首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liver plasma membranes enriched in bile canaliculi were isolated from rat liver by a modification of the technique of Song et al. (J. Cell Biol. (1969) 41, 124-132) in order to study the possible role of ATPase in bile secretion. Optimum conditions for assaying (Na+ plus K+)-activated ATPase in this membrane fraction were defined using male rats averaging 220 g in weight. (Na+ plus K+)-activated ATPase activity was documented by demonstrating specific cation requirements for Na+ and K+, while the divalent cation, Ca(2+), and the cardiac glycosides, ouabain and scillaren, were inhibitory. (Na+ plus K+)-activated ATPase activity averaged 10.07 plus or minus 2.80 mumol Pi/mg protein per h compared to 50.03 plus or minus 11.41 for Mg(2+)-activated ATPase and 58.66 plus or minus 10.07 for 5'-nucleotidase. Concentrations of ouabain and scillaren which previously inhibited canalicular bile secretion in the isolated perfused rat liver produced complete inhibition of (Na+ plus K+)-activated ATPase without any effect on Mg(2+)-activated ATPase. Both (Na+ plus K+)-activated ATPase and Mg(2+)-activated ATPase demonstrated temperature dependence but differed in temperature optima. Temperature induced changes in specific activity of (Na+ plus K+)-activated ATPase directly paralleled previously demonstrated temperature optima for bile secretion. These studies indicate that (Na+ plus K+)-activated ATPase is present in fractions of rat liver plasma membranes that are highly enriched in bile canaliculi and provide a model for further study of the effects of various physiological and chemical modifiers of bile secretion and cholestasis.  相似文献   

2.
An ouabain-insensitive, Mg++-dependent, Na+-stimulated ATPase activity which is inhibited by furosemide was found in mucosal homogenate of rat small intestine. The subcellular localization of this ATPase activity was studied by means of isolated purified brush borders and basolateral plasma membranes. The results suggest a nearly identical distribution of Na+-activated and (Na+K+)-activated ATPase within the epithelial cells. Under conditions of alloxan and streptozotocin diabetes an increase of both ATPase activities can be found only in the basolateral plasma membranes. These observations agree well with the convective model of intestinal absorption.  相似文献   

3.
A significant increase of the (Na+ + K+)-activated ATPase was found in mucosal homogenates of rat small intestine under conditions of alloxan and streptozotocin diabetes. From studies with isolated plasma membranes it has been shown that the activity changes were caused by that part of the (Na+ + K+)-activated ATPase only which is localized in the basolateral plasma membranes, whereas the enzyme activity in the brush border region remains unchanged. In connection with the enhanced capacity of ion, nonelectrolyte and water absorption in experimental diabetes, our findings support a concept of intestinal transport mechanism which suggest that the basolateral part of the (Na+ + K+)-activated ATPase is responsible for metabolic energy supply. The luminal part of the enzyme may be involved in regulation of passive Na+ influx.  相似文献   

4.
Isolation and characterization of Neurospora crassa plasma membranes.   总被引:7,自引:0,他引:7  
The isolation and characterization of plasma membranes from a cell wall-less mutant of Neurospora crassa are described. The plasma membranes are stabilized against fragmentation and vesiculation by treatment of intact cells with concanavalin A just prior to lysis. After lysis, the concanavalin A-stabilized plasma membrane ghosts are isolated by low speed centrifugation techniques and the purified ghosts subsequently converted to vesicles by removal of the bulk of the concanavalin A. The yield of ghosts is about 50% whereas the yield of vesicles is about 20%. The isolated plasma membrane vesicles have a characteristically high sterol to phospholipid ratio, Mg2+-dependent ATPase activity and (Na+ plus K+)-stimulated Mg2+ATPase activity. Only traces of succinate dehydrogenase and 5'-nucleotidase are present in the plasma membrane preparations.  相似文献   

5.
Coated microvesicle fractions isolated from ox forebrain cortex by the ultracentrifugation procedure of Pearse (1) and by the modified, less time consuming method of Keen et al (2) had comparable Ca2+ +Mg2+ dependent ATPase activities (about 9 mumol/h per mg protein). The Na+ +K+ +Mg2+ dependent ATPase activity was 3.2 mumol/h per mg (+/- 1.0, S.D., n = 3) when microvesicles were prepared according to (1) and 1.5 mumol/h per mg (+/- 1.0, S.D., n = 3) when prepared according to (2). Oligomycin, ruthenium red, and trifluoperazine, inhibitors of Ca2+ transport in mitochondria and erythrocyte membranes had no effect on Ca2+ +Mg2+ dependent ATPase from any of the preparations. As demonstrated both by ATPase assays and electron microscopy, coated microvesicles could be bound to immunosorbents prepared with poly-specific antibodies against a coated microvesicle fraction obtained by the method of Pearse (1). The binding could be inhibited by dissolved coat protein using partially purified clathrin. The fraction of coated vesicles eluted from the immunosorbent was purified relative to the starting material as judged by electron microscopy. The Ca2+ +Mg2+ ATPase activity and calmodulin content was copurified with the coated microvesicles and the specific activity of Na+ +K+ +Mg2+ ATPase was decreased. Na+ +K+ +Mg2+ dependent ATPase activity in the coated microvesicle fraction could be ascribed to membranes with the appearance of microsomes. These membranes were also bound to the immunosorbents, but the binding was not influenced by clathrin. The capacity of the immunosorbents for these membranes was less than for the coated microvesicles, resulting in a decrease of Na+ +K+ +Mg2+ dependent ATPase activity in the eluted coated microvesicle fraction. It was concluded that Ca2+ +Mg2+ ATPase activity is not a contamination from plasma membrane vesicles or mitochondrial membranes but seems to be an integral part of the coated vesicle membrane.  相似文献   

6.
We have characterized the effect of a stable small molecule isolated from bovine hypothalamus (Haupert, G. T., and Sancho, J. M. (1979) Proc. Natl. Acad. Sci. 76, 4658-4660) on mammalian (Na,K)ATPase. This hypothalamus-derived inhibitory factor, HIF, has been shown to inhibit ATPase activity of purified dog kidney enzyme reversibly with high affinity (Haupert, G. T., Carilli, C. T., and Cantley, L. C. (1984) Am. J. Physiol. 247, F919-F924). In this report it is shown that HIF inhibits the ouabain sensitive component of 86Rb+ uptake into human red blood cells. HIF also inhibited (Na,K)ATPase activity of unsealed red cell membranes but not that of sealed inside-out vesicles, indicating that HIF is impermeant to red cell membranes and inhibits the (Na,K)ATPase from the extracellular side. In unsealed human red cell membranes, concentrations of HIF which caused 70% inhibition of the (Na,K)ATPase did not inhibit ATP hydrolysis by plasma membrane (Ca2+)ATPase or (Mg2+)ATPase. However, at a similar concentration, HIF was shown to inhibit rabbit muscle sarcoplasmic reticulum (Ca2+)ATPase. HIF also inhibited p-nitrophenylphosphatase activity of unmodified or fluorescein-5'-iso-thiocyanate labeled dog kidney (Na,K)ATPase. As judged by fluorescein fluorescence of the modified enzyme, HIF stabilized the low fluorescent "E2" conformation of the enzyme similar to that stabilized by ouabain. However, unlike ouabain, HIF blocked covalent phosphorylation of dog kidney (Na,K)ATPase by inorganic phosphate. These studies show that HIF is an inhibitor of (Na,K)ATPase which acts from the extracellular side of the membrane by a mechanism similar to but not identical to that of cardiac glycosides.  相似文献   

7.
Erythrocyte plasma membranes were isolated from a homogeneous population of human or rabbit erythrocytes fractionated into classes representing young, middle-age and old age in vivo. Lipid analyses of human erythrocyte plasma membranes reveal a decrease of the cholesterol to phospholipid molar ratio, followed by a marked decrease in the activities of the membrane-bound enzymes (Na+,K+)-stimulated ATPase, acetylcholinesterase and NAD+ase from young to old age. Such changes were not observed between young and middle-age rabbit erythrocytes. Incubation of rabbit young erythrocytes with phosphatidylcholine vesicles (liposomes) to obtain partial depletion of their membrane cholesterol, indicated that cholesterol depletion causes a statistically significant decrease of the (Na+,K+)-stimulated ATPase and acetylcholinesterase activities, but the NAD+ase activity remained almost unchanged. The biological significance of these data are discussed in terms of the differences and modifications in the interaction of membrane-bound enzymes with membrane lipids during in vivo ageing of erythrocytes.  相似文献   

8.
In order to elucidate a possible relationship between (Na+ + K+)-activated ATPase and intestinal absorption of actively transported monosaccharides enzyme activity was measured in mucosal cells from alloxan diabetic rats. The general effect of increasing capacity of active, Na+-dependent transport processes in diabetes mellitus is associated with a significantly enhanced (Na+ +K+)-activated ATPase activity in mucosal homogenate from diabetic animals. To study the localization of these effects within the cell we isolated purified brush borders and their substructures. To enable a comparison to be made between preparation procedures of diabetic and control animals the fractions were controlled by electronmicroscopy and by measuring the sucrase activity. In the purified brush border fraction of alloxan treated rats there was no significant increase in (Na+ + K+)-activated ATPase activity. Based on these results we conclude that the (Na+ + K+)-activated ATPase in the basolateral membranes was increased in alloxan diabetes, and it seems very likely that this enzyme is involved in the regulation of Na+-dependent transport processes.  相似文献   

9.
Preparation of plasma membranes from fertilized sea urchin eggs   总被引:1,自引:0,他引:1  
A new method is presented for preparation of highly purified plasma membranes from fertilized sea urchin eggs. The purified plasma membranes are in vesicle form and are highly enriched in ouabain inhibitable, Na+/K+ ATPase activity. Analysis of membrane proteins by sodium dodecyl sulfate-gel electrophoresis indicates that several high-molecular-weight proteins characteristic of plasma membranes from unfertilized eggs are absent in plasma membranes from fertilized eggs.  相似文献   

10.
A method for preparation of highly purified basolateral plasma membranes from rat kidney proximal tubular cells is reported. These membranes were assayed for the presence of vesicles as well as for their orientation. (Na+ + K+)-ATPase activity and [3H]ouabain binding studies with membranes treated with or without SDS revealed that the preparation consisted of almost 100% vesicles. The percentage of inside-out vesicles was found to be approx. 70%. This percentage was determined measuring the (Na+ + K+)-ATPase activity in K+-loaded vesicles and in membranes treated with or without trypsin and SDS. These membranes represent a very efficient tool to assay the correlation between active transport and ATPase activities in basolateral plasma membranes from rat kidney proximal tubular cells.  相似文献   

11.
ATPase activity was localized by means of Wachstein-Meisel's method in rat sciatic nerve fibers. Using controls with ouabain, the presence of alpha + (neuronal) Na+, K+-ATPase was examined. The enzyme occurs in the ATPase reaction of the myelin-forming membranes, axoplasm and Schwann cell cytoplasm. Its presence in the Schwann cell plasma membrane is only admittable. The ATPase activity of the compact myelin and axolemma was exclusively of alpha + type of Na+, K+-ATPase.  相似文献   

12.
Increasing experimental evidences suggest an involvement of an endogenous Na+/K+ ATPase inhibitor in regulating water and electrolytes balance as well as in the pathogenesis of hypertension. However, conflicting results on the nature and the chemical structure of this substance still make it difficult to understand exactly its physiological mechanism of action. In the present study an attempt was made to purify a Na+/K+ ATPase inhibitor from hypertensives' plasma by solid phase extraction followed by 2 HPLC steps using reverse and normal phase columns. The fractions, from both columns, were able to inhibit Na+/K+ ATPase, 3H-ouabain binding to enzyme, ouabain sensitive 86Rb uptake and pNPPase activity in a manner not affected by boiling. Ultrafiltration experiments demonstrate that inhibitory activity is largely due to a low-molecular weight substance. These findings seem to confirm the presence in hypertensives plasma of a Na+/K+ ATPase inhibitor with some similarities with ouabain.  相似文献   

13.
Regulation of Na+ transport in brown adipose tissue.   总被引:2,自引:0,他引:2       下载免费PDF全文
In order to test the hypothesis that Na+, K+-ATPase (Na+,K+-dependent ATPase) is involved in the noradrenaline-mediated stimulation of respiration in brown adipose tissue, the effects of noradrenaline on Na+,K+-ATPase in isolated brown-fat-cell membrane vesicles, and on 22Na+ and K+ (86Rb+) fluxes across the membranes of intact isolated cells, were measured. The ouabain-sensitive fraction of the K+-dependent ATPase activity in the isolated membrane-vesicle preparation was small and was not affected by the presence of noradrenaline in the incubation media. The uptake of 86Rb+ into intact hormone-sensitive cells was inhibited by 80% by ouabain, but it was insensitive to the presence of noradrenaline. 22Na+ uptake and efflux measured in the intact cells were 8 times more rapid than the 86Rb+ fluxes and were unaffected by ouabain. This indicated the presence of a separate, more active, transport system for Na+ than the Na+,K+-ATPase. This is likely to be a Na+/Na+ exchange activity under normal aerobic conditions. However, under anaerobic conditions, or conditions simulating anaerobiosis (2 mM-NaCN), the unidirectional uptake of Na+ increased dramatically, while efflux was unaltered.  相似文献   

14.
Microsomes from ventral prostate of 24-h castrated rats contain a single set of tissue-specific high-affinity, low-capacity androgen binding sites. These sites are indigenous to the endoplasmic reticulum, as shown by purification procedures associated with marker enzymes and electron microscopic analyses. When prostatic microsomal membranes are separated from plasma membranes using the nuclear or the mitochondrial pellets as the source of fractionation in sucrose gradients, the androgen binding activity is selectively associated with fractions rich in rough endoplasmic reticulum and ribosomes. Eighty-four percent of the total content of Na+/K+ adenosine triphosphatase (ATPase) and only 27% of the total binding capacity were concentrated in fractions rich in smooth-surfaced vesicular membranes, when nuclear suspensions constituted the membrane source. In contrast, the region of the same gradient when enriched in rough endoplasmic reticulum and deficient in plasma membrane content contained 73% of the androgen-binding capacity and only 14% of the ATPase. For fractions collected using mitochondrial suspensions as starting material, the ratio (total glucose-6-phosphatase/total binding capacity) was closer to 1.0 than similar ratios of ATPase/binding capacity, indicating co-sedimentation of binding sites with microsomal membranes and not with plasma membranes. Na+/K+ ATPase, but not 5' nucleotidase, is a valid plasma membrane marker for ventral prostate. Microsomal androgen receptors may constitute a new level of regulation of androgen action in target cells.  相似文献   

15.
The localization of the membrane-associated thiol oxidase in rat kidney was investigated. Fractionation of the kidney cortex by differential centrifugation demonstrated that the enzyme is found in the plasma membrane. The crude plasma membrane was fractionated by density-gradient centrifugation on Percoll to obtain purified brush-border and basal-lateral membranes. Gamma-Glutamyltransferase, alkaline phosphatase and aminopeptidase M were assayed as brush-border marker enzymes, and (Na+ + K+)-stimulated ATPase was assayed as a basal-lateral-membrane marker enzyme. Thiol oxidase activity and distribution were determined and compared with those of the marker enzymes. Its specific activity was enriched 18-fold in the basal-lateral membrane fraction relative to its activity in the cortical homogenate, and its distribution paralleled that of (Na+ + K+)-stimulated ATPase. This association indicates that thiol oxidase is localized in the same fraction as (Na+ + K+)-stimulated ATPase, i.e. the basal-lateral region of the plasma membrane of the kidney tubular epithelium.  相似文献   

16.
The membrane-bound adenosine triphosphatase (ATPase) activity of Acholeplasma laidlawii B differs in many respects from the common (Mg2+, Ca2+)-ATPase activity of higher bacteria, most notably in that it is specifically activated by Mg2+ and strongly and specifically stimulated by Na+ (or Li+). Various inhibitors diminish the ATPase activity with a concentration dependence which suggests that a single enzyme species is responsible for all of the observed ATP hydrolytic activity (both basal and Na+ stimulated). The Km for ATP is influenced by temperature but not by membrane lipid fatty acid composition. Vmax is influenced by both of these factors, showing a break in Arrhenius plots which falls below the lipid phase transition midpoint but well above the lower boundary when a phase transition occurs within the temperature range studied. The apparent energy of activation for Vmax is strongly influenced by lipid fatty acid composition both above and below the break. When whole cells of A. laidlawii B are incubated in KCl or NaCl buffers, they rapidly swell and lyse if deprived of an energy source or treated with ATPase inhibitors at concentrations which significantly inhibit enzyme activity in isolated membranes, whereas in sucrose or MgSO4 buffers of equal osmolarity, the cells are stable under these conditions. These results suggest that the membrane ATPase of A. laidlawii B is intimately associated with the membrane lipids and that it functions as a monovalent cation pump which regulates intracellular osmolarity as the (Na+, K+)-ATPase does in eucaryotes.  相似文献   

17.
A method was developed for the analytical and preparative isolation of basolateral plasma membranes from rat small intestine. They were separated on a self-orientating Percoll (modified colloidal silica) gradient starting with a heavy microsomal-membrane fraction and involving centrifugation at 48,000 g for 1 h. (Na+ + K+)-stimulated ATPase activity, used as a marker enzyme for the basolateral plasma membrane, is enriched 20-fold compared with that found in the homogenate of isolated intestinal epithelial cells.  相似文献   

18.
Uptake of 22Na+ by liver plasma membrane vesicles, reflecting Na+ transport by (Na+, K+)ATPase or Na+/H+ exchange was studied. Membrane vesicles were isolated from rat liver homogenates or from freshly prepared rat hepatocytes incubated in the presence of [Arg8]vasopressin or pervanadate and insulin. The ATP dependence of (Na+, K+)ATPase-mediated transport was determined from initial velocities of vanadate-sensitive uptake of 22Na+, the Na(+)-dependence of Na+/H+ exchange from initial velocities of amiloride-sensitive uptake. By studying vanadate-sensitive Na+ transport, high-affinity binding sites for ATP with an apparent Km(ATP) of 15 +/- 1 microM were observed at low concentrations of Na+ (1 mM) and K+ (1mM). At 90 mM Na+ and 60 mM K+ the apparent Km(ATP) was 103 +/- 25 microM. Vesiculation of membranes and loading of the vesicles prepared from liver homogenates in the presence of vasopressin increased the maximal velocities of vanadate-sensitive transport by 3.8-fold and 1.9-fold in the presence of low and high concentrations of Na+ and K+, respectively. The apparent Km(ATP) was shifted to 62 +/- 7 microM and 76 +/- 10 microM by vasopressin at low and high ion concentrations, respectively, indicating that the hormone reduced the influence of Na+ and K+ on ATP binding. In vesicles isolated from hepatocytes preincubated with 10 nM vasopression the hormone effect was conserved. Initial velocities of Na+ uptake (at high ion concentrations and 1 mM ATP) were increased 1.6-1.7-fold above control, after incubation of the cells with vasopressin or by affinity labelling of the cells with a photoreactive analogue of the hormone. The velocity of amiloride-sensitive Na+ transport was enhanced by incubating hepatocytes in the presence of 10 nM insulin (1.6-fold) or 0.3 mM pervanadate generated by mixing vanadate plus H2O2 (13-fold). The apparent Km(Na+) of Na+/H+ exchange was increased by pervanadate from 5.9 mM to 17.2 mM. Vesiculation and incubation of isolated membranes in the presence of pervanadate had no effect on the velocity of amiloride-sensitive Na+ transport. The results show that hormone receptor-mediated effects on (Na+, K+)ATPase and Na+/H+ exchange are conserved during the isolation of liver plasma membrane vesicles. Stable modifications of the transport systems or their membrane environment rather than ionic or metabolic responses requiring cell integrity appear to be involved in this regulation.  相似文献   

19.
Baso-lateral membranes were isolated from the canine and porcine kidney cortex by several different methods currently in use. Sidedness of the isolated membrane vesicles was determined by procedures using 1. ouabain-sensitive (Na+K+)ATPase assays in the presence and in the absence of sodium dodecylsulfate or digitoxigenin plus monensin, 2. (Na+, K+, Mg2+)ATPase assays with valinomycin, 3. sialidase accessibility, and 4. binding of hydrophilic and lipophilic cardiac glycosides. The (Na+K+)ATPase activity in the membrane preparation was increased 10-fold of that found in the crude homogenate. Isolated membrane vesicles, prepared by different techniques, were all found to be overwhelmingly of right-side-out orientation;namely, right-side-out = 51-68%, inside-out = 4-13%, and unsealed vesicles = 26-42%. Results of sidedness determinations by different methods showed a good agreement. Thus, predominantly right-side-out oriented vesicles are formed during conventional isolation procedures for membranes of the kidney cortex.  相似文献   

20.
In this work, we present evidence in agreement with the hypothesis that there exist two Na+-stimulated ATPase activities in basolateral plasma membranes from rat kidney proximal tubular cells: (1) (Na+ + K+)-ATPase activity, which is inhibited by ouabain and by treating the membranes with trypsin, is insensitive to furosemide and reaches maximal activity upon treatment with SDS at an SDS/protein ratio of 1.6; (2) the Na+-ATPase activity, which is insensitive to ouabain and to trypsin treatment, is inhibited by furosemide and reaches maximal activity upon treatment with SDS at an SDS/protein ratio of 0.4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号