首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lacticin 3147 is a broad-spectrum, two-component, lanthionine-containing bacteriocin produced by Lactococcus lactis DPC3147 which has widespread food and biomedical applications as a natural antimicrobial. Other two-component lantibiotics described to date include cytolysin and staphylococcin C55. Interestingly, cytolysin, produced by Enterococcus faecalis, has an associated haemolytic activity. The objective of this study was to compare the biological activity of lacticin 3147 with cytolysin. The lacticin 3147-encoding determinants were heterologously expressed in Ent. faecalis FA2-2, a plasmid-free strain, to generate Ent. faecalis pOM02, thereby facilitating a direct comparison with Ent. faecalis FA2-2.pAD1, a cytolysin producer. Both heterologously expressed lacticin 3147 and cytolysin exhibited a broad spectrum of activity against bacterial targets. Furthermore, enterococci expressing active lacticin 3147 did not exhibit a haemolytic activity against equine blood cells. The results thus indicate that the lacticin 3147 biosynthetic machinery can be heterologously expressed in an enterococcal background resulting in the production of the bacteriocin with no detectable haemolytic activity.  相似文献   

2.

Background

Two component lantibiotics, such as the plasmid-encoded lacticin 3147 produced by Lactococcus lactis DPC3147 and staphylococcin C55 produced by Staphylococcus aureus C55, represent an emerging subgroup of bacteriocins. These two bacteriocins are particularly closely related, exhibiting 86% (LtnA1 and C55α) and 55% (LtnA2 and C55β) identity in their component peptides. The aim of this study was to investigate, for the first time for any two component bacteriocins, the significance of the relatedness between these two systems.

Results

So close is this relatedness that the hybrid peptide pairs LtnA1:C55β and C55α:LtnA2 were found to have activities in the single nanomolar range, comparing well with the native pairings. To determine whether this flexibility extended to the associated post-translational modification/processing machinery, the staphylococcin C55 structural genes were directly substituted for their lacticin 3147 counterparts in the ltn operon on the large conjugative lactococcal plasmid pMRC01. It was established that the lacticin LtnA1 post-translational and processing machinery could produce functionally active C55α, but not C55β. In order to investigate in closer detail the significance of the differences between LtnA1 and C55α, three residues in LtnA1 were replaced with the equivalent residues in C55α. Surprisingly, one such mutant LtnA1-Leu21Ala was not produced. This may be significant given the positioning of this residue in a putative lipid II binding loop.

Conclusion

It is apparent, despite sharing striking similarities in terms of structure and activity, that these two complex bacteriocins display some highly dedicated features particular to either system.  相似文献   

3.
Lantibiotics are antimicrobial peptides that contain several unusual amino acids resulting from a series of enzyme-mediated posttranslational modifications. As a consequence of being gene-encoded, the implementation of peptide bioengineering systems has the potential to yield lantibiotic variants with enhanced chemical and physical properties. Here we describe a functional two-plasmid expression system which has been developed to allow random mutagenesis of the two-component lantibiotic, lacticin 3147. One of these plasmids contains a randomly mutated version of the two structural genes, ltnA1 and ltnA2, and the associated promoter, Pbac, while the other encodes the remainder of the proteins required for the biosynthesis of, and immunity to, lacticin 3147. To test this system, a bank of approximately 1,500 mutant strains was generated and screened to identify mutations that have a detrimental impact on the bioactivity of lacticin 3147. This strategy established/confirmed the importance of specific residues in the structural peptides and their associated leaders and revealed that a number of alterations which mapped to the -10 or -35 regions of Pbac abolished promoter activity.  相似文献   

4.
The thioether rings in the lantibiotics lacticin 3147 and nisin are posttranslationally introduced by dehydration of serines and threonines, followed by coupling of these dehydrated residues to cysteines. The prepeptides of the two-component lantibiotic lacticin 3147, LtnA1 and LtnA2, are dehydrated and cyclized by two corresponding bifunctional enzymes, LtnM1 and LtnM2, and are subsequently processed and exported via one bifunctional enzyme, LtnT. In the nisin synthetase complex, the enzymes NisB, NisC, NisT, and NisP dehydrate, cyclize, export, and process prenisin, respectively. Here, we demonstrate that the combination of LtnM2 and LtnT can modify, process, and transport peptides entirely different from LtnA2 and that LtnT can process and transport unmodified LtnA2 and unrelated peptides. Furthermore, we demonstrate a higher extent of NisB-mediated dehydration in the absence of thioether rings. Thioether rings apparently inhibited dehydration, which implies alternating actions of NisB and NisC. Furthermore, certain (but not all) NisC-cyclized peptides were exported with higher efficiency as a result of their conformation. Taken together, these data provide further insight into the applicability of Lactococcus lactis strains containing lantibiotic enzymes for the design and production of modified peptides.  相似文献   

5.
Ltnα and Ltnβ are individual components of the two-peptide lantibiotic lacticin 3147 and are unusual in that, although ribosomally synthesized, they contain d-amino acids. These result from the dehydration of l-serine to dehydroalanine by LtnM and subsequent stereospecific hydrogenation to d-alanine by LtnJ. Homologues of LtnJ are rare but have been identified in silico in Staphylococcus aureus C55 (SacJ), Pediococcus pentosaceus FBB61 (PenN), and Nostoc punctiforme PCC73102 (NpnJ, previously called NpunJ [P. D. Cotter et al., Proc. Natl. Acad. Sci. U. S. A. 102:18584-18589, 2005]). Here, the ability of these enzymes to catalyze d-alanine formation in the lacticin 3147 system was assessed through heterologous enzyme production in a ΔltnJ mutant. PenN successfully incorporated d-alanines in both peptides, and SacJ modified Ltnα only, while NpnJ was unable to modify either peptide. Site-directed mutagenesis was also employed to identify residues of key importance in LtnJ. The most surprising outcome from these investigations was the generation of peptides by specific LtnJ mutants which exhibited less bioactivity than those generated by the ΔltnJ strain. We have established that the reduced activity of these peptides is due to the inability of the associated LtnJ enzymes to generate d-alanine residues in a stereospecific manner, resulting in the presence of both d- and l-alanines at the relevant locations in the lacticin 3147 peptides.  相似文献   

6.
While nisin (lantibiotic), lacticin 3147 (lantibiotic) and vancomycin (glycopeptides) are among the best studied lipid II-binding antimicrobials, their relative activities have never been compared. Nisin and lacticin 3147 have been employed/investigated primarily as food preservatives, although they do have potential in terms of veterinary and clinical applications. Vancomycin is used exclusively in clinical therapy. We reveal a higher potency for lacticin 3147 (MIC 0.95?C3.8???g/ml) and vancomycin (MIC 0.78?C1.56???g/ml) relative to that of nisin (MIC 6.28?C25.14???g/ml) against the food-borne pathogen Listeria monocytogenes. A comparison of the activity of the three antimicrobials against nisin resistance mutants of L. monocytogenes also reveals that their susceptibility to vancomycin and lacticin 3147 changed only slightly or not at all. A further assessment of relative activity against a selection of Bacillus cereus, Enterococcus and Staphylococcus aureus targets revealed that vancomycin MICs consistently ranged between 0.78 and 1.56???g/ml against all but one strain. Lacticin 3147 was found to be more effective than nisin against B. cereus (lacticin 3147 MIC 1.9?C3.8???g/ml; nisin MIC 4.1?C16.7???g/ml) and E. faecium and E. faecalis targets (lacticin 3147 MIC from 1.9 to 3.8???g/ml; nisin MIC ??8.3???g/ml). The greater effectiveness of lacticin 3147 is even more impressive when expressed as molar values. However, in agreement with the previous reports, nisin was the more effective of the two lantibiotics against S. aureus strains. This study highlights that in many instances the antimicrobial activity of these leading lantibiotics are comparable with that of vancomycin and emphasizes their particular value with respect to use in situations including foods and veterinary medicine, where the use of vancomycin is not permitted.  相似文献   

7.
Transconjugant lactococcal starters which produce both lantibiotics lacticin 3147 and lacticin 481 were generated via conjugation of large bacteriocin-encoding plasmids. A representative of one of the resultant strains proved more effective at killing Lactobacillus fermentum and inhibiting the growth of Listeria monocytogenes LO28H than either of the single bacteriocin-producing parental strains, demonstrating the potential of these transconjugants as protection cultures for food safety applications.  相似文献   

8.
Transconjugant lactococcal starters which produce both lantibiotics lacticin 3147 and lacticin 481 were generated via conjugation of large bacteriocin-encoding plasmids. A representative of one of the resultant strains proved more effective at killing Lactobacillus fermentum and inhibiting the growth of Listeria monocytogenes LO28H than either of the single bacteriocin-producing parental strains, demonstrating the potential of these transconjugants as protection cultures for food safety applications.  相似文献   

9.
Lantibiotics are antibacterial peptides isolated from bacterial sources that exhibit activity toward Gram-positive organisms and are usually several orders of magnitude more potent than traditional antibiotics such as penicillin. They contain a number of unique structural features including dehydro amino acid and lanthionine (thioether) residues. Introduced following ribosomal translation of the parent peptide, these moieties render conventional methods of peptide analysis ineffective. We report herein a new method using nickel boride (Ni(2)B), in the presence of deuterium gas, to reduce dehydro side chains and reductively desulfurize lanthionine bridges found in lantibiotics. Using this approach, it is possible to identify and distinguish the original locations of dehydro side chains and lanthionine bridges by traditional peptide sequencing (Edman degradation) followed by mass spectrometry. The strategy was initially verified using nisin A, a structurally well characterized lantibiotic, and subsequently extended to the novel two-component lantibiotic, lacticin 3147, produced by Lactococcus lactis subspecies lactis DPC3147. The primary structures of both lacticin 3147 peptides were then fully assigned by use of multidimensional NMR spectroscopy, showing that lacticin 3147 A1 has a specific lanthionine bridging pattern which resembles the globular type-B lantibiotic mersacidin, whereas the A2 peptide is a member of the elongated type-A lantibiotic class. Also obtained by NMR were solution conformations of both lacticin 3147 peptides, indicating that A1 may adopt a conformation similar to that of mersacidin and that the A2 peptide adopts alpha-helical structure. These results are the first of their kind for a synergistic lantibiotic pair (only four such pairs have been reported to date).  相似文献   

10.
Lantibiotics are antimicrobial peptides which can have a broad spectrum activity against many Gram positive pathogens. Many of these peptides contain charged amino acids which may be of critical importance with respect to antimicrobial activity. We have recently carried out an in-depth bioengineering based investigation of the importance of charged residues in a representative two peptide lantibiotic, lacticin 3147, and here we discuss the significance of these findings in the context of other lantibiotics and cationic antimicrobial peptides.  相似文献   

11.
The component peptides of lacticin 3147 were degraded by alpha-chymotrypsin in vitro with a resultant loss of antimicrobial activity. Activity was also lost in ileum digesta. Following oral ingestion, neither of the lacticin 3147 peptides was detected in the gastric, jejunum, or ileum digesta of pigs, and no lacticin 3147 activity was found in the feces. These observations suggest that lacticin 3147 ingestion is unlikely to have adverse effects, since it is probably inactivated during intestinal transit.  相似文献   

12.
The component peptides of lacticin 3147 were degraded by α-chymotrypsin in vitro with a resultant loss of antimicrobial activity. Activity was also lost in ileum digesta. Following oral ingestion, neither of the lacticin 3147 peptides was detected in the gastric, jejunum, or ileum digesta of pigs, and no lacticin 3147 activity was found in the feces. These observations suggest that lacticin 3147 ingestion is unlikely to have adverse effects, since it is probably inactivated during intestinal transit.  相似文献   

13.
The ability and frequency at which target organisms can develop resistance to bacteriocins is a crucial consideration in designing and implementing bacteriocin-based biocontrol strategies. Lactococcus lactis ssp. lactis IL1403 was used as a target strain in an attempt to determine the frequency at which spontaneously resistant mutants are likely to emerge to the lantibiotic lacticin 3147. Following a single exposure to lacticin 3147, resistant mutants only emerged at a low frequency (10(-8)-10(-9)) and were only able to withstand low levels of the bacteriocin (100 AU mL(-1)). However, exposure to increasing concentrations, in a stepwise manner, resulted in the isolation of eight mutants that were resistant to moderately higher levels of lacticin 3147 (up to 600 AU mL(-1)). Interestingly, in a number of cases cross-resistance to other lantibiotics such as nisin and lacticin 481 was observed, as was cross-resistance to environmental stresses such as salt. Finally, reduced adsorption of the bacteriocin in to the cell was documented for all resistant mutants.  相似文献   

14.
Lantibiotics are antimicrobial peptides which contain a high percentage of post-translationally modified residues. While most attention has been paid to the role of these critical structural features, evidence continues to emerge that charged amino acids also play a key role in these peptides. Here 16 ‘charge’ mutants of the two-peptide lantibiotic lacticin 3147 [composed of Ltnα (2+, 2−) and Ltnβ (2+)] were constructed which, when supplemented with previously generated peptides, results in a total bank of 23 derivatives altered in one or more charged residues. When examined individually, in combination with a wild-type partner or, in some instances, in combination with one another, these mutants reveal the importance of charge at specific locations within Ltnα and Ltnβ, confirm the critical role of the negatively charged glutamate residue in Ltnα and facilitate an investigation of the contribution of positively charged residues to the cationic Ltnβ. From these investigations it is also apparent that the relative importance of the overall charge of lacticin 3147 varies depending on the target bacteria and is most evident when strains with more negatively charged cell envelopes are targeted. These studies also result in, for the first time, the creation of a derivative of a lacticin 3147 peptide (LtnβR27A) which displays enhanced specific activity.  相似文献   

15.
AIMS: To isolate and characterise Streptococcus mutans from Irish saliva samples and to assess their sensitivity to a food-grade preparation of the lantibiotic, lacticin 3147, produced by Lactococcus lactis DPC3147. METHODS AND RESULTS: Saliva samples collected from children with varying oral health status were screened on Mitis Salivarius agar for the presence of pathogenic streptococci. Following selective plating, 16S rDNA sequencing and Pulsed Field Gel Electrophoresis (PFGE), 15 distinct strains of Strep. mutans were identified. These were grouped according to their relative sensitivity to lacticin 3147 which ranged from 0.78 to 6.25%; relative to a sensitive indicator strain, Lactococcus lactis ssp. lactis HP. Inhibition of indicator Strep. mutans strains from sensitive, intermediate and tolerant groupings were assessed in microtitre plate assays with increasing concentrations of lacticin 3147. The concentration of lacticin 3147 required to give 50% growth inhibition correlated with their relative sensitivities (as assayed by well diffusion methodology) and ranged from 1280 to 5120 AU ml(-1). Concentrated preparations of lacticin 3147 caused a rapid killing of Strep. mutans strains in broth. Moreover, in human saliva deliberately spiked with Strep. mutans, the pathogen was eliminated (initial inoculum of 10(5)) in the presence of 40,000 AU ml(-1) of lacticin 3147. Furthermore, a food-grade lacticin 3147 spray dried powder ingredient was assessed for the inhibition of Strep. mutans in human saliva, spiked with a strain of intermediate sensitivity, resulting in up to a 4-log reduction in counts after 20 min. CONCLUSION: A food grade preparation of lacticin 3147 was effective in the inhibition of oral Strep. mutans. SIGNIFICANCE AND IMPACT OF THE STUDY: The inhibition of oral streptococci by food grade preparations of lacticin 3147 may offer novel opportunities for the development of lacticin 3147 as an anti-cariogenic agent particularly in the area of functional foods for the improvement of oral health.  相似文献   

16.
17.
18.
The aim of the present study was to develop adjunct strains which can grow in the presence of bacteriocin produced by lacticin 3147-producing starters in fermented products such as cheese. A Lactobacillus paracasei subsp. paracasei strain (DPC5336) was isolated from a well-flavored, commercial cheddar cheese and exposed to increasing concentrations (up to 4,100 arbitrary units [AU]/ml) of lantibiotic lacticin 3147. This approach generated a stable, more-resistant variant of the isolate (DPC5337), which was 32 times less sensitive to lacticin 3147 than DPC5336. The performance of DPC5336 was compared to that of DPC5337 as adjunct cultures in two separate trials using either Lactococcus lactis DPC3147 (a natural producer) or L. lactis DPC4275 (a lacticin 3147-producing transconjugant) as the starter. These lacticin 3147-producing starters were previously shown to control adventitious nonstarter lactic acid bacteria in cheddar cheese. Lacticin 3147 was produced and remained stable during ripening, with levels of either 1,280 or 640 AU/g detected after 6 months of ripening. The more-resistant adjunct culture survived and grew in the presence of the bacteriocin in each trial, reaching levels of 10(7) CFU/g during ripening, in contrast to the sensitive strain, which was present at levels 100- to 1,000-fold lower. Furthermore, randomly amplified polymorphic DNA-PCR was employed to demonstrate that the resistant adjunct strain comprised the dominant microflora in the test cheeses during ripening.  相似文献   

19.
Class I bacteriocins (lantibiotics) and class II bacteriocins are antimicrobial peptides secreted by gram-positive bacteria. Using two lantibiotics, lacticin 481 and nisin, and the class II bacteriocin coagulin, we showed that bacteriocins can be detected without any purification from whole producer bacteria grown on plates by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS). When we compared the results of MALDI-TOF-MS performed with samples of whole cells and with samples of crude supernatants of liquid cultures, the former samples led to more efficient bacteriocin detection and required less handling. Nisin and lacticin 481 were both detected from a mixture of their producer strains, but such a mixture can yield additional signals. We used this method to determine the masses of two lacticin 481 variants, which confirmed at the peptide level the effect of mutations in the corresponding structural gene.  相似文献   

20.
M P Ryan  M C Rea  C Hill    R P Ross 《Applied microbiology》1996,62(2):612-619
Lactococcus lactis DPC3147, a strain isolated from an Irish kefir grain, produces a bacteriocin with a broad spectrum of inhibition. The bacteriocin produced is heat stable, particularly at a low pH, and inhibits nisin-producing (Nip+) lactococci. On the basis of the observation that the nisin structural gene (nisA) does not hybridize to DPC3147 genomic DNA, the bacteriocin produced was considered novel and designated lacticin 3147. The genetic determinants which encode lacticin 3147 are contained on a 63-kb plasmid, which was conjugally mobilized to a commercial cheese starter, L. lactis subsp. cremoris DPC4268. The resultant transconjugant, DPC4275, both produces and is immune to lacticin 3147. The ability of lacticin 3147-producing lactococci to perform as cheddar cheese starters was subsequently investigated in cheesemaking trials. Bacteriocin-producing starters (which included the transconjugant strain DPC4275) produced acid at rates similar to those of commercial strains. The level of lacticin 3147 produced in cheese remained constant over 6 months of ripening and correlated with a significant reduction in the levels of nonstarter lactic acid bacteria. Such results suggest that these starters provide a means of controlling developing microflora in ripened fermented products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号