首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
"Candidatus Endobugula sertula," the uncultured microbial symbiont of the bryozoan Bugula neritina, produces ecologically and biomedically important polyketide metabolites called bryostatins. We isolated two gene fragments from B. neritina larvae that have high levels of similarity to polyketide synthase genes. These gene fragments are clearly associated with the symbiont and not with the host.  相似文献   

2.
The bryozoans Bugula neritina and Bugula simplex harbor bacteria in the pallial sinuses of their larvae as seen by electron microscopy. In B. neritina, the bacterial symbiont has been characterized as a gamma-proteobacterium, "Candidatus Endobugula sertula." "Candidatus E. sertula" has been implicated as the source of the bryostatins, polyketides that provide chemical defense to the host and are also being tested for use in human cancer treatments. In this study, the bacterial symbiont in B. simplex larvae was identified by 16S rRNA-targeted PCR and sequencing as a gamma-proteobacterium closely related to and forming a monophyletic group with "Candidatus E. sertula." In a fluorescence in situ hybridization, a 16S ribosomal DNA probe specific to the B. simplex symbiont hybridized to long rod-shaped bacteria in the pallial sinus of a B. simplex larva. The taxonomic status "Candidatus Endobugula glebosa" is proposed for the B. simplex larval symbiont. Degenerate polyketide synthase (PKS) primers amplified a gene fragment from B. simplex that closely matched a PKS gene fragment from the bryostatin PKS cluster. PCR surveys show that the symbiont and this PKS gene fragment are consistently and uniquely associated with B. simplex. Bryostatin activity assays and chemical analyses of B. simplex extracts reveal the presence of compounds similar to bryostatins. Taken together, these findings demonstrate a symbiosis in B. simplex that is similar and evolutionarily related to that in B. neritina.  相似文献   

3.
The marine bryozoan, Bugula neritina, is the source of the bryostatins, a family of macrocyclic lactones with anticancer activity. Bryostatins have long been suspected to be bacterial products. B. neritina harbors the uncultivated gamma proteobacterial symbiont "Candidatus Endobugula sertula." In this work several lines of evidence are presented that show that the symbiont is the most likely source of bryostatins. Bryostatins are complex polyketides similar to bacterial secondary metabolites synthesized by modular type I polyketide synthases (PKS-I). PKS-I gene fragments were cloned from DNA extracted from the B. neritina-"E. sertula" association, and then primers specific to one of these clones, KSa, were shown to amplify the KSa gene specifically and universally from total B. neritina DNA. In addition, a KSa RNA probe was shown to bind specifically to the symbiotic bacteria located in the pallial sinus of the larvae of B. neritina and not to B. neritina cells or to other bacteria. Finally, B. neritina colonies grown in the laboratory were treated with antibiotics to reduce the numbers of bacterial symbionts. Decreased symbiont levels resulted in the reduction of the KSa signal as well as the bryostatin content. These data provide evidence that the symbiont E. sertula has the genetic potential to make bryostatins and is necessary in full complement for the host bryozoan to produce normal levels of bryostatins. This study demonstrates that it may be possible to clone bryostatin genes from B. neritina directly and use these to produce bryostatins in heterologous host bacteria.  相似文献   

4.
Although the cosmopolitan marine bryozoan Bugula neritina is recognized as a single species, natural products from this bryozoan vary among populations. B. neritina is the source of the anticancer drug candidate bryostatin 1, but it also produces other bryostatins, and different populations contain different bryostatins. We defined two chemotypes on the basis of previous studies: chemotype O contains bryostatins with an octa-2,4-dienoate substituent (including bryostatin 1), as well as other bryostatins; chemotype M lacks bryostatins with the octa-2,4-dienoate substituent. B. neritina contains a symbiotic gamma-proteobacterium "Candidatus Endobugula sertula," and it has been proposed that bryostatins may be synthesized by bacterial symbionts. In this study, B. neritina populations along the California coast were sampled for genetic variation and bryostatin content. Colonies that differ in chemotype also differ genetically by 8% in the mitochondrial cytochrome c oxidase subunit 1 (CO I) gene; this difference is sufficient to suggest that the chemotypes represent different species. Each species contains a distinct strain of "E. sertula" that differs at four nucleotide sites in the small subunit ribosomal RNA (SSU rRNA) gene. These results indicate that the chemotypes have a genetic basis rather than an environmental cause. Gene sequences from an Atlantic sample matched sequences from the California chemotype M colonies, suggesting that this type may be cosmopolitan due to transport on boat hulls.  相似文献   

5.
Candidatus Endobugula sertula,” the uncultured microbial symbiont of the bryozoan Bugula neritina, produces ecologically and biomedically important polyketide metabolites called bryostatins. We isolated two gene fragments from B. neritina larvae that have high levels of similarity to polyketide synthase genes. These gene fragments are clearly associated with the symbiont and not with the host.  相似文献   

6.
The bryozoans Bugula neritina and Bugula simplex harbor bacteria in the pallial sinuses of their larvae as seen by electron microscopy. In B. neritina, the bacterial symbiont has been characterized as a gamma-proteobacterium, “Candidatus Endobugula sertula.” “Candidatus E. sertula” has been implicated as the source of the bryostatins, polyketides that provide chemical defense to the host and are also being tested for use in human cancer treatments. In this study, the bacterial symbiont in B. simplex larvae was identified by 16S rRNA-targeted PCR and sequencing as a gamma-proteobacterium closely related to and forming a monophyletic group with “Candidatus E. sertula.” In a fluorescence in situ hybridization, a 16S ribosomal DNA probe specific to the B. simplex symbiont hybridized to long rod-shaped bacteria in the pallial sinus of a B. simplex larva. The taxonomic status “Candidatus Endobugula glebosa” is proposed for the B. simplex larval symbiont. Degenerate polyketide synthase (PKS) primers amplified a gene fragment from B. simplex that closely matched a PKS gene fragment from the bryostatin PKS cluster. PCR surveys show that the symbiont and this PKS gene fragment are consistently and uniquely associated with B. simplex. Bryostatin activity assays and chemical analyses of B. simplex extracts reveal the presence of compounds similar to bryostatins. Taken together, these findings demonstrate a symbiosis in B. simplex that is similar and evolutionarily related to that in B. neritina.  相似文献   

7.
Marine invertebrates are sources of a diverse array of bioactive metabolites with great potential for development as drugs and research tools. In many cases, microorganisms are known or suspected to be the biosynthetic source of marine invertebrate natural products. The application of molecular microbiology to the study of these relationships will contribute to basic biological knowledge and facilitate biotechnological development of these valuable resources. The bryostatin-producing bryozoan B. neritina and its specific symbiont "Candidatus Endobugula sertula" constitute one promising model system. Another fertile subject for investigation is the listhistid sponges that contain numerous bioactive metabolites, some of which originate from bacterial symbionts.  相似文献   

8.
Mutualistic relationships are beneficial for both partners and are often studied within a single environment. However, when the range of the partners is large, geographical differences in selective pressure may shift the relationship outcome from positive to negative. The marine bryozoan Bugula neritina is a colonial invertebrate common in temperate waters worldwide. It is the source of bioactive polyketide metabolites, the bryostatins. Evidence suggests that an uncultured vertically transmitted symbiont, “Candidatus Endobugula sertula”, hosted by B. neritina produces the bryostatins, which protect the vulnerable larvae from predation. Studies of B. neritina along the North American Atlantic coast revealed a complex of two morphologically similar sibling species separated by an apparent biogeographic barrier: the Type S sibling species was found below Cape Hatteras, North Carolina, while Type N was found above. Interestingly, the Type N colonies lack “Ca. Endobugula sertula” and, subsequently, defensive bryostatins; their documented northern distribution was consistent with traditional biogeographical paradigms of latitudinal variation in predation pressure. Upon further sampling of B. neritina populations, we found that both host types occur in wider distribution, with Type N colonies living south of Cape Hatteras, and Type S to the north. Distribution of the symbiont, however, was not restricted to Type S hosts. Genetic and microscopic evidence demonstrates the presence of the symbiont in some Type N colonies, and larvae from these colonies are endowed with defensive bryostatins and contain “Ca. Endobugula sertula”. Molecular analysis of the symbiont from Type N colonies suggests an evolutionarily recent acquisition, which is remarkable for a symbiont thought to be transmitted only vertically. Furthermore, most Type S colonies found at higher latitudes lack the symbiont, suggesting that this host-symbiont relationship is more flexible than previously thought. Our data suggest that the symbiont, but not the host, is restricted by biogeographical boundaries.  相似文献   

9.
The marine bryozoan, Bugula neritina, is the source of the bryostatins, a family of macrocyclic lactones with anticancer activity. Bryostatins have long been suspected to be bacterial products. B. neritina harbors the uncultivated gamma proteobacterial symbiont “Candidatus Endobugula sertula.” In this work several lines of evidence are presented that show that the symbiont is the most likely source of bryostatins. Bryostatins are complex polyketides similar to bacterial secondary metabolites synthesized by modular type I polyketide synthases (PKS-I). PKS-I gene fragments were cloned from DNA extracted from the B. neritina-“E. sertula” association, and then primers specific to one of these clones, KSa, were shown to amplify the KSa gene specifically and universally from total B. neritina DNA. In addition, a KSa RNA probe was shown to bind specifically to the symbiotic bacteria located in the pallial sinus of the larvae of B. neritina and not to B. neritina cells or to other bacteria. Finally, B. neritina colonies grown in the laboratory were treated with antibiotics to reduce the numbers of bacterial symbionts. Decreased symbiont levels resulted in the reduction of the KSa signal as well as the bryostatin content. These data provide evidence that the symbiont E. sertula has the genetic potential to make bryostatins and is necessary in full complement for the host bryozoan to produce normal levels of bryostatins. This study demonstrates that it may be possible to clone bryostatin genes from B. neritina directly and use these to produce bryostatins in heterologous host bacteria.  相似文献   

10.
Abstract Aposematic colours may warn predators that an individual or species is chemically defended and unpalatable. This study examines a diurnal Australian whistling moth, Hecatesia exultans (Noctuidae, Agaristinae) where adults, although cryptic at rest, display their bright orange, yellow and black colouration in flight. Aposematically coloured larvae feed mainly on Cassytha, a parasitic vine that contains aporphine alkaloids. Alkaloids isolated from the plants and moths were analysed for the presence of these compounds. While alkaloids were found in the stomach and frass of 18 moth larvae, no alkaloids were present in the body and similarly no alkaloids were detected from 65 adult male moths collected from three widely separated populations. We conclude that the larvae and adults do not sequester alkaloids. Lycosid spiders and singing honeyeaters ( Lichenostomtus virescens ) were used to assess the palatability of H. exultans adults. The spiders and the birds consumed all adult moths. Adult moths appear to avoid predation by employing quick flights with rapid changes of direction and, while the adults are brightly coloured, they are not chemical defended.  相似文献   

11.
Lopanik N  Lindquist N  Targett N 《Oecologia》2004,139(1):131-139
Larvae of the sessile marine invertebrate Bugula neritina (Bryozoa) are protected by an effective chemical defense. From the larvae, we isolated three bryostatin-class macrocyclic polyketides, including the novel bryostatin 20, that deterred feeding by a common planktivorous fish that co-occurs with B. neritina. A unique bacterial symbiont of B. neritina, Endobugula sertula, was hypothesized as the putative source of the bryostatins. We show that: (1) bryostatins are concentrated in B. neritina larvae and protect them against predation by fish; (2) the adults are not defended by bryostatins; and (3) E. sertula produces bryostatins. This study represents the first example from the marine environment of a microbial symbiont producing an anti-predator defense for its host and, in this case, specifically for the hosts larval stage, which is exceptionally vulnerable to predators.Electronic Supplementary Material Supplementary material is available in the online version of this article at  相似文献   

12.
Dahms HU  Jin T  Qian PY 《Biofouling》2004,20(6):313-321
The effects of the neurotransmitter blockers idazoxan and phentolamine on the larval settlement of three marine invertebrate species belonging to three different phyla were investigated by using in vitro concentration-response bioassays. Since neurotransmitters are known to influence metamorphic transitions in invertebrate larvae, neurotransmitter blockers were tested to evaluated their sublethal effects on larvae. The alpha-adrenergic antagonists idazoxan and phentolamine inhibited settlement of Balanus amphitrite (Cirripedia), Bugula neritina (Bryozoa) larvae, and larvae of the polychaete Hydroides elegans (Polychaeta) in a concentration-and taxon-dependent manner. At concentrations of 10(-3) M of both agents, larvae of all three species became immobile and subsequently died within 24 h. While cumulative settlement rates were observed after 48 h for B. amphitrite and H. elegans, and after 5 h for B. neritina, >90% of the larvae that settled did so within 24 h for the first two species and within 1 h for B. neritina. The tendency of the hydrophobic idazoxan and phentolamine to accumulate at solid surfaces most probably contributes to their successful inhibition of larval settlement. This ability makes them particularly attractive as candidates for the development of slow-release carriers in antifouling paints.  相似文献   

13.
Large-scale, renewable supplies of chemical constituents derived from marine invertebrates have limited development of potential new natural product drugs. This paper describes the development of two in-sea aquaculture systems designed and engineered for production of large quantities of biomass for two species of marine invertebrates desired for their natural product chemical constituents. The two invertebrates and their products were: (1) the cosmopolitan, arborescent bryozoan Bugula neritina (Phylum Bryozoa) for its anticancer chemical constituent bryostatin 1; and (2) Ecteinascidia turbinate (Phylum Tunicata) the source of anticancer ecteinascidin 743. For the third invertebrate Phylum Porifera, and its representative sponge Acanthella cavernosa (desired for its anti-parasitic and anti-infective kalihinols) in-sea systems were not developed in favor of controlled environment tank aquaculture systems. For the bryozoan and tunicate, projected economics for commercial-scale in-sea production proved cost effective. This was in contrast to the controlled environment sponge culture tank system, which did not prove to be economical due to inherent slow growth and low natural product yields of the sponge in culture. A non-destructive method for "milking" natural product chemicals from sponges was tested and is described.  相似文献   

14.
The pelagic environment is characterized by unevenly distributed resources and risks. Such unpredictability presents adaptive challenges to diverse planktonic organisms including the larvae of benthic marine invertebrates. Estimates of mortality during planktonic development are highly variable, ranging from 0% to 100% per day. Predation is considered a significant source of this mortality, but what explains the variability in estimates of the mortality of marine invertebrate larvae? While differential exposure of larval prey to predators may explain these widely variable estimates, adaptations that reduce vulnerability of marine larvae to predators may also be important. Although there are excellent reviews of predation upon larvae and of larval mortality and defenses, nearly 15 years have elapsed since these topics were formally reviewed. Here, we highlight recent advances in understanding the behavioral, chemical, and morphological defenses that larvae possess and assess their effectiveness in reducing the risk of predation. While recent work confirms that larval mortality is generally high, it also demonstrates that larvae can reduce their risk of predation in several ways, including: (1) temporarily escaping the benthos during vulnerable early stages, (2) producing chemical compounds that reduce palatability, (3) possessing morphological defenses such as spines and shells, and (4) exhibiting induced defensive responses whereby larvae can alter their behavior, morphology, and life histories in the presence of predators. Taken together, these studies indicate that marine invertebrate larvae possess a sophisticated suite of defensive phenotypes that have allowed them to persist in the life cycle of benthic invertebrates for eons.  相似文献   

15.
Microbial biofilms facilitate adhesion in biofouling invertebrates   总被引:1,自引:0,他引:1  
Much interest has focused on the role of microbial layers--biofilms--in stimulating attachment of invertebrates and algae to submerged marine surfaces. We investigated the influence of biofilms on the adhesion strength of settling invertebrates. Larvae of four species of biofouling invertebrate were allowed to attach to test surfaces that were either clean or coated with a natural biofilm. Measuring larval removal under precisely controlled flow forces, we found that biofilms significantly increased adhesion strength in the ascidian Phallusia nigra, the polychaete tubeworm Hydroides elegans, and the barnacle Balanus amphitrite at one or more developmental stages. Attachment strength in a fourth species, the bryozoan Bugula neritina, was neither facilitated nor inhibited by the presence of a biofilm. These results suggest that adhesive strength and perhaps composition may vary across different invertebrate taxa at various recruitment stages, and mark a new path of inquiry for biofouling research.  相似文献   

16.
When provisioning offspring, mothers balance the benefits of producing a few large, fitter offspring with the costs of decreased fecundity. The optimal balance between offspring size and fecundity depends on the environment. Theory predicts that larger offspring have advantages in adverse conditions, but in favorable conditions size is less important. Thus, if environmental quality varies, selection should favor mothers that adaptively allocate resources in response to local conditions to maximize maternal fitness. In the bryozoan Bugula neritina, we show that the intensity of intraspecific competition dramatically changes the offspring size/performance relationship in the field. In benign or extremely competitive environments, offspring size is less important, but at intermediate levels of competition, colonies from larger larvae have higher performance than colonies from smaller larvae. We predicted mothers should produce larger offspring when intermediate competition is likely and tested these expectations in the field by manipulating the density of brood colonies. Our findings matched expectations: mothers produced larger larvae at high densities and smaller larvae at low densities. In addition, mothers from high-density environments produced larvae that have higher dispersal potential, which may enable offspring to escape crowded environments. It appears mothers can adaptively adjust offspring size to maximize maternal fitness, altering the offspring phenotype across multiple life-history stages.  相似文献   

17.
Photoreceptors of Bryozoan Larvae (Cheilostomata, Cellularioidea)   总被引:2,自引:0,他引:2  
The ultrastructure of potential photoreceptors in larvae of Tricellaria occidentalis and four species of Bugula is described and compared with previously reported photoreceptors in larvae of Bugula neritina and Scrupocellaria bertholetti. A single sensory cell forms the functional unit of each photoreceptor. This cell is distinguished by a concentration of pigment vesicles in its apical part, a direct connection with the nervous system, and a large number of cilia that form the photoreceptoral organelle. These cilia have axonemes morphologically identical to those of motile cilia. The membranes of sensory cilia are unbeaded and qualitatively less osmophilic than those of the motile cilia of adjacent accessory and coronal cells. Three photoreceptor types are designated based on topological complexity: Type I, in which the sensory cell is flush with adjacent coronal cells and the photoreceptoral organelle is unprotected; Type II, in which the apical surface of the sensory cell is invaginated, forming a lumen containing the photoreceptoral organelle; and Type III, in which the sensory cell is at the base of an epidermal invagination and the photoreceptoral organelle is protected in a lumen formed by the sensory cell and accessory cells. There is a greater range of morphological variation among photoreceptors in larvae of Bugula spp. than between those of two species of the related genera Scrupocellaria and Tricellaria.  相似文献   

18.
This paper examines attachment point theory in detail by testing the fouling attachment of several fouling groups to a microtextured matrix. Static bioassays were conducted on polycarbonate plates with nine equal regions, comprising eight scales of microtexture (4-512 microm) and one untextured region. The microtextures examined were continuous sinusoidal ridges and troughs of defined height and width. Attachment over the microtextured plates was examined for the diatom Amphora sp., the green alga Ulva rigida, the red alga Centroceras clavulatum, the serpulid tube worm Hydroides elegans and the bryozoan Bugula neritina. It was found that the size of the microtexture in relation to the size of the settling propagules/larvae was important in the selection of attachment sites. Attachment was generally lower when the microtexture wavelength was slightly smaller than the width of the settling propagules/larvae and increased when the wavelength was wider than their width. The effect of attachment points was weak for small motile microfoulers (Amphora sp. and U. rigida) (7 microm), strong for large macrofouling larvae (H. elegans and B. neritina) (129-321 microm) and non-existent for the non-motile algal spores (C. clavulatum) (37 microm). This study reinforces the potential of using attachment points to develop surfaces with increased fouling resistance or, alternatively, surfaces which promote the attachment of selected target sizes of motile propagules or larvae.  相似文献   

19.
Many species alter their activity, microhabitat use, morphology and life history in response to predators. Predation risk is related to predator size and palatability of prey among others factors. We analyzed the predation risk of three species of tadpoles that occur in norwestern Patagonia, Argentina: Pleurodema thaul, Pleurodema bufoninum and Rhinella spinulosa. We sampled aquatic insect predators in 18 ponds to determine predator–tadpole assemblage in the study area. In laboratory conditions, we analysed the predation rate imposed by each predator on each tadpole species at different tadpole sizes. Finally, we tested whether tadpoles alter their activity in the presence of chemical and visual cues from predators. Small P. thaul and P. bufoninum tadpoles were the most vulnerable prey species, while small R. spinulosa tadpoles were only consumed by water bugs. Dragonflies and water bugs were the most dangerous tadpole predators. Small P. thaul tadpoles reduced their activity when they were exposed to all predators, while large tadpoles only reduced the activity in the presence of large predators (dragonfly larvae and water bugs). Small P. bufoninum tadpoles reduced the activity when they were exposed to beetle larvae and dragonfly larvae, while large tadpoles only reduced activity when they were exposed to larger predators (water bugs and dragonfly larvae). R. spinulosa tadpoles were the less sensitive to presence of predators, only larger tadpoles responded significantly to dragonfly larvae by reducing their activity. We conclude that behavioural responses of these anuran species were predator-specific and related to the risk imposed by each predator.  相似文献   

20.
The amount of energy available to larvae during swimming, location of a suitable recruitment site, and metamorphosis influences the length of time they can spend in the plankton. Energetic parameters such as swimming speed, oxygen consumption during swimming and metamorphosis, and elemental carbon and nitrogen content were measured for larvae of four species of bryozoans, Bugula neritina, B. simplex, B. stolonifera, and B. turrita. The larvae of these species are aplanktotrophic with a short free-swimming phase ranging from less than one hour to a maximum of about 36 hours. There is about a fivefold difference in larval volume among the four species, which scales linearly with elemental carbon content and, presumably, with the amount of endogenous reserves available for swimming and metamorphosis. Mean larval swimming speeds (in centimeters per second) were similar among species. Specific metabolic rate and larval size were inversely related. For larvae of a given species, respiration rates remained similar for swimming and metamorphosis; however, because metamorphosis lasts about twice as long as a maximal larval swimming phase, it was more energetically demanding. Larger larvae expended more energy to complete metamorphosis than did smaller larvae, but in terms of the percentage of larval energy reserves consumed, swimming and metamorphosis were more "expensive" for smaller larvae. A comparison of the energy expended during larval swimming calculated on the basis of oxygen consumption and on the basis of elemental carbon decrease suggests that larvae of Bugula spp. may not use significant amounts of dissolved organic material (DOM) to supplement their endogenous energy reserves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号