首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We recently showed that we can selectively and safely deplete most (average 85%) of the pulmonary intravascular macrophages in sheep by intravenously infusing liposomes containing dichloromethylene bisphosphonate. After a 1-h stable baseline, we made a 6-h comparison after a 30-min intravenous endotoxin infusion (1 microg/kg) between six anesthetized control lambs and six anesthetized lambs in which the intravascular macrophages had been depleted 24 h previously. Three of the control lambs had been macrophage depleted and allowed to recover their intravascular macrophage population for >/=2 wk. After depletion, both the early and late pulmonary arterial pressure rises were dramatically attenuated. Our main interest, however, was in the acute lung microvascular injury response. The early and late rises in lung lymph flow and the increase in lung lymph protein clearance (lymph flow x lymph-to-plasma protein concentration ratio) were >90% attenuated. We conclude the pulmonary intravascular macrophages are responsible for most of the endotoxin-induced pulmonary hypertension and increased lung microvascular leakiness in sheep, although the unavoidable injury of other intravascular macrophages by the depletion regime may also contribute something.  相似文献   

2.
Phorbol myristate acetate (PMA) and endotoxin cause pulmonary granulocyte sequestration and alteration in lung fluid and solute exchange in awake sheep that are felt to be analogous to the adult respiratory distress syndrome in humans. The basic hypothesis that PMA causes lung injury by activating circulating granulocytes has never been tested. The effects of infused PMA on lung mechanics and the cellular constituents of lung lymph have also not been reported. We therefore characterized the effects of intravenous PMA, 5 micrograms/kg, on lung mechanics, pulmonary hemodynamics, lung fluid and solute exchange, pulmonary gas exchange, blood and lymph leukocyte counts, and plasma and lymph cyclooxygenase products of arachidonate metabolism in 10 awake sheep with normal granulocyte counts and after granulocyte depletion with hydroxyurea. PMA significantly altered lung mechanics from base line in both nongranulocyte depleted and granulocyte-depleted sheep. Dynamic compliance decreased by over 50% and resistance to airflow across the lungs increased over threefold acutely following PMA infusion in both sets of experiments. Changes in lung mechanics, pulmonary hemodynamics, lung fluid and solute exchange, pulmonary gas exchange, and plasma and lymph arachidonate metabolites were not significantly affected by greater than 99% depletion of circulating granulocytes. We conclude that the lung injury caused by PMA in chronically instrumented awake sheep probably is not a result of activation of circulating granulocytes.  相似文献   

3.
This study examined the effect of acute endotoxemia on hypoxic pulmonary vasoconstriction (HPV) in awake sheep. Thirteen sheep were chronically instrumented with Silastic catheters in the pulmonary artery, left atrium, jugular vein, and carotid artery; with a Swan-Ganz catheter in the main pulmonary artery; with a chronic lung lymph fistula; and with a tracheostomy. Base-line HPV was determined by measuring the change in pulmonary vascular resistance (PVR) while sheep breathed 12% O2 for 7 min. Concentrations of immunoreactive 6-keto-PGF1 alpha and thromboxane B2 (TXB2) were measured in lung lymph during the hypoxic challenge. Escherichia coli endotoxin (0.2-0.5 micrograms/kg) was infused intravenously. Four hours after endotoxemia, HPV was measured. In five sheep, meclofenamate was infused at 4.5 h after endotoxemia and HPV measured again. During the base-line hypoxic challenge, PVR increased by 36 +/- 9% (mean +/- SE). There was no significant change in lung lymph 6-keto-PGF1 alpha or TXB2 levels with hypoxia. Twelve of the 13 sheep showed a decrease in HPV 4 h after endotoxemia; the mean change in PVR with hypoxia was -8 +/- 5%, which was significantly (P less than 0.05) reduced compared with base-line HPV. The infusion of meclofenamate at 4.5 h after endotoxin did not restore HPV.  相似文献   

4.
Prostaglandin E2 attenuation of sheep lung responses to endotoxin   总被引:1,自引:0,他引:1  
Prostaglandin (PG) E2 can inhibit inflammatory responses of neutrophils and lymphocytes, including eicosanoid release. Diffuse lung injury after endotoxemia in sheep is accompanied by sequestration of neutrophils and lymphocytes in the lungs, and eicosanoids mediate some of the pathophysiology of the response. To determine whether exogenous PGE2 could prevent the endotoxin response, we measured pulmonary hemodynamics, gas exchange, and lung lymph responses to infusion of Escherichia coli endotoxin (0.5 micrograms/kg iv over 30 min) in unanesthetized sheep in the presence and absence of PGE2 (0.5 micrograms.kg-1.min-1) infused intravenously for 4 h beginning 0.5 h before endotoxin infusion. We also measured lung lymph concentrations of thromboxane B2 (TxB2) and prostacyclin metabolite, 6-keto-prostaglandin F1 alpha (6-keto-PGF1 alpha), by radioimmunoassay and leukotriene B4 (LTB4) by gas chromatography-mass spectrometry. PGE2 decreased endotoxin-induced pulmonary hypertension and hypoxemia and markedly attenuated the lymph flow and lymph protein clearance responses. PGE2 also attenuated endotoxin-induced increases in lung lymph TxB2 and 6-keto-PGF1 alpha and decreased lymph LTB4 flow after endotoxin without decreasing lymph LTB4 concentrations. We conclude that PGE2 infusion attenuates lung dysfunction caused by endotoxemia, possibly by preventing endogenous release of other eicosanoids.  相似文献   

5.
We studied the effects of liposomes on the pulmonary circulation of sheep and found a close correlation between liposome retention in the lung and the intravascular macrophages. A test dose of liposomes (5.5 mumol of total lipids) injected intravenously transiently increased pulmonary arterial pressure from 24 +/- 2 to 55 +/- 16 (SD) cmH2O. The pulmonary arterial pressure responses were dose dependent and reproducible. The rise in pulmonary arterial pressure was blocked completely by indomethacin and 75% by a thromboxane synthase inhibitor. Systemic arterial thromboxane B2 concentration increased from a base-line level of less than 50 pg/ml to 250 +/- 130 pg/ml at the peak of the pressor response. Larger doses of liposomes (220 mumol of total lipids) infused intravenously over 1 h increased pulmonary arterial pressure maximally within the first 15 min. Lymph flow increased and lymph protein concentration decreased, suggesting venoconstriction. Over half (62.4 +/- 15.7%) of 111In-labeled liposomes remained in the lung after 2 h. Fluorescence and transmission electron microscopy showed that greater than 90% of the liposomes were associated with mononuclear cells in the lumen of the alveolar wall microvessels. We conclude that liposomes affect pulmonary arterial pressure transiently by a mechanism involving the arachidonate cascade, principally thromboxane. Our observations suggest that a population of pulmonary intravascular macrophages is likely to be the source of the thromboxane and the pulmonary hemodynamic and lymph dynamic changes that occur in a dose-dependent fashion, although interactions between liposomes, leukocytes, or endothelial cells, in addition to the macrophages, have not been completely ruled out. We believe this is the first demonstration that pulmonary intravascular macrophages may be the source of the arachidonate metabolites rather than endothelial cells, neutrophils, or perivascular interstitial cells.  相似文献   

6.
Experiments were conducted on five chronically instrumented unanesthetized sheep to determine the effects of verapamil, a calcium channel inhibitor, on the pulmonary hemodynamic and microvascular permeability responses to endotoxemia. Paired control endotoxemia experiments (E) and endotoxemia with verapamil treatment (30-60 micrograms.kg-1.min-1) experiments (V + E) were conducted on each sheep in random order. In the V + E experiments sheep were pretreated with a continuous intravenous infusion of verapamil 1.5-2.0 h before endotoxin infusion (1.0 microgram/kg, given over 15 min). Verapamil significantly increased base-line pulmonary arterial pressure, left atrial pressure, lung lymph flow rate, and circulating blood leukocyte levels and significantly decreased base-line cardiac output. During the endotoxin response, verapamil significantly attenuated both phase I pulmonary arterial hypertension and phase II lung lymph flow rate compared with control endotoxin experiments. The results indicate that verapamil attenuates both the pulmonary hemodynamic and increased lung microvascular permeability response to endotoxin in sheep. In a series of in vitro experiments, verapamil was found to be a potent inhibitor of phorbol myristate acetate-induced superoxide production in isolated sheep granulocytes. These data suggest that the beneficial in vivo effects of verapamil during endotoxemia may in part be due to its inhibition of increased free cytosol calcium concentration and/or inhibition of toxic O2 metabolite production.  相似文献   

7.
Pulmonary microcirculatory responses to leukotrienes B4, C4 and D4 in sheep   总被引:1,自引:0,他引:1  
The pulmonary microvascular responses to leukotrienes B4, C4, and D4 (total dosage of 4 micrograms/kg i.v.) were examined in acutely-prepared halothane anesthetized and awake sheep prepared with lung lymph fistulas. In anesthetized as well as unanesthetized sheep, LTB4 caused a marked and transient decrease in the circulating leukocyte count. Pulmonary transvascular protein clearance (pulmonary lymph flow X lymph-to-plasma protein concentration ratio) increased transiently in awake sheep, suggesting a small increase in pulmonary vascular permeability. The mean pulmonary artery pressure (Ppa) also increased. In the acutely-prepared sheep, the LTB4-induced pulmonary hemodynamic and lymph flow responses were damped. Leukotriene C4 increased Ppa to a greater extent in awake sheep than in anesthetized sheep, but did not significantly affect the pulmonary lymph flow rate (Qlym) and lymph-to-plasma protein concentration (L/P) ratio in either group. LTD4 increased Ppa and Qlym in both acute and awake sheep; Qlym increased without a significant change in the L/P ratio. The LTD4-induced rise in Ppa occurred in association with an increase in plasma thromboxane B2 (TxB2) concentration. The relatively small increase in Qlym with LTD4 suggests that the increase in the transvascular fluid filtration rate is the result of a rise in the pulmonary capillary hydrostatic pressure. In conclusion, LTB4 induces a marked neutropenia, pulmonary hypertension, and may transiently increase lung vascular permeability. Both LTC4 and LTD4 cause a similar degree of pulmonary hypertension in awake sheep, but had different lymph flow responses which may be due to pulmonary vasoconstriction at different sites, i.e. greater precapillary constriction with LTC4 because Qlym did not change and greater postcapillary constriction with LTD4 because Qlym increased with the same rise in Ppa.  相似文献   

8.
To assess the role of intracellular adenosine 3',5'-cyclic monophosphate (cAMP), we tested the effects of dibutyryl cAMP (DBcAMP), an analogue of cAMP, on lung injury induced by pulmonary air embolism in awake sheep with chronic lung lymph fistula. We infused air (1.23 ml/min) in the pulmonary artery for 2 h in untreated control sheep. In DBcAMP-pretreated sheep DBcAMP was infused (1 mg/kg bolus and 0.02 mg.kg-1.min-1 constantly for 5 h); after 1 h from beginning of DBcAMP administration the air infusion was started. After the air infusion, pulmonary arterial pressure (Ppa) and lung lymph flow rate (Qlym) significantly increased in both groups. DBcAMP-pretreated sheep showed significantly lower responses in Qlym (2.7 X base line) compared with untreated control sheep (4.6 X base line); however, Ppa, left atrial pressure, and lung lymph-to-plasma protein concentration ratio were not significantly different between the two groups. Although plasma and lung lymph thromboxane B2 and 6-ketoprostaglandin F1 alpha concentrations increased significantly during the air infusion, DBcAMP-pretreated sheep showed significantly lower responses. Thus DBcAMP infusion attenuated pulmonary microvascular permeability induced by air embolism. We conclude that pulmonary vascular permeability is in part controlled by the intracellular cAMP level.  相似文献   

9.
The macrophage-derived cytokine tumor necrosis factor alpha (TNF alpha) has been proposed as the major mediator of endotoxin-induced injury. To examine whether a single infusion of human recombinant TNF alpha (rTNF alpha) reproduces the pulmonary effects of endotoxemia, we infused rTNF alpha (0.01 mg/kg) over 30 min into six chronically instrumented awake sheep and assessed the ensuing changes in hemodynamics, lung lymph flow and protein concentration, and number of peripheral blood and lung lymph leukocytes. In addition, levels of thromboxane B2, 6-ketoprostaglandin F1 alpha, prostaglandin E2, and leukotriene B4 were measured in lung lymph. Pulmonary arterial pressure (Ppa) peaked within 15 min of the start of rTNF alpha infusion [base-line Ppa = 22.0 +/- 1.5 (SE) cmH2O; after 15 min of rTNF alpha infusion, Ppa = 54.2 +/- 5.4] and then fell toward base line. The pulmonary hypertension was accompanied by hypoxemia and peripheral blood and lung lymph leukopenia, both of which persisted throughout the 4 h of study. These changes were followed by an increase in protein-rich lung lymph flow (base-line lymph protein clearance = 1.8 +/- 0.4 cmH2O; 3 h after rTNF alpha infusion, clearance = 5.6 +/- 1.2), consistent with an increase in pulmonary microvascular permeability. Cardiac output and left atrial pressure did not change significantly throughout the experiment. Light-microscopic examination of lung tissue at autopsy revealed congestion, neutrophil sequestration, and patchy interstitial edema. We conclude that rTNF alpha induces a response in awake sheep remarkable similar to that of endotoxemia. Because endotoxin is a known stimulant of TNF alpha production, TNF alpha may mediate endotoxin-induced lung injury.  相似文献   

10.
Infusion of Escherichia coli endotoxin (0.12-1.5 micrograms/kg) into unanesthetized sheep causes transient pulmonary hypertension and several hours of increased lung vascular permeability, after which sheep recover. To produce enough lung injury to result in pulmonary edema with respiratory failure, we infused larger doses of E. coli endotoxin (2.0-5.0 micrograms/kg) into 11 chronically instrumented unanesthetized sheep and continuously measured pulmonary arterial, left atrial and aortic pressures, dynamic lung compliance, lung resistance, and lung lymph flow. We intermittently measured arterial blood gas tensions and pH, made interval chest radiographs, and calculated postmortem extravascular bloodless lung water-to-dry lung weight ratio (EVLW/DLW). Of 11 sheep 8 developed respiratory failure; 7 died spontaneously 6.3 +/- 1.1 h, and one was killed 10 h after endotoxin infusion. All sheep that had a premortem room air alveolar-arterial gradient in partial pressure of O2 (PAo2-Pao2) greater than 42 Torr (58 +/- 5 (SE) Torr) died. Of eight sheep that had radiographs made, six developed radiographically evident interstitial or interstitial and alveolar edema. Pulmonary artery pressure rose from base line 22 +/- 2 to 73 +/- 3 cmH2O and remained elevated above baseline levels until death. There was an initial fourfold decrease in dynamic compliance and sixfold increase in pulmonary resistance; both variables remained abnormal until death. EVLW/DLW increased with increasing survival time after endotoxin infusion, suggesting that pulmonary edema accumulated at the same rate in all fatally injured sheep, regardless of other variables. The best predictor of death was a high PAo2-Pao2. The marked increase in pulmonary resistance and decrease in dynamic compliance occurred too early after endotoxin infusion (15-30 min) to be due to pulmonary edema. The response to high-dose endotoxin in sheep closely resembles acute respiratory failure in humans following gram-negative septicemia. Respiratory failure and death in this model were not due to pulmonary edema alone.  相似文献   

11.
Diethylcarbamazine (DEC) is an inhibitor of lipoxygenase, with protective effects in several experimental models of anaphylaxis and lung dysfunction. The hypothesis of this study was that DEC would alter the pulmonary response to endotoxin infusion, especially the prolonged pulmonary hypertension, leukopenia, hypoxemia, and high flow of protein-rich lung lymph. We prepared sheep for chronic measurements of hemodynamics and collection of lung lymph. In paired studies we gave six sheep endotoxin (0.5 micrograms/kg iv) either with or without DEC. DEC was given (80-100 mg/kg iv) over 30 min followed by a continuous infusion at 1 mg X kg-1 X min-1. Endotoxin was given after the loading infusion of DEC, and variables were monitored for 4 h. The response to endotoxin was characterized by pulmonary hypertension, leukopenia, hypoxemia, and elevations of thromboxane B2 and 6-ketoprostaglandin F1 alpha (6-keto-PGF1 alpha). Lymph flow and protein content reflected hemodynamic and permeability changes in the pulmonary circulation. DEC did not significantly modify the response to endotoxin by any measured variable, including pulmonary arterial and left atrial pressures, cardiac output, lymph flow and protein content, alveolar-to-arterial PO2 difference, blood leukocyte count, and lymph thromboxane B2 and 6-keto-PGF1 alpha. We could not find evidence of release of leukotriene C4/D4 by radioimmunoassay in lung lymph after endotoxin infusion with or without DEC treatment. We conclude that lipoxygenase products of arachidonic acid may not be a major component of the pulmonary vascular response to endotoxin.  相似文献   

12.
Propylene glycol (30%) is the carrier base for pentobarbital sodium in preparations often used in research laboratories. It has caused pulmonary hypertension in calves, and we found it caused pulmonary hypertension in sheep as well. To investigate the mechanism of pulmonary hypertension with propylene glycol, we injected an average loading dose of 30% propylene glycol (0.5 ml/kg) into adult sheep, which was followed by a rise in thromboxane levels (P less than 0.05) in systemic arterial plasma and lung lymph and by a dramatic increase in pulmonary arterial pressure (17 +/- 1 to 35 +/- 4 mmHg, P less than 0.05) and a fall in cardiac output (2.7 +/- 0.5 to 1 +/- 0.2 l/min). Indomethacin pretreatment blocked the rise in thromboxane in lung lymph and arterial plasma and substantially, although not entirely, blocked the rise in pulmonary arterial pressure. Pulmonary intravascular macrophages (PIMS), which are present in sheep and calves, can release thromboxane in response to a stimulus. To test whether PIMS might be the source of the thromboxane and pulmonary hypertension, we injected propylene glycol into guinea pigs and dogs, which are reported to have no PIMS, as well as into newborn lambs, which are not believed to develop many PIMS until the 2nd wk of life. In dogs and guinea pigs there was no response to propylene glycol. In lambs there was a rise in pulmonary vascular resistance but significantly less than in adult sheep; indomethacin blocked this response.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
To examine the role of thromboxane (Tx) A2 in the pathogenesis of acute lung injury caused by tumor necrosis factor alpha (TNF), we tested the effects of OKY-046, a selective thromboxane synthase inhibitor, on pulmonary hemodynamics, lung lymph balance, circulating leukocytes, arterial blood gas analysis, and TxA2 (as TxB2) and prostacyclin (as 6-keto-prostaglandin F1 alpha) levels in plasma and lung lymph after TNF infusion in awake sheep. Infusion of human recombinant TNF (3.5 micrograms/kg) into a chronically instrumented awake sheep caused a transient increase in pulmonary arterial pressure (Ppa). The Ppa peaked within 15 min of the start of TNF infusion from 23.3 +/- 1.1 (SE) cmH2O of baseline to 42.3 +/- 2.3 cmH2O and then decreased toward baseline. The pulmonary hypertension was accompanied by transient hypoxemia, peripheral leukopenia, and the increases in TxB2 in plasma and lung lymph. These changes were followed by an increase in flow of protein-rich lung lymph, consistent with an increase in pulmonary microvascular permeability. OKY-046 significantly prevented the rises of Ppa and TxB2 concentrations in plasma and lung lymph during early phase after TNF infusion. OKY-046, however, did not attenuate the increase of lung lymph flow, transient hypoxemia, and leukopenia. From these data, and by comparison with our previous studies of OKY-046-pretreated sheep during endotoxemia, we conclude that TxA2 has an important role of the increase in the early pulmonary hypertension, but it is not related to the early hypoxemia, leukopenia, and lung lymph balances in TNF-induced lung injury.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Our purpose was to determine the effect of an endotoxin-induced lung injury on circulating lipid peroxides. We measured both malondialdehyde (MDA) and conjugated dienes (as optical density at 233 nm) in aortic and venous plasma and lung lymph in 10 unanesthetized sheep given 1 microgram/kg of Escherichia coli endotoxin. Total lipids and prostanoids 6-ketoprostaglandin F1 alpha and thromboxane B2 were also measured. Six control sheep were also studied. Animals were monitored for a 12-h period and then killed, and lung tissue MDA was determined. A two-phase endotoxin response was noted with an initial pulmonary hypertension followed by a steady-state increase in protein-rich lung lymph flow (QL) between a 3- and 6-h period. Aortic plasma MDA was significantly increased from a base line of 4.8 +/- 1.4 to 8.9 +/- 1.6 and 7.5 +/- 1.3 nmol/ml at 1 and 4 h post-endotoxin. Aortic plasma conjugated dienes increased in all 10 sheep post-endotoxin. Venous levels of both MDA and conjugated dienes were not significantly increased. Lung QL increased two- to three-fold. Lung lymph MDA increased significantly at 1 h post-endotoxin. Lymph conjugated dienes decreased. Plasma and lymph lipid peroxide levels returned to base line by 12 h in most animals. However, tissue MDA remained significantly increased in all sheep from base line of 45 +/- 9 to 85 +/- 14 nmol/g tissue. We conclude that both MDA and conjugated dienes are transiently released into aortic plasma during endotoxin-induced oxidant lung injury.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
We investigated the effects of a new pyridoquinazoline thromboxane synthetase inhibitor infused before administering Escherichia Coli endotoxin into 18 anesthetized sheep with lung lymph fistulas. In normal sheep increasing plasma Ro 23-3423 concentrations were associated with increased plasma levels of 6-keto-PGF1 alpha, a reduced systemic vascular resistance (SVR, r = -0.80) and systemic arterial pressure (SAP, r = -0.92), the mean SAP falling from 80 to 50 mm Hg at the 20 and 30 mg/kg doses. Endotoxin infused into normal sheep caused transient pulmonary vasoconstriction associated with increased TxB2 and 6-keto-PGF1 alpha levels while vasoconstriction and TxB2 increase were significantly inhibited by pretreatment with Ro 23-3423 in a dose-dependent manner. When compared to controls, plasma and lymph levels of 6-keto-PGF1 alpha, PGF2 alpha and PGE2 after endotoxin infusion were increased several-fold by administering Ro 23-3423 up to plasma levels of 10 micrograms/ml. Doses over 30 mg/kg with blood levels above 10 micrograms/ml reduced plasma and lymph levels of 6-keto-PGF1 alpha, PGF2 alpha and PGE2, suggesting cyclooxygenase blockade at this dose. The peak 6-keto-PGF1 alpha levels at 60 min after endotoxin infusion in sheep with Ro-23-3423 levels below 10 micrograms/ml were associated with the greatest systemic hypotension due to a reduced SVR (r = -0.86). After endotoxin infusion the leukotrienes B4, C4, D4 and E4 in lung lymph were assayed by radioimmunoassay and high pressure liquid chromatography and remained at baseline values.  相似文献   

16.
We examined the lymphatic concentration of 99mTc-albumin deposited in the air spaces of anesthetized sheep to determine whether changes in the concentration reflected changes in lung epithelial function. Five control sheep were ventilated with an aerosol of 99mTc-albumin for 6 min, and the lung lymphatic concentration of the tracer was monitored for the next 2 h. During the last 45 min the lymphatic concentration stabilized at a value that was 0.03 +/- 0.01% of the estimated value in the air spaces. Pulmonary vascular hypertension, induced in seven sheep by increasing the left atrial pressure 20 cmH2O for 4 h, increased the lung lymph flow from a base-line value of 3 +/- 2 to 21 +/- 14 ml/h. This caused the concentration of the 99mTc-albumin in the lymph to double to 0.07 +/- 0.03% of the air space concentration (P less than 0.01). Lung injury induced by infusing 0.08-0.10 ml/kg oleic acid intravenously in seven other sheep increased the lymphatic concentration of the 99mTc-albumin 10-fold to 0.31 +/- 0.09% of the air space concentration (P less than 0.01). The increased tracer concentration in the sheep with pulmonary vascular hypertension could be the result of the increased lymph flow causing a diversion of tracer into the lymphatics. However, a mathematical model showed that the 10-fold increase in the lymphatic concentration in the sheep with lung injury was primarily the result of an increase in both permeability and surface area of the epithelium that participated in the transfer of the 99mTc-albumin from the air spaces into the lung tissue drained by the lymphatics.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
To further define the role ofplatelet-activating factor (PAF) in endotoxin-induced lung dysfunction,we examined the effect of ABT-299, a specific and potent PAF-receptorantagonist, on the response to endotoxemia in six chronicallyinstrumented awake sheep. We administered Escherichiacoli endotoxin (0.5 µg/kg) intravenously with orwithout pretreatment with ABT-299 while monitoring mean pulmonaryarterial pressure (Ppa), mean systemic arterial pressure (Psa), dynamiccompliance of the lungs (Cdyn), and functional residual capacity (FRC).Endotoxin administration caused pulmonary hypertension, reduced Cdyn,leukopenia, and hypoxemia while having no significant effect on Psa orFRC. Administration of ABT-299 did not affect any of the measuredvariables at baseline. Pretreatment with ABT-299 attenuated the peakPpa seen after endotoxin administration but had minimal effects onendotoxin-induced changes in Cdyn, white blood cell count, oralveolar-to-arterial oxygen difference. ABT-299 was shown to completelyblock the pulmonary hypertension and reduction in Cdyn seen afterintravenous administration of exogenous PAF. We conclude that PAF doesnot play an essential role in the sheep's response to endotoxin.

  相似文献   

18.
In many sheep Escherichia coli endotoxin results in pulmonary hypertension, increased microvascular permeability, pulmonary edema, and increased central venous pressure. Since lung lymph drains into the systemic veins, increases in venous pressure may impair lymph flow sufficiently to enhance the accumulation of extravascular fluid. We tested the hypothesis that, following endotoxin, elevating the venous pressure would increase extravascular fluid. Thirteen sheep were chronically instrumented with catheters to monitor left atrial pressure (LAP), pulmonary arterial pressure (PAP), and superior vena caval pressure (SVCP) as well as balloons to elevate LAP and SVCP. These sheep received 4 micrograms/kg endotoxin, and following the pulmonary hypertensive spike the left atrial balloon was inflated so that (PAP + LAP)/2 = colloid osmotic pressure. It was necessary to control PAP + LAP in this way to minimize the sheep-to-sheep differences in the pulmonary hypertension. We elevated the SVCP to 10 or 17 mmHg or allowed it to stay low (3.2 mmHg). After a 3-h period, we killed the sheep and removed the right lungs for determination of the extravascular fluid-to-blood-free dry weight ratio (EVF). Sheep with SVCP elevated to 10 or 17 mmHg had significant increases in EVF (5.2 +/- 0.1 and 5.6 +/- 1.2) compared with the sheep in which we did not elevate SVCP (EVF = 4.5 +/- 0.4). These results indicate that sustained elevation in central venous pressure in patients contributes to the amount of pulmonary edema associated with endotoxemia.  相似文献   

19.
Pulmonary intravascular macrophages (PIMs) have been recognized as the site of substantial uptake of blood-borne particles in the lungs of a number of domestic animal species. Concomitantly, there is a pronounced lung susceptibility to endotoxin in calves, goats, sheep, pigs, and cats. Hemodynamic changes and initial lung injury after endotoxin administration are mediated by arachidonic acid metabolites from a pulmonary source. A significant role of PIMs in regulating pulmonary hemodynamics is implicated.  相似文献   

20.
We determined the effect of H2O2 on both the physiological and biochemical lung changes seen in the adult sheep after endotoxin. Fourteen unanesthetized adult sheep with chronic lung lymph fistula were given Escherichia coli endotoxin (1 microgram/kg) over 30 min. Seven sheep were given catalase (32,500 U/kg body wt) as an intravenous bolus 30 min before endotoxin. Four sheep were given catalase alone. Oxidant lung changes were measured using arterial plasma conjugated dienes and lung tissue malondialdehyde (MDA) content, both reflecting the lipid peroxidation process. Animals were killed 5 h after endotoxin. We found that endotoxin alone caused an early increase in pulmonary arterial pressure lung lymph flow (QL), plasma thromboxane B2, 6-keto-prostaglandin F1 alpha, and plasma conjugated dienes. A decrease in cardiac output and arterial PO2 was also seen. A three- to four-fold increase in protein-rich QL was noted at 3-4 h as well as a continued increase in arterial conjugated dienes. Lung MDA and water content were also significantly increased from base line. Catalase pretreatment significantly attenuated both the physiological changes and the prostanoid and conjugated diene release. Lung MDA and water content also remained at base line. We conclude that H2O2 plays a major role in endotoxin-induced lung injury as well as the resulting lipid peroxidation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号