首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytochrome P-45011beta has been solubilized and partially purified from bovine adrenal cortex mitochondria by means of chromatography on Octyl-Sepharose CL-4B or DEAE-Sepharose CL-6B. The partially purified P-450 preparations were about 90% pure as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, but had a low specific content of P-450 (between 1 and 2 nmol of P-450 per mg of protein). In the presence of purified preparations of adrenodoxin reductase and adrenodoxin, the partially purified P-450 preparations catalyzed NADPH-supported 11beta-hydroxylation of unconjugated and sulfoconjugated deoxycorticosterone. In the reconstituted system the hydroxylation of deoxycorticosterone sulfate proceeded at a much higher rate than in intact mitochondria, indicating that in the former case interactions between the hydrophilic substrate and P-450 were facilitated. In the presence of Triton X-100 the partially purified cytochrome P-45011beta had a Stokes radius of 4.5 nm, a sedimentation coefficient of 3.1 S, and a partial specific volume of about 0.85 cm3/g. These results indicate that the cytochrome P-45011beta . Triton X-100 complex had a molecular weight of about 100,000 and that P-45011beta bound about 1.1 g of Triton X-100 per g of protein. The P-45011beta . Triton X-100 complex was catalytically active in hydroxylation reactions supported by NADPH or the hydroxylating agent ortho-nitroiodosobenzene, suggesting that the monomer of cytochrome P-45011beta is the active form of the protein.  相似文献   

2.
When corticosterone was incubated with cytochrome P-45011 beta purified from bovine adrenocortical mitochondria in the presence of adrenodoxin, NADPH-adrenodoxin reductase and an NADPH generating system, aldosterone as well as 18-hydroxycorticosterone were formed with turnover numbers of 0.23 and 1.1 nmol/min/nmol P-450, respectively. Phospholipids extracted from adrenocortical mitochondria remarkably enhanced the activity of aldosterone formation by the cytochrome P-45011 beta-reconstituted system. The apparent Km and turnover number were estimated to be 6.9 microM and 2.0 nmol/min/nmol P-450 for aldosterone formation in the presence of the lipidic extract. When 18-hydroxycorticosterone was tested as a substrate, cytochrome P-45011 beta showed catalytic activity for aldosterone synthesis with an apparent Km and turnover number of 325 microM and 5.3 nmol/min/nmol P-450, respectively. Carbon monoxide and metyrapone inhibited the production of aldosterone from corticosterone and that from 18-hydroxycorticosterone. These results suggest that conversion of corticosterone and of 18-hydroxycorticosterone to aldosterone occurs through P-45011 beta-catalyzed reaction.  相似文献   

3.
Cytochrome P-450 was purified from bovine adrenal cortex mitochondria by affinity chromatography using an octylamine-substituted Sepharose column. The resulting optically clear preparation was stable at -20 degrees for months. The specific concentration of cytochrome P-450 in the preparation was about 5 nmol of heme per mg of protein. The preparations were free of adrenodoxin, adrenodoxin reductase, phospholipids, and other heme contaminations. Polyacrylamide gel electrophoresis of the purified cytochrome P-450 preparation treated with sodium dodecyl sulfate and mercaptoethanol showed a single major band with a molecular weight of about 60,000. The optical absorption spectra of the preparation exhibited Soret maxima at 416, 416, and 448 nm for the Fe3+, Fe2+ and the C.Fe2+ complex, respectively. The EPR spectrum showed the characteristic features of the low spin form of ferric cytochrome P-450 with principal components 1.914, 2.241, and 2.415 of the g-tensor. The circular dichroism spectrum revealed two large negative ellipticities at 412 and 350 nm. Fluorescence spectra showed an excitation maximum at 285 nm and an emission maximum at 305 nm with a shoulder at 330 nm as the cytochrome P-450 molecule is excited at 285 nm, or an emission maximum at 335 nm when the cytochrome molecule is excited at 305 nm. After reconstitution with adrenodoxin and its reductase, this cytochrome P-450 was highly active for cholesterol desmolase with an NADPH-generating system as electron donor but was not active for steroid 11beta-hydroxylase.  相似文献   

4.
The adrenal cortical enzyme systems, 11 beta-hydroxylase, P-450 11 beta, and the side-chain cleavage complex, P-450 scc, differ only in their cytochrome P-450s. Structural modifications of metyrapone, an inhibitor of cytochrome P-450 enzyme systems, have been made to determine the requirement for the A- or B-pyridyl ring for inhibition of P-45011 beta and P-450 scc activities. Three new analogs of metyrapone (A-phenylmetyrapone, B-phenylmetyrapone and diphenylmetyrapone) were synthesized and evaluated as inhibitors using a crude, defatted bovine adrenal cortical mitochondrial preparation. Characterization of the mitochondrial preparation demonstrated: enhancement of both activities by the addition of 15.0 microM adrenodoxin, the addition of 1% ethanol decreased both activities less than 10%, and the apparent Km of deoxycorticosterone for P-45011 beta was 6.8 microM and the apparent Km of cholesterol for P-450 scc was 21.6 microM. Inhibition of P-45011 beta and P-450 scc activities with these compounds demonstrated: the B-pyridyl ring of metyrapone is required for inhibition of both activities whereas requirement for the A-ring is less stringent, and the four metyrapone analogs were more selective inhibitors of P-45011 beta activity. These studies suggest that the A-phenyl metyrapone analog is a good candidate for further development of a selective adrenocortical radiopharmaceutical.  相似文献   

5.
M Tsubaki  Y Ichikawa  Y Fujimoto  N T Yu  H Hori 《Biochemistry》1990,29(37):8805-8812
Cytochrome P-45011 beta was purified as the 11-deoxycorticosterone-bound form from bovine adrenocortical mitochondria and its active site was investigated by resonance Raman and EPR spectroscopies. Resonance Raman spectra of the purified sample revealed that the heme iron adopts the pure pentacoordinated ferric high-spin state on the basis of the nu 10 (1629cm-1) and nu 3 (1490 cm-1) mode frequencies, which are higher than those of the hexacoordinated ferric high-spin cytochrome P-450scc-substrate complexes. In the ferrous-CO state, a Fe2(+)-CO stretching mode was identified at 481.5 cm-1 on the basis of an isotopic substitution technique; this frequency is very close to that of cytochrome P-450scc in the cholesterol-complexed state (483 cm-1). The EPR spectra of the purified sample at 4.2 K showed ferric high-spin signals (at g = 7.98, 3.65, and 1.71) that were clearly distinct from the cytochrome P-450scc ferric high-spin signals (g = 8.06, 3.55, and 1.68) and confirmed previous assignments of ferric high-spin signals in adrenocortical mitochondria. The EPR spectra of the nitric oxide (NO) complex of ferrous cytochrome P-45011 beta showed EPR signals with rhombic symmetry (gx = 2.068, gz = 2.001, and gy = 1.961) very similar to those of the ferrous cytochrome P-450scc-NO complex in the presence of 22(S)-hydroxycholesterol and 20(R),22-(R)-dihydroxycholesterol at 77 K.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Experimental systems for the hydroxylation of steroids (11-deoxycorticosterone and cholesterol) with reduced electron transfer chain, in which flavoprotein was omitted, were investigated. Incubation of chemically reduced immobilized adrenodoxin either with cytochrome P-45011 beta or cytochrome P-450scc in the presence of substrate of hydroxylation and oxygen yields the specific reaction products, corticosterone or pregnenolone. The catalytic activity of the experimental dienzyme systems proves the possibility of the steroid hydroxylation mechanism based exclusively on dissociation and reassociation of the electron transporting protein complexes.  相似文献   

7.
Squalene epoxidase (EC 1.14.99.7, squalene 2,3-monooxygenase (epoxidizing) was purified to an apparent homogeneity from rat liver microsomes. The purification was carried out by solubilization of microsomes by Triton X-100, fractionation with ion exchangers, hydroxyapatite, Cibacron Blue Sepharose 4B, and chromatofocusing column chromatography. A total purification of 143-fold over the first DEAE-cellulose fraction was achieved. The purified enzyme gave a single major band on SDS-polyacrylamide gel electrophoresis and the Mr was estimated to be 51 000 as a single polypeptide chain. The enzyme showed no distinct absorption spectrum in the visible regions. The squalene epoxidase activity was reconstituted with the purified enzyme, NADPH-cytochrome P-450 reductase (EC 1.6.2.4), FAD, NADPH and molecular oxygen in the presence of Triton X-100. The apparent Michaelis constants for squalene and FAD were 13 microM and 5 microM, respectively. The Vmax was about 186 nmol per mg protein per 30 min for 2,3-oxidosqualene. The enzyme activity was not inhibited by potent inhibitors of cytochrome P-450. It is suggested that squalene epoxidase is distinct from cytochrome P-450 isozymes.  相似文献   

8.
We have shown (Seybert, D., Lambeth, D., and Kamin, H. (1978), J. Biol. Chem. 253, 8355-8358) that, whereas the 1:1 complex between adrenodoxin reductase and adrenodoxin is the active species for cytochrome c reduction, the complex is not sufficient to allow cytochrome P-45011 beta-mediated hydroxylations;adrenodoxin in excess of reductase is required. In the present studies, reduction by NADPH of excess adrenodoxin is shown to occur at a rate sufficient to support both cytochrome P-450 11 beta-mediated hydroxylation of deoxycorticosterone, and cytochrome P-450sec-mediated side chain cleavage of cholesterol. Oxidation-reduction potential and ion effect studies indicate that the mechanism of steroidogenic electron transport involves an adrenodoxin electron "shuttle" rather than a macromolecular complex of reductase, adrenodoxin, and cytochrome. The oxidation-reduction potential of adrenodoxin is shifted about -100 mV when bound to reductase, and reduction of the iron-sulfur protein thus promotes dissociation of the complex. The rate of adrenodoxin reduction is first stimulated, then inhibited by increasing salt; the effect is ion-specific, with Ca2+ approximately Mg2+ greater than Na+ greater than NH/+. Similar ion-specific rate effects are observed for both of the cytochrome P-450-mediated hydroxylations, indicating that the same reduction mechanism is required for these reactions. Increasing salt concentrations caused dissociation of the complex; dissociation of the form of the complex containing reduced adrenodoxin occurred at lower salt concentrations than that containing oxidized adrenodoxin. The order of effectiveness of ions in causing dissociation is the same as the order for stimulation of adrenodoxin reduction, suggesting a dissociation step in the mechanism. This proposed model, together with dissociation constants for the form of the complex containing either oxidized or reduced adrenodoxin, allows accurate prediction of the salt rate effects curve. For all ions, an activity maximum is seen at the ion concentration which produces the largest molar difference between associated-oxidized and dissociated-reduced states, and the model predicts the positions of the maxima for adrenodoxin reduction, 11 beta-hydroxylation, and side chain cleavage. Thus reduction-induced dissociation of adrenodoxin from adrenodoxin reductase appears to be a required step in steroidogenic electron transport by this system, and a role for adrenodoxin as a mobile electron shuttle is proposed.  相似文献   

9.
The chick kidney mitochondrial cytochrome P-450 1,25-dihydroxyvitamin D3 24-hydroxylase was partially purified by sequential polyethylene glycol precipitation, aminohexyl-Sepharose 4B, and hydroxylapatite chromatography. The specific activity of the final preparation, when reconstituted with NADPH, adrenodoxin, and adrenodoxin reductase, was 245 pmol/min/mg of protein or 0.56 pmol/min/pmol of P-450. The specific cytochrome P-450 content was 0.45-0.73 nmol/mg of protein. BALB/c mice immunized with this preparation developed serum polyclonal antibodies to the 24-hydroxylase, as demonstrated by immunoprecipitation. Splenic lymphocytes from an immunized mouse were fused with myeloma NSI/1-Ag-4-1 cells, and hybridomas secreting monoclonal antibodies to the 24-hydroxylase were detected by immunoprecipitation. The hybridoma lines were cloned by limiting dilution and further characterized as IgG1, IgG3, and IgM subclasses. In one-dimensional immunoblots of soluble 24-hydroxylase preparations, the monoclonal antibodies revealed a single band with an apparent molecular weight of 59,000. The monoclonal antibodies did not cross-react with cytochrome P-450s from other species but immunoprecipitated and immunoblotted a soluble chick renal mitochondrial 25-hydroxyvitamin D3 1 alpha-hydroxylase preparation, demonstrating the close similarity of these two hydroxylases. These antibodies were coupled to Sepharose CL-4B and used to isolate to homogeneity the two enzymes from chick kidney mitochondria. Amino-terminal sequences and amino acid composition data demonstrate that these enzymes are different but homologous.  相似文献   

10.
To further elucidate the mechanisms by which ACTH (adrenocorticotropin) exerts its long-term action to maintain normal levels of adrenocortical cytochromes P-450 and related enzymes, the abilities of cholera toxin and prostaglandins E2 and F2 alpha to induce the synthesis of cytochromes P-450scc, P-45011 beta, and P-450C21 and adrenodoxin have been examined. These effectors stimulate the production of cyclic AMP and thus steroidogenesis in the adrenal cortex. Using bovine adrenocortical cells in primary monolayer culture, we have shown that treatment with cholera toxin results in increased synthesis of cytochromes P-450scc and P-45011 beta and adrenodoxin, similar to the effect observed upon ACTH treatment. Prostaglandins E2 and F2 alpha are less effective at inducing the synthesis of the mitochondrial cytochromes P-450, and do not seem to induce the synthesis of adrenodoxin. Furthermore, cholera toxin was found to be less effective at inducing the synthesis of microsomal cytochrome P-450C21 than ACTH, and no more effective than the prostaglandins. Thus, while it appears that elevation of cyclic AMP levels is a necessary step leading to increased synthesis of adrenocortical forms of cytochrome P-450, the detailed mechanism of this induction will be found to be different for each of the different enzymes.  相似文献   

11.
The turnover of newly synthesized cytochromes P-450scc and P-45011 beta, and adrenodoxin was investigated in bovine adrenocortical cells in primary monolayer cultures. Cells were pulse-radiolabeled with [35S]methionine, and specific newly synthesized enzymes were immunoisolated at various times following labeling and quantitated. Adrenocorticotropin (ACTH) treatment did not alter the average turnover rate of total cellular proteins or that of total mitochondrial proteins. The half-life of total cellular proteins of control and ACTH-treated cells was determined to be 20.5 and 23 h, respectively. The half-life of mitochondrial proteins of control and ACTH-treated cells was determined to be 42.5 and 44 h, respectively. The turnover rate of newly synthesized cytochrome P-450scc was approximately the same as total mitochondrial protein (t1/2 = 38 h), and was unchanged by ACTH treatment (t1/2 = 42 h). ACTH treatment did not greatly alter the turnover rate of adrenodoxin. The half-life of adrenodoxin from control and ACTH-treated cells was determined to be 20 and 17 h, respectively. However, ACTH treatment appeared to increase the half-life of cytochrome P-45011 beta from 16 h in control cells to 24 h in treated cells. The differential rate of turnover of mitochondrial proteins studied here supports the contention that mitochondria are subject to heterogeneous degradation. It appears that chronic treatment of bovine adrenocortical cells in culture with ACTH leads to increased steroidogenic capacity, primarily as a result of increased synthesis of steroidogenic enzymes, although, as shown for cytochrome P-45011 beta, ACTH action might also increase steroidogenic capacity by increasing the half-life of this steroid hydroxylase.  相似文献   

12.
Electron paramagnetic resonance studies have been carried out on two species of cytochrome P-450 (P-450scc and P-45011beta) purified from bovine adrenocortical mitochondria. The g values of the steroid-bound cytochromes in the high spin form were determined at 4.2 degrees K to be 8.07, 3.60 and 1.70 for P-450scc and 8.00, 3.65 and 1.71 for P-45011beta. The E/D values were estimated to be 0.103 for P-450scc and 0.099 for P-45011beta. Either high spin P-450 was converted into the low spin form by the treatment with an NADPH dependent electron donating system and subsequent gel filtration in order to remove the steroid. The g values of the low spin ferric cytochromes were 2.423, 2.247 and 1.914 for P-450scc and 2.430, 2.251 and 1.919 for P-45011beta at 77 degrees K. The values for magnitude of delta/gamma, magnitude of V/gamma and k were 5.69, 5.21 and 1.11 for P-450scc and 5.94, 5.38 and 1.16 for P-45011beta. These studies indicate that there are some differences in the ferric heme environment between P-450scc and P-45011beta.  相似文献   

13.
Bovine adrenal P-45011 beta catalyzes the 11 beta- and 18-hydroxylation of corticosteroids as well as aldosterone synthesis. These activities of P-45011 beta were found to be modulated by another mitochondrial cytochrome P-450 species, P-450scc. The presence together of P-45011 beta and P-450scc in liposomal membranes was found to remarkably stimulate the 11 beta-hydroxylase activity of P-45011 beta and also stimulate the cholesterol desmolase activity of P-450scc. The stimulative effect of P-450scc on 11 beta-hydroxylase activity diminished by the addition of protein-free liposomes to proteoliposomes containing P-45011 beta and P-450scc, thus showing P-450scc to interact with P-45011 beta in the same membranes. Kinetic analysis of this effect indicated the formation of an equimolar complex between P-45011 beta and P-450scc on liposomal membranes. P-45011 beta in the complex had not only stimulated activity for 11 beta- and 18-hydroxylation of 11-deoxycorticosterone but also suppressed activity for production of 18-hydroxycorticosterone and aldosterone. When the inner mitochondrial membranes of zona fasciculata-reticularis from bovine adrenal were treated with anti-P-450scc IgG, aldosterone formation was stimulated to a greater extent than that of zona glomerulosa. This indicates the aldosterone synthesizing activity of P-45011 beta in the zona fasciculata-reticularis to be suppressed by interaction with P-450scc. The zone-specific aldosterone synthesis of P-45011 beta in bovine adrenal may possibly be induced by differences in interactions with P-450scc of mitochondrial membranes in each zone.  相似文献   

14.
Upon irradiation by a light flash (100-J), the carbon monoxide complex of cytochrome P-450scc was fully photodissociated in both the presence and absence of cholesterol, while less than 20% of the CO complex was photodissociable with those of deoxycorticosterone-bound and -free forms of cytochrome P-45011 beta. When the quantum yield of the reaction was measured for each photodissociable portion, the values were 0.5 and 1.0 for the substrate-free and -bound forms of cytochrome P-450scc, and 0.03 and 0.8 for the substrate-free and -bound forms of cytochrome P-45011 beta, respectively. Thus, CO complexes of these enzymes become more photosensitive upon binding with the specific substrates. Steroid binding also affected kinetic constants of reactions between the ferrous enzymes and CO. The rate constants for the CO recombination at 15 degrees C were 2.7 X 10(6) and 2.3 X 10(5) M-1 s-1 for the substrate-free and -bound forms of cytochrome P-450scc, and were 7.0 X 10(5) and 5.4 X 10(3) M-1 s-1 for the substrate-free and -bound forms of cytochrome P-45011 beta, respectively. The rate constants for the CO dissociation also decreased upon the steroid bindings. The products of the enzyme reactions, pregnenolone and corticosterone, had similar effects on the kinetic constants. From these findings, we postulate that the binding of a steroid to the substrate site of each enzyme alters the bonding character of CO with the heme-iron, thereby affecting both photochemical and kinetic properties of the CO complex. The nature of the photoindissociable portion of the CO complex of cytochrome P-45011 beta is also discussed.  相似文献   

15.
We have estimated the concentrations of cytochromes P-450scc and P-45011 beta and the electron-transfer proteins adrenodoxin reductase and adrenodoxin in the adrenal cortex and corpus luteum using specific antibodies against these enzymes. While in the adrenal cortex the concentrations of these enzymes are relatively constant in different animals and show no significant sex differences, in corpora lutea they vary considerably and can increase at least up to fifty-fold over the levels found in the ovary. The average relative concentrations of adrenodoxin reductase, adrenodoxin and P-450 are 1:3:8 in the adrenal cortex (which has two cytochromes P-450, P-450scc and P-450(11) beta, in equal concentrations) and 1:2.5:3 in the corpus luteum (which has only P-450scc). We further present evidence that the levels of cytochrome c oxidase also show a degree of correlation with the levels of the mitochondrial steroidogenic enzymes.  相似文献   

16.
Cytochrome P-450scc was isolated from mitochondria of bovine adrenal cortex by hydrophobic chromatography on octyl Sepharose followed by affinity chromatography on cholesterol-7-(thiomethyl)carboxy-3 beta-acetate-Sepharose. The partially purified eluate from the octyl Sepharose resin was free of adrenodoxin and adrenodoxin reductase and displayed biphasic binding characteristics for cholesterol, cholesterol sulfate, and cholesterol acetate (CA). Chromatography of the octyl Sepharose eluate on CA-Sepharose removed extraneous proteins and resolved the cytochrome P-450scc into two fractions, each of which displayed monophasic binding with all three substrates. These fractions behaved identically with respect to their ability to bind substrates, their kinetic properties, and their rate of migration during sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The dissociation constants of the cytochrome P-450scc.substrate complexes are 1.1, 2.6, and 1.3 microM for cholesterol, cholesterol sulfate, and cholesterol acetate, respectively. Addition of phospholipids isolated from adrenal cortex mitochondria or adrenodoxin had no effect on the equilibrium binding constants. Addition of Emulgen 913, however, decreased the binding affinities 10-20-fold. Emulgen 913 also inhibited the interaction of adrenodoxin with the cytochrome. An active side chain cleavage system was reconstituted with purified P-450 by addition of saturating amounts of adrenodoxin, adrenodoxin reductase, and NADPH-generating system. The apparent Km values for this reconstituted system of cholesterol, cholesterol sulfate, and cholesterol acetate are 1.8, 1.9, and 0.6 microM, respectively. Since the Km values of substrate oxidation are similar to the Kd values of the cytochrome P-450.substrate complexes, it seems likely that the binding of substrates, particularly when the side chain cleavage system is free of mitochondrial membranes, is not rate-limiting. Based on these results and electrophoretic data, it appears that one cytochrome P-450 present in adrenal mitochondria can oxidize cholesterol, its sulfate, and its acetate. This enzyme represented about 60% of the cytochrome P-450 present in the octyl Sepharose eluate. The factors responsible for the biphasic kinetics of oxidation by intact mitochondria and biphasic binding of sterol substrates by partially purified preparations of cytochrome P-450scc are still unknown.  相似文献   

17.
Rotational diffusion measurements using EPR and saturation transfer EPR were applied to analyze complex formation between the electron-transfer components of the mitochondrial steroid-hydroxylating cytochrome P450 systems (CYP11A1 and CYP11B1) in phosphatidylcholine/phosphatidylethanolamine/cardiolipin vesicles prepared by octyl glucoside dialysis/adsorption. Octyl glucoside reconstitution of P450SCC results in large vesicles, which have an advantage over small vesicles in that vesicle tumbling does not contribute to measured rotational diffusion rates. Immobilization of spin-labeled adrenodoxin by both P450SCC and adrenodoxin reductase indicates equimolar complexation between P450SCC and adrenodoxin as well as between adrenodoxin reductase and adrenodoxin. Combination of rotational diffusion and antibody cross-linking confirmed the complexation of adrenodoxin with P450SCC and for the first time provided direct evidence of a complex between P450SCC and P45011beta in the membrane. In contrast, no evidence was found for the existence of adrenodoxin reductase-P450SCC complexes or a ternary complex of all three proteins. Thus, these experiments confirm the shuttle mechanism of electron transfer to vesicle-reconstituted P450SCC and P45011beta.  相似文献   

18.
We have utilized 11beta-hydroxylase activity and visible absorption spectrophotometry to detect possible complex formation among adrenodoxin reductase, adrenodoxin, and cytochrome P-450(11)beta. At low ionic strength, a 1:1 complex between adrenodoxin reductase and adrenodoxin occurs but does not support maximal rates of 11beta hydroxylation; at least 1 additional molecule of adrenodoxin in excess of the 1:1 complex is required for full hydroxylase activity. Spectrophotometric titration of a mixture of adrenodoxin reductase and cytochrome P-450(11)beta with adrenodoxin indicates sequential formation of 1:1 complexes between adrenodoxin reductase and adrenodoxin and then between a second adrenodoxin and cytochrome P-450(11beta; the adrenodoxin-cytochrome P-450(11)beta complex is only detectable when the concentration of adrenodoxin exceeds that of adrenodoxin reductase.  相似文献   

19.
A molecular species of cytochrome P-450 that catalyzes the 25-hydroxylation of cholecalciferol (P-450cc25) was purified from rat liver microsomes on the basis of its catalytic activity. The purification procedure consisted of polyethylene glycol fractionation, and column chromatographies on octylamino Sepharose 4B, hydroxylapatite, DEAE-Sepharose CL-6B, and CM-Sepharose CL-6B. The specific cytochrome P-450 content of the final preparation was 17.0 nmol/mg of protein. The enzymatic activity was reconstituted with the purified cytochrome P-450, NADPH-cytochrome P-450 reductase, an NADPH-generating system, and dilauroylglyceryl-3-phosphorylcholine, the specific activity obtained being 3.7 nmol/min/mg of protein, which was 4,000 times as high as that in microsomes. The apparent molecular weight of the P-450cc25 was 50,000, based on the results of sodium dodecyl sulfate polyacrylamide gel electrophoresis. The absorption spectra of the oxidized form of the enzyme showed a Soret band at 416 nm, which is typical of the low spin state of cytochrome P-450, and alpha and beta bands at 570 and 536 nm, respectively. The Soret peak of the reduced cytochrome P-450-CO complex was at 450 nm. The purified enzyme not only catalyzed the 25-hydroxylation of cholecalciferol but also showed hydroxylation activity toward a variety of substrates, i.e. 1 alpha-hydroxycholecalciferol (at 25), testosterone (at 2 alpha and 16 alpha) and dehydroepiandrosterone (at 16 alpha). Amino terminal sequence of the purified cytochrome P-450 was determined by the manual sequence method to be H2N-Met-Asp-Pro-Val-leu-Val-Leu-Val-. The antibody elicited against the purified enzyme in a rabbit inhibited the cholecalciferol 25-hydroxylation activity by more than 90% with a concentration of 2 mg of immunoglobulin per nmol of cytochrome P-450.  相似文献   

20.
Adrenodoxin, purified from bovine adrenal cortex, was subjected to trypsin cleavage to yield a trypsin-resistant form, designated TT-adrenodoxin. Sequencing with carboxypeptidase Y identified the trypsin cleavage site as Arg-115, while Edman degradation indicated no NH2-terminal cleavage. Native adrenodoxin and TT-adrenodoxin exhibited similar affinity for adrenodoxin reductase as determined in cytochrome c reductase assays. In side chain cleavage assays using cytochrome P-450scc, however, TT-adrenodoxin demonstrated greater activity than adrenodoxin with cholesterol, (22R)-22-hydroxycholesterol, or (20R,22R)-20,22-dihydroxycholesterol as substrate. This enhanced activity is due to increased affinity of TT-adrenodoxin for cytochrome P-450scc; TT-adrenodoxin exhibits a 3.8-fold lower apparent Km for the conversion of cholesterol to pregnenolone. TT-Adrenodoxin was also more effective in coupling with cytochrome P-450(11) beta, exhibiting a 3.5-fold lower apparent Km for the 11 beta-hydroxylation of deoxycorticosterone. In the presence of partially saturating cholesterol, TT-adrenodoxin elicited a type I spectral shift with cytochrome P-450scc similar to that induced by adrenodoxin, and spectral titrations showed that oxidized TT-adrenodoxin exhibited a 1.5-fold higher affinity for cytochrome P-450scc. These results establish that COOH-terminal residues 116-128 are not essential for the electron transfer activity of bovine adrenodoxin, and the differential effects of truncation at Arg-115 on interactions with adrenodoxin reductase and cytochromes P-450 suggest that the residues involved in the interactions are not identical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号