首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cricket Gryllus bimaculatus is a hemimetabolous insect whose nymphs possess the ability to regenerate amputated legs. Previously, we showed that Gryllus orthologues of Drosophila hedgehog (Gb'hh), wingless (Gb'wg) and decapentaplegic (Gb'dpp) are expressed during leg regeneration and play essential roles in the establishment of the proximal-distal axis. Here, we examined their roles during intercalary regeneration: when a distally amputated tibia with disparate positional values is placed next to a proximally amputated host, intercalary growth occurs in order to regenerate the missing part. In this process, we examined expression patterns of Gb'hh and Gb'wg. We found that expressions of Gb'hh and Gb'wg were induced in a regenerate and the host proximal to the amputated region, but not in the grafted donor distal to the regenerate. This directional induction occurs even in the reversed intercalation. Because these results are consistent with a distal-to-proximal respecification of the regenerate, Gb'wg may be involved in the re-establishment of the positional values in the regenerate. Furthermore, we found that no regeneration occurs when Gb'armadillo (the orthologue of beta-catenin) was knocked down by RNA interference. These results indicate that the canonical Wnt/Wingless signaling pathway is involved in the process of leg regeneration and determination of positional information in the leg segment.  相似文献   

2.
Insects can be grouped into mainly two categories, holometabolous and hemimetabolous, according to the extent of their morphological change during metamorphosis. The three thoracic legs, for example, are known to develop through two overtly different pathways: holometabolous insects make legs through their imaginal discs, while hemimetabolous legs develop from their leg buds. Thus, how the molecular mechanisms of leg development differ from each other is an intriguing question. In the holometabolous long-germ insect, these mechanisms have been extensively studied using Drosophila melanogaster. However, little is known about the mechanism in the hemimetabolous insect. Thus, we studied leg development of the hemimetabolous short-germ insect, Gryllus bimaculatus (cricket), focusing on expression patterns of the three key signaling molecules, hedgehog (hh), wingless (wg) and decapentaplegic (dpp), which are essential during leg development in Drosophila. In Gryllus embryos, expression of hh is restricted in the posterior half of each leg bud, while dpp and wg are expressed in the dorsal and ventral sides of its anteroposterior (A/P) boundary, respectively. Their expression patterns are essentially comparable with those of the three genes in Drosophila leg imaginal discs, suggesting the existence of the common mechanism for leg pattern formation. However, we found that expression pattern of dpp was significantly divergent among Gryllus, Schistocerca (grasshopper) and Drosophila embryos, while expression patterns of hh and wg are conserved. Furthermore, the divergence was found between the pro/mesothoracic and metathoracic Gryllus leg buds. These observations imply that the divergence in the dpp expression pattern may correlate with diversity of leg morphology.  相似文献   

3.
Insect legs develop from small regions of the embryonic thorax. In most insects they differentiate in the embryo, forming functional larval legs, which grow and moult through larval life. In Drosophila the presumptive legs invaginate to form imaginal discs, which grow through larval life but only differentiate in the pupal stage. Analysis of the structures formed after amputation, grafting and wounding experiments on larval legs and on mature and immature imaginal discs suggests that the same organization of positional information and cellular behaviour is involved in the response of tahe developing leg to disturbance at early stages (termed 'regulation') and at later stages (termed 'regeneration'). The results suggest that developing legs form pattern in accordance with positional information specified in two dimensions within the epidermis, along polar coordinates. A continuous sequence of positional values runs around the circumference and an independent sequence runs down the leg. Two rules govern cellular behaviour after a disturbance. The shortest intercalation rule: interaction between cells with different positional values provokes local growth, producing cells with intermediate values (by the shortest route in the case of the circumferential values). The distalization rule: if intercalated cells have positional values identical to those of adjacent pre-existing cells then the new cells adopt a more distal value. These rules will produce a complete distal regenerate from a complete circumference and may produce a symmetrical regenerate from a symmetrical wound surface. This regenerate may taper (converge) or widen (diverge) and branch into two distal tips, depending on the extent of the original wound and the way in which it heals. The polar coordinate model provides a simple and unified interpretation, in terms of only local interactions, of a wide range of experimentally produced and naturally occurring insect (and crustacean and amphibian) limbs showing regeneration of missing structures, duplication of structures, and the formation of complete, tapering or branching supernumeraries. It is not yet clear what molecular mechanisms could underlie a polar map of positional information, nor how such a map could be initially established at a particular site in the early embryo.  相似文献   

4.
Nymphs of hemimetabolous insects, such as cockroaches and crickets, possess functional legs with a remarkable capacity for epimorphic regeneration. In this study, we have focused on the role of epidermal growth factor receptor (EGFR) signaling in regeneration of a nymphal leg in the cricket Gryllus bimaculatus. We performed loss-of-function analyses with a Gryllus Egfr homolog (Gb'Egfr) and nymphal RNA interference (RNAi). After injection of double-stranded RNA for Gb'Egfr in the body cavity of the third instar cricket nymph, amputation of the leg at the distal tibia resulted in defects of normal distal regeneration. The regenerated leg lacked the distal tarsus and pretarsus. This result indicates that EGFR signaling is required for distal leg patterning in regeneration during the nymphal stage of the cricket. Furthermore, we demonstrated that EGFR signaling acts downstream of the canonical Wnt/Wg signaling and regulates appendage proximodistal (PD) patterning genes aristaless and dachshund during regeneration. Our results suggest that EGFR signaling influences positional information along the PD axis in distal leg patterning of insects, regardless of the leg formation mode.  相似文献   

5.
The fate of an imaginal disc cell of Drosophila can be affected by the associations and interactions that it has with other cells in the disc. A fragment of an imaginal disc, not regenerating under conditions allowing a complementary fragment to do so, can be stimulated to regenerate by interactions with cells of the complementary fragment [Haynie, J. L., and Bryant, P. J. (1976) Nature (London)259, 659–662]. We report here that one nonregenerating fragment of an imaginal wing disc cannot be stimulated to regenerate by interactions with cells from other parts of the disc. This fragment, containing the anlagen of the distal wing, fails to regenerate proximally when combined with a proximal fragment even though this association stimulates some proximal fragments to regenerate distally. We suggest that this may be a phenomenon similar to that observed in cockroach legs by H. Bohn (1970, Wilhelm Roux Arch. Entwicklungsmech. Organismen165, 303–341), in which proximal regeneration from grafted distal leg segments proceeds only to a limited extent. We consider the possibility that there exist reiterated sets of positional information arranged concentrically in the wing disc.  相似文献   

6.
Segmentation plays crucial roles during morphogenesis. Drosophila legs are divided into segments along the proximal-distal axis by flexible structures called joints. Notch signaling is necessary and sufficient to promote leg growth and joint formation, and is activated in distal cells of each segment in everting prepupal leg discs. The homeobox gene defective proventriculus (dve) is expressed in regions both proximal and distal to the intersegmental folds at 4 h after puparium formation (APF). Dve-expressing region partly overlaps with the Notch-activated region, and they become a complementary pattern at 6 h APF. Interestingly, dve mutant legs resulted in extra joint formation at the center of each tarsal segment, and the forced expression of dve caused a jointless phenotype. We present evidence that Dve suppresses the potential joint-forming activity, and that Notch signaling represses Dve expression to form joints.  相似文献   

7.
SYNOPSIS. Developing insect legs have positional informationspecified down the length and around the leg circumference.After grafting or amputation of larval cockroach or cricketlegs healing confronts epidermal cells with different positionalvalues. This stimulates growth, the intercalary regenerationof intervening tissue, the regeneration of all more distal tissuefrom a complete leg circumference and often the formation ofan incomplete distal regenerate from a symmetrical part-circumference.These processes will lead to regeneration of missing structures,duplication of structures, or the formation of branched supernumerarylegs, depending on the situation. During regeneration, cellscannot cross lineage restrictions which divide the leg intoanterior and posterior compartments.  相似文献   

8.
The appendages of an insect are subdivided into distinct segments or podomeres. Many genes responsible for the regionalization of the growing limb into subdomains have been isolated from Drosophila. So far, only one gene is known in the leg that is solely required for specifying the distal-most pattern element—the pretarsal claw. In Drosophila, the gene aristaless is expressed in the centre of the antennal and leg imaginal disc that represents the most distal position of appendages, and in a proximal region. When Drosophila aristaless function is impaired, antennae and legs develop without their distal-most structures—the arista and the claw. We describe here the analysis of aristaless in the beetle Tribolium—an insect that shows a different, more ancestral mode of appendage formation than Drosophila. In Tribolium, appendages grow out continuously during embryogenesis, and no imaginal discs are formed. Tribolium aristaless (Tc-al) expression starts midway during appendage elongation, and is seen in a distal and a proximal position of head and trunk appendages. At the end of embryogenesis, Tc-al is seen in four expression domains in the leg, in the dorsal epidermis, and ventrally in every segment in lateral groups of cells, presumably the histoblasts. Like in the Drosophila adult, Tc-al is required in the larva for the formation of the most distal structures of the leg and the antenna as revealed by RNAi experiments. We conclude that aristaless is evolutionarily robust, meaning that it has retained its expressional and functional characteristics, although a heterochronic change of the process of appendage elongation took place towards the evolution of the highly derived diptera.Edited by D. Tautz  相似文献   

9.
Summary The regulative behavior of fragments of the imaginal discs of the wing and first leg was studied when these fragments were combined with fragments of other thoracic imaginal discs. A fragment of the wing disc which does not normally regenerate when cultured could be stimulated to regenerate by combination with certain fragments of the haltere disc. When combined with a haltere disc fragment thought to be homologous by the criteria of morphology and the pattern of homoeotic transformation, such stimulated intercalary regeneration was not observed. Combinations of first and second leg disc fragments showed that a lateral first leg fragment could be stimulated to regenerate medial structures when combined with a medial second leg disc fragment but not when combined with a lateral second leg disc fragment. Combinations of wing and second leg disc fragments showed that one fragment of the second leg disc is capable of stimulating regeneration from a wing disc fragment while another second leg disc fragment fails to stimulate such regeneration. It is suggested that absence of intercalary regeneration in combinations of fragments of different thoracic imaginal discs is a result of homology or identity of the positional information residing in the cells of the fragments. The pattern of correspondence of positional information revealed by this analysis is consistant with the pattern of homology determined by morphological observation and by analysis of the positional specificity of homoeotic transformation among serially homologous appendages. The implications of the existence of homologous positional information in wing and second leg discs which share a common cell lineage early in development are discussed.  相似文献   

10.
For an appendage to regenerate distal elements, it has been thought that the stump must contain a full set of circumferential positional information. We have shown that this rule is not binding for tarsus regeneration in the male foreleg imaginal disc of Drosophila melanogaster. Distal transformation was not restricted to fragments containing complete proximal segments, but was also observed in pieces with small or even substantial deficiencies that were not regenerated in their proximal segments.  相似文献   

11.
We have tested the ability of fragments of one type of imaginal disc to stimulate regeneration of another type. It has been shown by others that, when extreme proximal and distal fragments of the wing disc are combined, intercalary regeneration of the missing tissue ensues. Each fragment, if cultured alone, will merely duplicate its structures. We now find that distal fragments of other thoracic discs, haltere and leg, while retaining their autonomy for differentiation, also interact with proximal wing tissue to promote regeneration of more distal wing structures. The proximal wing tissue used in these experiments was the wingless abnormal wing disc which, in the absence of interaction, yields only proximal wing structures. These results suggest that spatial organization is controlled by similar systems in the various thoracic discs. In contrast, head and genital disc material provided no regenerative stimulus to the mutant wing disc tissue.  相似文献   

12.
Flexible joints separate the rigid sections of the insect leg, allowing them to move. In Drosophila, the initial patterning of these joints is apparent in the larval imaginal discs from which the adult legs will develop. Here, we describe the later patterning and morphogenesis of the joints, which occurs after pupariation (AP). In the tibial/tarsal joint, the apodeme insertion site provides a fixed marker for the boundary between proximal and distal joint territories (the P/D boundary). Cells on either side of this boundary behave differently during morphogenesis. Morphogenesis begins with the apical constriction of distal joint cells, about 24 h AP. Distal cells then become columnar, causing distal tissue nearest the P/D boundary to fold into the leg. In the last stage of joint morphogenesis, the proximal joint cells closest to the P/D boundary align and elongate to form a "palisade" (a row of columnar cells) over the distal joint cells. The proximal and distal joint territories are characterised by the differential organisation of cytoskeletal and extracellular matrix proteins, and by the differential expression of enhancer trap lines and other gene markers. These markers also define a number of more localised territories within the pupal joint.  相似文献   

13.
Insects display a whole spectrum of morphological diversity, which is especially noticeable in the organization of their appendages. A recent study in a hemipteran, Oncopeltus fasciatus (milkweed bug), showed that nubbin (nub) affects antenna morphogenesis, labial patterning, the length of the femoral segment in legs, and the formation of a limbless abdomen. To further determine the role of this gene in the evolution of insect morphology, we analyzed its functions in two additional hemimetabolous species, Acheta domesticus (house cricket) and Periplaneta americana (cockroach), and re-examined its role in Drosophila melanogaster (fruit fly). While both Acheta and Periplaneta nub-RNAi first nymphs develop crooked antennae, no visible changes are observed in the morphologies of their mouthparts and abdomen. Instead, the main effect is seen in legs. The joint between the tibia and first tarsomere (Ta-1) is lost in Acheta, which in turn, causes a fusion of these two segments and creates a chimeric nub-RNAi tibia–tarsus that retains a tibial identity in its proximal half and acquires a Ta-1 identity in its distal half. Similarly, our re-analysis of nub function in Drosophila reveals that legs lack all true joints and the fly tibia also exhibits a fused tibia and tarsus. Finally, we observe a similar phenotype in Periplaneta except that it encompasses different joints (coxa–trochanter and femur–tibia), and in this species we also show that nub expression in the legs is regulated by Notch signaling, as had previously been reported in flies and spiders. Overall, we propose that nub acts downstream of Notch on the distal part of insect leg segments to promote their development and growth, which in turn is required for joint formation. Our data represent the first functional evidence defining a role for nub in leg segmentation and highlight the varying degrees of its involvement in this process across insects.  相似文献   

14.
Male foreleg tissue from prepupal stages of Drosophila melanogaster was tested for its capacity to grow when cultured in the adult fly hemocoel and for its capacity, after culture, to produce adult cuticular structures when differentiated in a metamorphosing larva. Evaginated, segmented leg tissue from 8-hr-old prepupae (at 25°C), still retained the capacity to grow well in culture. Growth was, however, restricted to cells of the proximal half of the leg. Tissue from 11- and 24-hr stages (pupal ecdysis at 11 hr) was not successfully cultured. Cultured proximal halves of 8 hr prepupal legs frequently differentiated not only proximal structures, but also distal structures, such as sex combs and claws, indicating regeneration of missing leg structures during the culture period. Transdetermination to wing tissue occurred only rarely (once in 90 implants) whereas third-instar leg tissue in culture transdetermined frequently (50% of the implants) to wing, even though growth of tissue of the two stages was equivalent. Identical results were obtained with third-instar foreleg discs evaginated in vitro with β-ecdysone. This is the first in vitro treatment reported to reduce transdetermination frequency, without affecting growth proportionately. These results indicate that cell proliferation in culture, while probably a necessary condition for transdetermination, is not a sufficient condition. The developmental stage of the cultured tissue strongly affects the frequency of transdetermination.  相似文献   

15.
A technique is described which allows defects to be made in situ in the imaginal discs of immature Drosophila larvae. Bisection of the second leg disc across the upper-lower axis results in regeneration of the remainder of the disc from the upper portion, and mirror-image duplication of the anlagen in the lower half (Figs. 2–5, Table 1). The upper half, retaining its connection to the larval epidermis, is able to evert; the lower half metamorphoses as an uneverted implant. Partial bisection of the disc often results in the production of branched legs in which one branch is complete but the other is a double half (Figs. 7–9). These cases can be interpreted as resulting from regeneration from one cut surface and duplication from the other. Pattern triplications have been obtained by partial bisections of the wing disc (Fig. 10), and these can be interpreted in a similar manner. It is suggested that regeneration and duplication are identical phenomena, resulting from the properties of of the anlagen at the cut edge. Cases of regeneration and duplication in other insect and vertebrate systems are discussed, and interpreted on the basis of gradients of developmental capacity (Fig. 11).  相似文献   

16.
We isolated the homologue of the Drosophila gene dachshund (dac) from the beetle Tribolium castaneum. Tc'dac is expressed in all appendages except urogomphi and pleuropodia. Tc'dac is also active in the head lobes, in the ventral nervous system, in the primordia of the Malpighian tubules and in bilateral stripes corresponding to the presumptive dorsal midline. Expression of Tc'dac in the labrum lends support to the interpretation that the insect labrum is derived from a metameric appendage. The legs of Tribolium accommodate two Tc'dac domains, of which the more distal one corresponds to the single dac domain described for Drosophila leg discs. In contrast to Drosophila, where this domain is thought to intercalate between the homothorax (hth) and the Distal-less (Dll) domains, in Tribolium it arises from within the Dll domain. In embryos mutant for the Tc'Dll gene we find that the distal Tc'dac domain in the legs, as well as the expression in the labrum, are deleted while the proximal leg domain and the mandibular expression are unaffected. Based on Tc'dac expression in wild-type and mutant embryos, we demonstrate serial homology of the complete mandible with the coxa of the thoracic legs, which affirms the gnathobasic nature of the insect mandible.  相似文献   

17.
An arthropod leg represents a protuberance of the body segmental integument which bears distinctive markers in both the mediolateral and the anteroposterior axes. To clarify the biaxial organization of the body segmental morphogenetic field, and to study the relation among the whole-limb, limb segmental, and body segmental fields previously recognized in arthropods, we have grafted a proximal leg segment into the ventral midline in crayfish. After this operation the majority of animals regenerated a mirror-symmetric pair of supernumerary legs at the host site. Some of these legs had the most proximal segment, the coxa, partially fused to the adjacent body surface. Minority patterns of regeneration included one midline leg with a gill, three midline legs with a gill, and two normal legs with a third double-half leg. These results are compatible with the principle that intercalary regeneration restores the continuity of positional information.  相似文献   

18.
To understand the mechanism of regeneration, many experiments have been carried out with hemimetabolous insects, since their nymphs possess the ability to regenerate amputated legs. We first succeeded in observing expression patterns of hedgehog, wingless (wg), and decapentaplegic (dpp) during leg regeneration of the cricket Gryllus bimaculatus. The observed expression patterns were essentially consistent with the predictions derived from the boundary model modified by Campbell and Tomlinson (CTBM). Thus, we concluded that the formation of the proximodistal axis of a regenerating leg is triggered at a site where ventral wg-expressing cells abut dorsal dpp-expressing cells in the anteroposterior (A/P) boundary, as postulated in the CTBM.  相似文献   

19.
Limb development in the Drosophila embryo requires a pattern-forming system to organize positional information along the proximal–distal axis of the limb. This system must function in the context of the well characterized anterior–posterior and dorsal–ventral pattern-forming systems that are required to organize the body plan of the embryo. By genetic criteria the Distal-less gene appears to play a central role in limb development. Lack-of-function Distal-less mutations cause the deletion of a specific subset of embryonic peripheral sense organs that represent the evolutionary remnants of larval limbs. Distal-less activity is also required in the imaginal discs for the development of adult limbs. This requirement is cell autonomous and region specific within the developing limb primordium. Production of genetically mosaic imaginal discs, in which clones of cells lack Distal-less activity, indicates the existence of an organized proximal–distal positional information in very young imaginal disc primordia. We suggest that this graded positional information may depend on the activity of the Distal-less gene.  相似文献   

20.
Summary Mutations of the bithorax complex result in segmental transformations in the thorax and abdomen ofDrosophila. The haltere discs from larvae homozygous forbx 3 orpbx are transformed so that the discs contain cells that will produce wing cuticle as well as cells that produce haltere cuticle. The pattern regulation behavior of these discs has been examined. The fate maps of the two discs were established, and then the regulative behavior of a number of fragments from both types of mutant discs was established by culturing the fragments in vivo prior to metamorphosis. The most important conclusion from this work is that the cells producing, haltere cuticle and wing cuticle within the same disc share the same positional information and that they communicate during pattern regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号