首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
The aeolid Pteraeolidia ianthina (Angas, 1864) is a strikingly‐coloured aeolid nudibranch, informally known as the ‘Blue Dragon’. It is recognised as an unusually widespread Indo‐Pacific species, with variation in colouration and morphology, and biogeographic differences in zooxanthellae (dinoflagellate symbionts of the genus Symbiodinium). This variation hints at possible cryptic species, which was tested here using phylogenetic analyses of mitochondrial DNA data (COI, 16S). Our results showed multiple well‐supported clades with slight but consistent differences in radular morphology and colouration, and thus we clarify one of the three available names. A temperate NSW clade showed a more elongate and pointed central radular tooth and lacked white body colouration, in comparison to a more variable tropical clade, which had a shorter and more blunt central tooth. The type locality of Pteraeolidia ianthina is Sydney Harbour, New South Wales (NSW), Australia, and according to our study, does not occur outside NSW. Pteraeolidia semperi (Bergh, 1870) and P. scolopendrella (Risbec, 1928) are removed from synonymy with P. ianthina. Wider phylogeographic sampling is required before resolving the availability of the two remaining names, and subclades within the tropical clade, but there is evidence to suggest multiple cryptic species exist. The biogeographic differences in symbionts, and the importance of their role in life history, suggests that changes in symbiosis may have helped drive divergence via local adaptation in the host nudibranchs. © 2015 The Linnean Society of London  相似文献   

2.
  总被引:3,自引:0,他引:3  
In addition to the essential intracellular symbiotic bacterium Buchnera, several facultative endosymbiotic bacteria called collectively secondary symbionts (S-symbionts) have been identified from the pea aphid Acyrthosiphon pisum. We conducted an extensive and systematic survey of S-symbionts in Japanese local populations of A. pisum using a specific PCR detection technique. Five S-symbionts of A. pisum, PASS, PAUS, PABS, Rickettsia and Spiroplasma, and two facultative endosymbionts universally found in various insects, Wolbachia and Arsenophonus, were targeted. Of 119 isofemale strains originating from 81 localities, 66.4% of the strains possessed either of four S-symbionts: PASS (38.7%); PAUS (16.0%); Rickettsia (8.4%); and Spiroplasma (3.4%), while 33.6% of the strains contained only Buchnera. PABS, Wolbachia and Arsenophonus were not detected from the Japanese strains of A. pisum. In order to understand intra- and interpopulational diversity of S-symbiont microbiota in detail, 858 insects collected from 43 localities were examined for infection with the four S-symbionts. It was demonstrated that different S-symbionts coexist commonly in the same local populations, but double infections with two S-symbionts were rarely detected. Notably, the S-symbionts exhibited characteristic geographical distribution patterns: PASS at high frequencies all over Japan; PAUS at high frequencies mainly in the northeastern part of Japan; and Rickettsia and Spiroplasma at low frequencies sporadically in the southwestern part of Japan. These results indicate that the geographical distribution and infection frequency of the S-symbionts, in particular PAUS, might be affected by environmental and/or historical factors. Statistical analyses suggested that the distribution of PAUS infection might be related to host plant species, temperature and precipitation.  相似文献   

3.
    
In plants, the first committed enzyme for glutathione biosynthesis, γ-glutamylcysteine ligase (GCL), is under multiple controls. The recent elucidation of GCL structure from Brassica juncea (BjGCL) has revealed the presence of two intramolecular disulfide bridges (CC1, CC2), which both strongly impact on GCL activity in vitro . Here we demonstrate that cysteines of CC1 are confined to plant species from the Rosids clade, and are absent in other plant families. Conversely, cysteines of CC2 involved in the monomer–dimer transition in BjGCL are not only conserved in the plant kingdom, but are also conserved in the evolutionarily related α- (and some γ-) proteobacterial GCLs. Focusing on the role of CC2 for GCL redox regulation, we have extended our analysis to all available plant (31; including moss and algal) and related proteobacterial GCL (46) protein sequences. Amino acids contributing to the homodimer interface in BjGCL are highly conserved among plant GCLs, but are not conserved in related proteobacterial GCLs. To probe the significance of this distinction, recombinant GCLs from Nicotiana tabacum (NtGCL), Agrobacterium tumefaciens (AtuGCL, α-proteobacteria) and Xanthomonas campestris (XcaGCL, γ-proteobacteria) were analyzed for their redox response. As expected, NtGCL forms a homodimer under oxidizing conditions, and is activated more than threefold. Conversely, proteobacterial GCLs remain monomeric under oxidizing and reducing conditions, and their activities are not inhibited by DTT, despite the presence of CC2. We conclude that although plant GCLs are evolutionarily related to proteobacterial GCLs, redox regulation of their GCLs via CC2-dependent dimerization has been acquired later in evolution, possibly as a consequence of compartmentation in the redox-modulated plastid environment.  相似文献   

4.
    
Abstract The growth of 10 isolates of rhizosphere bacteria was compared in the rhizoplane (RP), rhizosphere (RS) and non-rhizosphere soil of a model system with rape seedlings growing in sterile sand. The colonization of the RP differed little among isolates. However, the bacterial isolates differed according to their degree of dependence on the root for growth, as judged by RS:RP and plant:non-plant ratios for CFU. These two ratios were correlated with changes in viability and 'physiological status' (as judged by γ values, Hattori, T. (1983) J. Gen. Appl. Microbiol. 29, 9–16).  相似文献   

5.
    
The leaf beetle genus Calligrapha is one of the few examples of animals with several obligate unisexual, female‐only species. Previous work showed that each one arose independently from interspecific hybridization events involving different species. However, all of them clustered in a single mtDNA clade together with some individuals of the parental bisexual species, which appeared as deeply polyphyletic in the mtDNA genealogy of the genus. The dating of these splits using a molecular clock placed them in the Quaternary and it was hypothesized that climatic change during this period may have favored range expansions and secondary contacts required for hybridization. In this work, we test this hypothesis and the origins of unisexuality in Calligrapha examining the diversity of mitochondrial (cox1) and nuclear (wingless, Wg) genes and the Bayesian continuous mtDNA phylogeography of a sample of more than 500 specimens of two bisexual species of Calligrapha at a continental scale and two unisexual species derived from them. Besides a major topological difference, whereby each bisexual species is monophyletic for Wg but paraphyletic for cox1, both gene datasets are consistent with a minimum of seven evolutionary lineages, coherent with geography and consistent with an ordered expansion to occupy their current ranges. The results also imply their survival in well‐established glacial refuges during the Last Glacial Maximum (LGM). Thus, for bisexual C. multipunctata there are two main, southern and northern lineages. The southern lineage expanded its range in two evolutionary branches, to the Rocky Mountains and to the northern Mississippi and Ohio River basins, respectively. The northern lineage has one branch in the Upper Mississippi and one that expanded west to the Pacific Northwest and east to the northeastern North Atlantic, finding refuge in both areas. These major lineages are parapatric in the Northern Great Plains, an area consistent with them having found refuge in the so‐called Driftless region during the LGM. For bisexual C. philadelphica, one northern lineage expanded west from the northern Appalachians and one east and southwest along the axis of the Appalachians, and the timing of events is consistent with their persistence in glacial refugia at both sides of the main Great Lakes lobe of the Laurentide Ice Sheet. There is evidence that the northeastern North Atlantic lineages of both species hybridized at the edge of their ranges after the LGM. The additional, divergent mtDNA lineage of these species shows evidence of range expansions of two lineages, one for each species, in an area south of the Laurentide Ice Sheet, and giving origin to the unisexual species by way of hybridization with other species in the Alleghanian region after the LGM. Interestingly, the individuals of supposedly bisexual species in this clade are all females. This suggests that unisexuality actually predates the origin of unisexual taxa in this system and that some bisexual species in Calligrapha may be species complexes instead, with cryptic species differing in their reproductive mode.  相似文献   

6.
Dispersal capabilities are crucial in how speciation patterns are determined in marine invertebrates. Species possessing a long-living planktonic larva apparently have a dispersal advantage over those with non-planktotrophic development, and their distant populations may exchange genetic material, maintaining a broad geographical range for the species. Recent species of the gastropod genus Bathytoma (Conoidea) are all characterized by non-planktotrophic development, having most probably lost a free-swimming larva in the pre-Pliocene, as Miocene fossils have protoconchs indicating planktotrophic larval development. All have a bathyal distribution (100–1500 m), which implies that their capability for direct expansion on the bottom is restricted by both deep-sea basins and shallow-water areas, especially in insular West and South-West Indo-Pacific. Therefore, it can be hypothesized that Bathytoma populations should represent numerous, mostly allopatric taxa restricted to a single or contiguous island groups. We tested this hypothesis using molecular and morphological characters independently. One hundred and thirty-eight specimens from the Philippines, Solomons, Vanuatu, and the Coral Sea were sequenced for one mitochondrial (COI) and one nuclear (ITS2) gene, and 14 operational molecular units were recognized. When these molecular units are overlaid over shell characters, 13 species (11 unnamed) and one form of uncertain status are recognized: three occur in the Philippines, six in the Solomons and one in New Caledonia. Broad distributions (inter-archipelagic) are uncommon (three species). On the whole, the phylogeographic pattern of the diversity in the genus is rather complex and probably also reflects processes of sympatric and fine-scale allopatric speciation, and local extinctions. The eleven new species are described and named.  相似文献   

7.
Understanding the historical framework in which species interactions have diversified across landscapes may help to partition the effects of vicariance and geographically variable selection in shaping the geographical mosaic of coevolving species. We used phylogeographical analyses of the pollinating seed parasite Greya politella (Lepidoptera: Prodoxidae) to define the historical processes that may have structured interactions of this species with its host plants across major biogeographical breaks in western North America. Using 648 bp of cytochrome oxidase I and amplified fragment length polymorphisims, we identified deep genetic breaks among some populations consistent with some definitions of cryptic species. A combination of phylogenetic and population genetic approaches indicates that different historical processes may have structured G. politella genetic diversity in four regions: northern Pacific Northwest, southern Oregon, southern Sierra Nevada, and the remainder of California. The northern Pacific Northwest had high genetic diversity likely due to glacial refugia and subsequent spatial expansion, concordant with some other taxa. Populations in southern Oregon possessed unique, closely related haplotypes with restricted gene flow, possibly indicating a long-standing set of populations in this endemic-rich region. Analyses of California populations showed evidence of restricted gene flow and spatial expansion with many closely related haplotypes that occupy a broad geographical range. Southern Sierra Nevada populations were genetically distinct and highly diverse, possibly due to a localized glacial refugium. Together, these results suggest that vicariance and population expansion, possibly in combination with geographically variable selection, have shaped the diversification of G. politella and its interactions with its host plants.  相似文献   

8.
    
Army ants and their arthropod symbionts represent one of the most species‐rich animal associations on Earth, and constitute a fascinating example of diverse host–symbiont interaction networks. However, despite decades of research, our knowledge of army ant symbionts remains fragmentary due to taxonomic ambiguity and the inability to study army ants in the laboratory. Here, we present an integrative approach that allows us to reliably determine species boundaries, assess biodiversity, match different developmental stages and sexes, and to study the life cycles of army ant symbionts. This approach is based on a combination of community sampling, DNA barcoding, morphology and physiology. As a test case, we applied this approach to the staphylinid beetle genus Vatesus and its different Eciton army ant host species at La Selva Biological Station, Costa Rica. DNA barcoding led to the discovery of cryptic biodiversity and, in combination with extensive community sampling, revealed strict host partitioning with no overlap in host range. Using DNA barcoding, we were also able to match the larval stages of all focal Vatesus species. In combination with studies of female reproductive physiology, this allowed us to reconstruct almost the complete life cycles of the different beetle species. We show that Vatesus beetles are highly adapted to the symbiosis with army ants, in that their reproduction and larval development are synchronized with the stereotypical reproductive and behavioural cycles of their host colonies. Our approach can now be used to study army ant‐symbiont communities more broadly, and to obtain novel insights into co‐evolutionary and ecological dynamics in species‐rich host–symbiont systems.  相似文献   

9.
    
This paper examines molecular and phenotypic variability in the widely spread European hoverfly species complex Merodon avidus. Herein, based on the mitochondrial DNA (mtDNA) sequences of the cytochrome c oxidase subunit I (COI) and morphometric wing parameters, M. avidus is shown to comprise a complex of cryptic species, and one variety is redefined as a valid species: M. bicolor Gil Collado, 1930 (as var. of spinipes). The species M. bicolor, M. avidus A, and M. avidus B were clearly delimited based on their wing size. A total of 29 M. avidus and M. bicolor individuals presented 20 mtDNA haplotypes, four of which were shared by M. avidus A and M. avidus B, three were confined to M. bicolor, seven to M. avidus A, and six to M. avidus B. Sequence divergences between lineages occurring in the Balkan and in Spain ranged from 4.93 to 6.0 (uncorrected p in %) whereas divergences between M. avidus A and M. avidus B were 0.26 to 1.56. Divergence among morphologically identified individuals of M. avidus A and M. avidus B species ranged from 0.13 to 1.58, and from 0.13 to 0.52, respectively. The phenotypic substructuring and observed genetic uniqueness of populations in spatially and temporally fragmented M. avidus taxa were used to identify genetic units. The early split of two allopatric lineages, Spanish M. bicolor and Balkan M. avidus, was followed by diversification in each lineage. Present‐day morphological uniformity masks much of the genetic complexity of lineages within the M. avidus complex. © 2009 The Linnean Society of London, Zoological Journal of the Linnean Society, 2009, 155 , 819–833.  相似文献   

10.
The synthesis of a series of gamma-glutamyl amines (gamma-Glu-amines), including gamma-Glu-dopamine, gamma-Glu-5-hydroxytryptamine, gamma-Glu-octopamine, gamma-Glu-tryptamine, gamma-Glu-tyramine, and gamma-Glu-phenylethylamine, by nervous tissue of the marine mollusc Aplysia californica is described. After ganglia were incubated in vitro with 14C-amines, the unchanged amine and a new 14C-labeled product, identified as the gamma-Glu conjugate of the amine, were isolated from the tissue extracts. Identification was made by comparing the chromatographic properties (HPLC, TLC, and LC) of the isolated conjugates with chemically synthesized gamma-Glu-amines before and after acid hydrolysis.  相似文献   

11.
The genus Pimelia is represented in Sicily by the two species P. grossa and P. rugulosa, the latter with the two subspecies P. r. rugulosa and P. r. sublaevigata. A third subspecies, P. r. apula, is present only in Puglia. The phylogeographic history of this genus in Sicily was reconstructed using sequences of the complete cox2 gene, applying phylogenetic and molecular dating methods. Phylogenetic analysis confirmed the monophyly of the two species, as well as the subdivision of P. rugulosa in the three morphological subspecies. One previously undetected and deeply divergent lineage was described that is geographically related to the Hyblean massif. It is therefore suggested that the deep divergence of the two major P. rugulosa clades in Sicily reflects an ancient separation between the Hyblean massif and the other land masses of Sicily. Dating analysis confirmed that the timing of P. rugulosa genetic divergence is compatible with the formation of the Hyblean massif. Furthermore, P. rugulosa populations of the Hyblean massif, whose taxonomy has been historically problematic, display levels of genetic divergence comparable to those observed at the species level. The possibility that this new lineage might deserve species rank is presented.  相似文献   

12.
Abstract: The rat brain enolases are dimers composed of α and γ subunits. At pH 8.6 αγ-enolase seemed to be stable, and no evidence was found for the possible formation of αγ-enolase from αα-enolase and γγ-enolase in the course of rat brain homogenization. During ontogeny of the rat forebrain, αγ-enolase was formed before γγ-enolase. The half-maximal specific concentrations were reached at postnatal days 14 and 23, respectively. The distribution of αγ- and γγ-enolase in various rat brain areas was also investigated. In all areas both forms were present. In neuroendocrine tissues αγ-enolase was present at a much higher concentration than γγ-enolase. The ratio between γγ-enolase and αγ-enolase may be indicative of the degree of neuronal maturation, a conclusion further substantiated by the high ratio observed in cerebellum and the low ratio observed in olfactory bulbs, both compared with the ratio in forebrain.  相似文献   

13.
    
We analysed breeding sounds of the two subspecies of South American Snipe Gallinago paraguaiae paraguaiae and Gallinago paraguaiae magellanica to determine whether they might be different species: loud vocalizations given on the ground, and the tail-generated Winnow given in aerial display. Sounds of the two taxa differ qualitatively and quantitatively. Both taxa utter two types of ground call. In G. p. paraguaiae, the calls are bouts of identical sound elements repeated rhythmically and slowly (about five elements per second (Hz)) or rapidly (about 11 Hz). One call of G. p. magellanica is qualitatively similar to those of G. p. paraguaiae but sound elements are repeated more slowly (about 3 Hz). However, its other call type differs strikingly: it is a bout of rhythmically repeated sound couplets, each containing two kinds of sound element. The Winnow of G. p. paraguaiae is a series of sound elements that gradually increase in duration and energy; by contrast, that of G. p. magellanica has two or more kinds of sound element that roughly alternate and are repeated as sets, imparting a stuttering quality. Sounds of the related Puna Snipe (Gallinago andina) resemble but differ quantitatively from those of G. p. paraguaiae. Differences in breeding sounds of G. p. paraguaiae and G. p. magellanica are strong and hold throughout their geographical range. Therefore we suggest that the two taxa be considered different species: G. paraguaiae east of the Andes in much of South America except Patagonia, and G. magellanica in central and southern Chile, Argentina east of the Andes across Patagonia, and Falklands/Malvinas.  相似文献   

14.
    
The rare and endangered Hieracium wiesbaurianum species group shows a scattered relictual distribution in Bavaria. Recently, a couple of populations were discovered which clearly differ from all other populations. If these must be considered as taxonomically independent units, they would be of crucial conservation interest, because of the sole responsibility that Bavaria has for these worldwide endemics. We therefore analysed the genetic structure of H. wiesbaurianum in a comparative approach. Our analysis comprised 37 populations of 13 taxa of H. wiesbaurianum, H. bifidum and H. laevigatum, including three potentially new taxa. We applied amplified fragment length polymorphism (AFLP) analysis and observed only limited genetic variation within populations and taxa. Nevertheless, each studied individual exhibited a unique genotype. An analysis of molecular variance revealed high levels of genetic variation between taxa, but populations were genetically less different. The clear genetic differentiation between the studied taxa was supported by neighbor‐joining cluster analyses and principal coordinate analyses in which every individual was clearly assigned to its respective taxon. The three potentially new taxa were genetically as well differentiated as the other taxa included in our study. This supports the assumption that they should be treated as taxonomically independent units of high conservation interest. Therefore, the genetic analysis confirmed the morphologically based classification of the studied Hieracium taxa. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 177 , 112–123.  相似文献   

15.
    
Persistent difficulties in resolving clear lineages in diverging populations of prokaryotes or unicellular eukaryotes (protistan polyphyletic groups) are challenging the classical species concept. Although multiple integrated approaches would render holistic taxonomies, most phylogenetic studies are still based on single-gene or morphological traits. Such methodologies conceal natural lineages, which are considered \"cryptic.\" The concept of species is considered artificial and inadequate to define natural populations. Social organisms display differential behaviors toward kin than to nonrelated individuals. In \"social\" microbes, kin discrimination has been used to help resolve crypticity. Aggregative behavior could be explored in a nonsocial protist to define phylogenetic varieties that are considered \"cryptic.\" Two Entamoeba invadens strains, IP-1 and VK-1:NS are considered close populations of the same \"species.\" This study demonstrates that IP-1 and VK-1:NS trophozoites aggregate only with alike members and discriminate members of different strains based on behavioral and chemical signals. Combined morphological, behavioral/chemical, and ecological studies could improve Archamoebae phylogenies and define cryptic varieties. Evolutionary processes in which selection acted continuously and cumulatively on ancestors of Entamoeba populations gave rise to chemical and behavioral signals that allowed individuals to discriminate nonpopulation members and, gradually, to the emergence of new lineages; alternative views that claim a \"Designer\" or \"Creator\" as responsible for protistan diversity are unfounded.  相似文献   

16.
    
The important role of marine epibiotic biofilms in the interactions of the host with its environment has been acknowledged recently. Previous studies with the temperate brown macroalga Fucus vesiculosus have identified polar and non-polar compounds recovered from the algal surface that have the potential to control such biofilms. Furthermore, both the fouling pressure and the composition of the epibiotic bacterial communities on this macroalga varied seasonally. The extent to which this reflects a seasonal fluctuation of the fouling control mechanisms of the host is, however, unexplored in an ecological context. The present study investigated seasonal variation in the anti-settlement activity of surface extracts of F. vesiculosus against eight biofilm-forming bacteria isolated from rockweed-dominated habitats, including replication of two populations from two geographically distant sites. The anti-settlement activity at both sites was found to vary temporally, reaching a peak in summer/autumn. Anti-settlement activity also showed a consistent and strong difference between sites throughout the year. This study is the first to report temporal variation of antifouling defence originating from ecologically relevant surface-associated compounds.  相似文献   

17.
gamma-Glutamyl-gamma-aminobutyrate hydrolase (PuuD) was purified and the properties of the enzyme were characterized. The active center of PuuD was identified as Cys-114 by site-directed mutagenesis. The expression of PuuD was induced by putrescine and O2 (substrates of the Puu pathway), while the addition of succinate or NH4Cl (products of the Puu pathway) to the medium reduced the expression of PuuD. The findings that the puuD-deficient strain accumulated gamma-glutamyl-gamma-aminobutyrate (gamma-Glu-GABA) and could not grow on putrescine as a sole nitrogen source indicate that PuuD is physiologically important as a gamma-Glu-GABA hydrolase.  相似文献   

18.
Ultrastructural examination of the freshwater, blue-green dinoflagellate Gymnodinium acidotum Nygaard revealed the presence of an endosymbiotic cryptomonad. Features of the endosymbiont allying it with the Cryptophyceae include mitochondria with flattened cristae, paired thylakoids with electron-dense contents, and nucleomorphs, bodies unique to the Cryptophyceae. This report is the first conclusive documentation of a symbiosis involving these two groups.  相似文献   

19.
    
[3H]gamma-Hydroxybutyric acid [( 3H]GHB) at physiological concentration incubated with brain slices in Krebs-Ringer medium produced [3H]gamma-aminobutyric acid [( 3H]GABA). This compound was identified by its Rf values on thin-layer chromatograms and by analysis of the dansyl derivatives of the free amino acid fraction. No labelled glutamate could be detected. Brain slices incubated with labelled glutamate and nonradioactive GHB generated labelled 2-oxoglutarate, suggesting that gamma-aminobutyrate-2-oxoglutarate transaminase (GABA-T) is involved in catalyzing this reaction. Furthermore, specific inhibitors of GABA-T blocked the production of labelled GABA from labelled GHB and of labelled 2-oxoglutarate from labelled glutamate. Transformation of [3H]GHB into [3H]GABA was not inhibited by malonate, demonstrating that the succinate-linked pathway is not involved in the generation of GABA. The kinetic characteristics of the multienzyme system involved in GHB degradation studied in vitro are compatible with the production of GABA in vivo.  相似文献   

20.
Transglutaminases (TGases) catalyze several reactions with protein substrates, including formation of γ-glutamyl-ε-lysine cross-links and γ-glutamylpolyamine residues. The resulting γ-glutamylamines are excised intact during proteolysis. TGase activity is altered in several diseases, highlighting the importance of in situ enzymatic determinations. Previous work showed that TGase activity (as measured by an in vitro assay) and free γ-glutamyl-ε-lysine levels are elevated in Huntington disease (HD) and that γ-glutamyl-ε-lysine is increased in HD CSF. Although free γ-glutamyl-ε-lysine was used in these studies as an index of in situ TGase activity, γ-glutamylpolyamines may also be diagnostic. We have devised methods for the simultaneous determination of four γ-glutamylamines in CSF: γ-glutamyl-ε-lysine, γ-glutamylspermidine, γ-glutamylputrescine, and bis-γ-glutamylputrescine and showed that all are present in normal human CSF at concentrations of ∼150, 670, 40, and 240 nM, respectively. The high γ-glutamylspermidine/γ-glutamylputrescine and γ-glutamylspermidine/bis-γ-glutamylputrescine ratios presumably reflect in part the large spermidine to putrescine mole ratio in human brain. We also showed that all four γ-glutamylamines are elevated in HD CSF. Our findings support the hypotheses that (i) γ-glutamylpolyamines are reflective of TGase activity in human brain, (ii) polyamination is an important post-translational modification of brain proteins, and (iii) TGase-catalyzed modification of proteins is increased in HD brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号