotides are deaminated by adenosine deaminase and AMP deaminase to their corresponding inosine derivatives which, in turn, may be further degraded. Here we report the crystal structures of human PNP in complex with inosine and 2('),3(')-dideoxyinosine, refined to 2.8A resolution using synchrotron radiation. The present structures provide explanation for ligand binding, refine the purine-binding site, and can be used for future inhibitor design.  相似文献   

8.
Lymphokine-like activity and selective stimulation of B cell growth is exerted by a group of synthetic ribonucleosides derivatized at C8 and exemplified by 8-bromoguanosine (8BrGuo), 8-mercaptoguanosine, and 7-methyl 8-oxoguanosine. However, relatively little is known about their molecular mechanism of action. Like naturally occurring nucleosides, 8BrGuo is taken up into lymphocytes by a process of facilitated diffusion. Naturally occurring nucleosides are then reclaimed by a well characterized salvage pathway, involving sequential phosphorolysis and phosphoribosylation. The studies reported in this communication demonstrate that, in contrast to naturally occurring nucleosides, 8BrGuo is not a substrate for salvage by purine nucleoside phosphorylase. The base that would be produced by putative phosphorolysis, 8-bromoguanine, is biologically inactive and is not a substrate for hypoxanthine-guanine phosphoribosyl-transferase. Accordingly, inhibitors of purine nucleoside phosphorylase-mediated salvage fail to inhibit nucleoside-induced immunostimulation selectively. Examination of the metabolism of 8BrGuo provides no direct evidence that 8BrGuo is phosphorylated by B lymphocytes. Direct enzymatic phosphorylation does not seem to be essential to the mechanism of action of the nucleoside insofar as competitive inhibition of deoxycytidine kinase (an enzyme that directly phosphorylates purines as well as pyrimidines) or of deoxyguanosine kinase fails to inhibit 8BrGuo stimulation selectively. Moreover, studies with synthetic nucleosides in which 3' and/or 5' hydroxyl groups were irreversibly blocked, precluding their phosphorylation, demonstrated that immunobiologic activity can occur in the absence of 3' and/or 5' phosphorylation. Finally, experiments with radiolabeled nucleosides provide no evidence to support the hypothesis that they are incorporated into cellular nucleic acid. These data, together with previous studies, suggest that it is the unmetabolized nucleoside that is active and, as such, is most likely to act in a regulatory capacity.  相似文献   

9.
A rapid, simple, and direct assay for 3',5'-cyclic nucleotide phospho-diesterase activity is based on the effective separation of cyclic AMP, cyclic GMP or cyclic CMP from their corresponding 5'-nucleotides and nucleosides by chromatography on a polyacrylamide-boronate gel. The affinity of the boronate residue for cis-diols results in the retention of 5'nucleotides and nucleosides while 3',5'-cyclic nucleotides are not retained. The coelution of all 5'-nucleotides and nucleosides allows for the accurate assessment of phosphodiesterase activity in preparations contaminated by other purine metabolizing enzymes such as 5'-nucleotidases and nucleotide and nucleoside deaminases. Phosphodiesterase activity assayed by this means yields linear reaction kinetics with respect to time and amount of enzyme protein. Low blank values obtained allow for detection of as little as 2-3% conversion of substrate to product.  相似文献   

10.
The sequential hydrolysis of purines is present in rat CSF and generates nucleosides as inosine and guanosine that are usual substrates for purine nucleoside phosphorylase (PNP). PNP catalyzes phosphorolysis of the purine nucleosides and deoxynucleosides releasing purine bases. Here we investigated the presence of PNP in CSF of rats using: i) a specific chromophoric analogue of nucleosides, 2-amino-6-mercapto-7-methylpurine ribonucleoside (MESG), and ii) an inhibitor of PNP activity, immucillin-H. Additionally, we performed a preliminary kinetic characterization (K(M): Henry-Michaelis-Menten constant; V: maximal velocity) for MESG and inorganic phosphate (Pi). The values of K(M) and V for MESG (n = 3, mean+/-SD) were 142.5+/-29.5 microM and 0.0102+/-0.0006 U mg(-1), respectively. For Pi (n=3, mean+/-SD), the K(M) values and V were 186.8+/-43.7 microM and 0.0104+/-0.0016 U mg(-1), respectively. The results indicated that PNP is present in rat CSF and provided a preliminary kinetic characterization.  相似文献   

11.
The aim of the present study was to test if the transport of all nucleosides in rat renal brush border membranes occurs via a common carrier or if specific carriers exist for various groups of nucleosides. We measured the inward transport of radiolabeled nucleosides into brush border vesicles. The effect of unlabeled nucleosides present inside of the vesicles (trans-stimulation) or outside of the vesicles (cis-inhibition) was studied. Uphill influx of a nucleoside into the vesicles could be driven by the efflux of another nucleoside (trans-stimulation) if they were both purines or both pyrimidines but not if one nucleoside was a purine and the other one a pyrimidine. Thus, there exist a carrier that transports various purine nucleosides, and a carrier that transports various pyrimidine nucleosides, but the tested purine nucleosides and the tested pyrimidine nucleosides do not appear to be transported by the same carrier. Uridine and thymidine were similarly potent for the inhibition of cytidine transport whereas uridine was much more potent than thymidine for the inhibition of adenosine transport. This suggests that cytidine and adenosine can use different carriers. Preincubation of the vesicles with N-ethylmaleimide resulted in a marked decrease of the rate of transport of purine nucleosides but it had little effect on the transport of pyrimidine nucleosides. These data are best explained by the presence in the renal brush border membrane of two carriers, one for purine nucleosides, the other one for pyrimidine nucleosides.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
ABSTRACT

Using Caco-2 cells and our previously developed high-performance liquid chromatography method for quantification of purine bases, nucleosides, and nucleotides, we evaluated cellular purine transport and uptake. The analytes were separated using YMC-Triart C18 column with gradient elution. We used Caco-2 cells as intestinal model cells and monitored purine transport across a monolayer for 2 h. The degree of change of purine concentrations in the permeate was very slight; however, it was possible to simultaneously determine these parameters for all purines because of our method's high sensitivity. In the present study, the purine bases (adenine, guanine, hypoxanthine, and xanthine) showed a relatively high permeability as compared with the nucleosides (adenosine, guanosine, inosine, and xanthosine). Increased concentration of metabolites in the permeate was also observed following the addition of purines. In a cell uptake assay, both the cell culture medium (extracellular) and the cells extracted from Caco-2 with acetonitrile:water (7:3) (intracellular) were measured. The additional nucleoside did not increase significantly within the cells. On the other hand, we observed that nucleotide, such as ATP, increased in the cell in a time-dependent manner following the addition of nucleoside. The additional nucleosides were considered to be rather recycled via the salvage pathway than metabolized to purine bases and/or uric acid in the cell. Such differences might have affected the increase in the serum uric acid levels depending on purine form.  相似文献   

13.
Some 4′‐C‐ethynyl‐2′‐deoxy purine nucleosides showed the most potent anti‐HIV activity among the series of 4′‐C‐substituted 2′‐deoxynucleosides whose 4′‐C‐substituents were methyl, ethyl, ethynyl and so on. Our hypothesis is that the smaller the substituent at the C‐4′ position they have, the more acceptable biological activity they show. Thus, 4′‐C‐cyano‐2′‐deoxy purine nucleosides, whose substituent is smaller than the ethynyl group, will have more potent antiviral activity. To prove our hypothesis, we planned to develop an efficient synthesis of 4′‐C‐cyano‐2′‐deoxy purine nucleosides (4′‐CNdNs) and 4′‐C‐ethynyl‐2′‐deoxy purine nucleosides (4′‐EdNs). Consequently, we succeeded in developing an efficient synthesis of six 2′‐deoxy purine nucleosides bearing either a cyano or an ethynyl group at the C‐4′ position of the sugar moiety from 2′‐deoxyadenosine and 2,6‐diaminopurine 2′‐deoxyriboside. Unfortunately, 4′‐C‐cyano derivatives showed lower activity against HIV‐1, and two 4′‐C‐ethynyl derivatives suggested high toxicity in vivo.  相似文献   

14.
New carbocyclic nucleosides with purine (compounds 3a and 3b), and 8-azapurine (compounds 3c and 3d) as base were prepared and assayed for in vitro activity.  相似文献   

15.
Cyclopropyl carbocyclic nucleosides have been synthesized from the key intermediate 2 which was converted to the mesylated cyclopropyl methyl alcohol 3. Condensation of compound 3 with various purine and pyrimidine bases gave the desired nucleosides. All synthesized nucleosides were evaluated for antiviral activity and cellular toxicity. Among them adenine 22 and guanine 23 derivatives showed moderate antiviral activity against HIV-1 and HBV. None of the other compounds showed any significant antiviral activities against HIV-1, HBV, HSV-1 and HSV-2 in vitro up to 100 microM.  相似文献   

16.
Based on the promising drug resistance profile and potent anti-HIV activity of β-d-3′-azido-2′,3′-dideoxyguanosine, a series of purine modified nucleosides were synthesized by a chemical transglycosylation reaction and evaluated for their antiviral activity, cytotoxicity, and intracellular metabolism. Among the synthesized compounds, several show potent and selective anti-HIV activity in primary lymphocytes.  相似文献   

17.
Recently, the first plant nucleoside hydrolase, NSH1 (former designation URH1), was identified at the molecular level. This enzyme's highest hydrolysis capacity is for uridine, thereby balancing pyrimidine salvage and catabolism. NSH1 was found to be less efficient in the hydrolysis of further nucleosides. However, it remained unclear whether purine nucleosides are processed by NSH1. Moreover, the biochemical and physiological functions of further NSH isoforms in Arabidopsis has not been analyzed. Here we show that NSH1 is also able to hydrolyze xanthosine with high efficiency, and thus represents the leading activity in purine and pyrimidine breakdown in a cell. A knockout mutant for NSH1 showed symptoms of accelerated senescence, accompanied by marked accumulation of uridine and xanthosine under conditions of prolonged darkness. The closest, so far uncharacterized, homolog of NSH1, NSH2, was found to act during the late phase of senescence and may support inosine breakdown. NSH3, another NSH isoform, surprisingly functions as an extracellular, purine-specific hydrolase that is involved in degradation of extracellular nucleosides and may participate in wound and pathogen responses.  相似文献   

18.
5'-Phosphorylation, catalyzed by human deoxycytidine kinase (dCK), is a crucial step in the metabolic activation of anticancer and antiviral nucleoside antimetabolites, such as cytarabine (AraC), gemcitabine, cladribine (CdA), and lamivudine. Recently, crystal structures of dCK (dCKc) with various pyrimidine nucleosides as substrates have been reported. However, there is no crystal structure of dCK with a bound purine nucleoside, although purines are good substrates for dCK. We have developed a model of dCK (dCKm) specific for purine nucleosides based on the crystal structure of purine nucleoside bound deoxyguanosine kinase (dGKc) as the template. dCKm is essential for computer aided molecular design (CAMD) of novel anticancer and antiviral drugs that are based on purine nucleosides since these did not bind to dCKc in our docking experiments. The active site of dCKm was larger than that of dCKc and the amino acid (aa) residues of dCKm and dCKc, in particular Y86, Q97, D133, R104, R128, and E197, were not in identical positions. Comparative docking simulations of deoxycytidine (dC), cytidine (Cyd), AraC, CdA, deoxyadenosine (dA), and deoxyguanosine (dG) with dCKm and dCKc were carried out using the FlexX docking program. Only dC (pyrimidine nucleoside) docked into the active site of dCKc but not the purine nucleosides dG and dA. As expected, the active site of dCKm appeared to be more adapted to bind purine nucleosides than the pyrimidine nucleosides. While water molecules were essential for docking experiments using dCKc, the absence of water molecules in dCKm did not affect the ability to correctly dock various purine nucleosides.  相似文献   

19.
An efficient and facile synthesis of a large series of diverse 6-(N-substituted aminomethyl)-, 6-(O-substituted hydroxymethyl)- and 6-(S-substituted sulfanylmethyl)purine nucleosides (55 examples of both ribo- and 2'-deoxyribonucleosides), aimed at identifying novel homologues of natural nucleosides, was developed. The key transformation involved nucleophilic substitutions of Tol-protected 6-(mesyloxymethyl)purine nucleosides by primary or secondary amines, alcoholates or thiolates. While the 2'-deoxyribonucleosides were inactive, the ribonucleosides exerted considerable cytostatic effects and some anti-HCV activity with low selectivity.  相似文献   

20.
A sensitive and highly selective method for the simultaneous determination of purine bases and their nucleosides is proposed. An amperometric flow-injection system with the two immobilized enzyme reactors (guanase immobilized reactor and purine nucleoside phosphorylase/xanthine oxidase co-immobilized reactor) is used as the specific post-column detection system of HPLC, to convert compounds separated by a reversed-phase. HPLC column to electroactive species (hydrogen peroxide and uric acid) which can be detected at a flow-through platinum electrode. The proposed detection system is specific for a group of purine bases and purine nucleosides and does not respond for purine nucleotides and pyrimidine bases. The linear determination ranges are from 10 pmol to 5 nmol for four purine bases (hypoxanthine, xanthine, guanine, and adenine) and four purine nucleosides (inosine, xanthosine, guanosine, and adenosine). The detection limits are 1.2-5.5 pmol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号