首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The bacA gene, the overexpression of which results in bacitracin resistance, was inactivated and shown to be non-essential for growth of Escherichia coli. It was proposed earlier that the bacA gene product may confer resistance to the antibiotic by phosphorylation of undecaprenol (Cain, B. D., Norton, P. J., Eubanks, W., Nick, H. S., and Allen, C. M. (1983) J. Bacteriol. 175, 3784-3789). In the present work, this extremely hydrophobic membrane protein was overproduced and purified to near homogeneity. The analysis of its catalytic properties clearly demonstrated that the purified BacA protein exhibited undecaprenyl pyrophosphate phosphatase activity but not undecaprenol phosphokinase activity. This finding was perfectly consistent with the mechanism of action of bacitracin that consists in the sequestration of undecaprenyl pyrophosphate, the BacA enzyme substrate. The level of undecaprenyl pyrophosphate phosphatase was increased by 280-fold in cells carrying bacA on a multicopy expression plasmid. It was decreased by approximately 75% but was not completely abolished in a bacA disruption mutant, suggesting that BacA is the main E. coli undecaprenyl pyrophosphate phosphatase but that other protein(s) exhibiting such an activity should exist to account for the residual activity and viability of the mutant strain. This is the first gene encoding undecaprenyl pyrophosphate phosphatase identified to date. Considering its newly identified function, we propose to rename the bacA gene uppP.  相似文献   

2.
Superoxide dismutase (SOD) is known to protect organisms from reactive oxygen metabolites. We tested the hypothesis that the Drosophila Cu,Zn SOD is capable of protecting Escherichia coli from oxidative damage caused by the herbicide paraquat. The Cu,Zn Sod gene of Drosophila sechellia was subcloned into pET-20b(+) expression vector. Transformation of E. coli with the constructed vector resulted in an overexpression of this eukaryotic superoxide dismutase, as evidenced by dramatically increased levels of the Cu,Zn SOD polypeptide in bacterial cytosolic extracts. As well, the E. coli transformants showed resistance to paraquat-mediated inhibition of growth and survival. Paraquat is known to promote formation of the superoxide radical anion inside cells and thus the data have been interpreted as indicating that the cloned superoxide dismutase provides protection in E. coli against damage attributable to free radicals.  相似文献   

3.
SugE of Escherichia coli, first identified as a suppressor of groEL mutations but a member of the small multidrug resistance family, has not previously been shown to confer a drug resistance phenotype. We show that high-level expression of sugE leads to resistance to a subset of toxic quaternary ammonium compounds.  相似文献   

4.
The Rhizobium meliloti bacA gene encodes a function that is essential for bacterial differentiation into bacteroids within plant cells in the symbiosis between R. meliloti and alfalfa. An Escherichia coli homolog of BacA, SbmA, is implicated in the uptake of microcin B17, microcin J25 (formerly microcin 25), and bleomycin. When expressed in E. coli with the lacZ promoter, the R. meliloti bacA gene was found to suppress all the known defects of E. coli sbmA mutants, namely, increased resistance to microcin B17, microcin J25, and bleomycin, demonstrating the functional similarity between the two proteins. The R. meliloti bacA386::Tn(pho)A mutant, as well as a newly constructed bacA deletion mutant, was found to show increased resistance to bleomycin. However, it also showed increased resistance to certain aminoglycosides and increased sensitivity to ethanol and detergents, suggesting that the loss of bacA function causes some defect in membrane integrity. The E. coli sbmA gene suppressed all these bacA mutant phenotypes as well as the Fix- phenotype when placed under control of the bacA promoter. Taken together, these results strongly suggest that the BacA and SbmA proteins are functionally similar and thus provide support for our previous hypothesis that BacA may be required for uptake of some compound that plays an important role in bacteroid development. However, the additional phenotypes of bacA mutants identified in this study suggest the alternative possibility that BacA may be needed for membrane integrity, which is likely to be critically important during the early stages of bacterial differentiation within plant cells.  相似文献   

5.
A Carlin  W Shi  S Dey    B P Rosen 《Journal of bacteriology》1995,177(4):981-986
The chromosomally encoded arsenical resistance (ars) operon subcloned into a multicopy plasmid was found to confer a moderate level of resistance to arsenite and antimonite in Escherichia coli. When the operon was deleted from the chromosome, the cells exhibited hypersensitivity to arsenite, antimonite, and arsenate. Expression of the ars genes was inducible by arsenite. By Southern hybridization, the operon was found in all strains of E. coli examined but not in Salmonella typhimurium, Pseudomonas aeruginosa, or Bacillus subtilis.  相似文献   

6.
S Kuhstoss  R N Rao 《Gene》1983,26(2-3):295-299
We have constructed two plasmid vectors (pKC293 and pKC305) that can replicate in Escherichia coli K-12 and Streptomyces ambofaciens. These shuttle vectors were used to demonstrate the expression of two E. coli genes, hygromycin B (Hm) resistance and Tn5 neomycin (Nm) resistance, in S. ambofaciens.  相似文献   

7.
Escherichia coli OmpT, located in the outer membrane, has been characterized as a plasminogen activator, with the ability to hydrolyze protamine and block its entry. In this investigation, a complex of low molecular weight cationic peptides purified from human urine by a combination of membrane ultrafiltration and weak cation exchange chromatography was characterized. The impact of OmpT on E. coli resistance to urinary cationic peptides was investigated by testing ompT knockout strains. The ompT mutants were more susceptible to urinary cationic peptides than ompT+ strains, and this difference was abolished by complementation of the mutants with pUC19 carrying the ompT gene. The urinary protease inhibitor ulinastatin greatly decreased the resistance of the ompT+ strains. Overall, the data indicate that OmpT may help E. coli persist longer in the urinary tract by enabling it to resist the antimicrobial activity of urinary cationic peptides.  相似文献   

8.
Amplification of the cya gene of E. coli on the plasmid pBR325 leads to an increase of adenylate cyclase activity proportional to the gene dosage. In strains harboring hybrid plasmids with cya gene the intracellular level of cAMP and the rate of nucleotide secretion are also elevated. The adenylate cyclase activity in cells with truncated cya gene cloned on pBR322 remains sensitive to glucose inhibition. Amplification of the cya gene leads to considerable resistance of beta-galactosidase synthesis to transient repression by alpha-methylglucoside, but does not influence the permanent repression caused by glucose.  相似文献   

9.
One of the mutants (slr7 mutant) of a wild-type Escherichia coli strain resistant to selenolipoic acid reported previously (K. E. Reed, T. W. Morris, and J. E. Cronan, Jr., Proc. Natl. Acad. Sci. USA 91:3720-3724, 1994) unexpectedly grew on minimal medium following transductional introduction of a lipA null mutation. We report that the slr7 strain carries a duplication of the lip chromosomal region that causes the phenotype of the mutant strain.  相似文献   

10.
The predominant cellular target of the herbicide glyphosate is thought to be the enzyme 5-enolpyruvylshikimate-3-phosphoric acid synthase (EPSP synthase). As a means of biologically testing this finding, we cloned a segment of DNA from Escherichia coli that encodes this enzyme. Clones carrying the gene for EPSP synthase were identified by genetic complementation. Cells that contain a multicopy plasmid carrying the EPSP synthase gene overproduce the enzyme 5- to 17-fold and exhibit at least an 8-fold increased tolerance to glyphosate. These experiments provide direct biological evidence that EPSP synthase is a major site of glyphosate action in E. coli and that, in an amplified form, it can serve as a selectable glyphosate resistance marker.  相似文献   

11.
A relatively simple method has been used to clone the gene coding for the respiratory NADH dehydrogenase (NADH-ubiquinone oxidoreductase) of Escherichia coli from unfractionated chromosomal DNA. The restriction endonucleases EcoRI, BamI and HindIII were used to construct three hybrid plasmid pools from total E. coli DNA and the amplifiable plasmids pSF2124 and pGM706. Three different restriction endonucleases were used to increase the chances of cloning the ndh gene intact. Mobilization by the plasmid F was used to transfer the hybrid plasmids into ndh mutants and selection was made for Apr and complementation of ndh. DNA fragments complementing ndh were isolated from both the EcoRI and HindIII hybrid plasmid pools. The strain carrying the hybrid plasmid constructed with EcoRI produced about 8--10 times the normal level of the respiratory NADH dehydrogenase in the cytoplasmic membrane. Treating the cells with chloramphenicol to increase the plasmid copy number allowed the level of NADH dehydrogenase in the membrane to be increased to 50--60 times the level in the wild type. The results indicate the potential of gene cloning for the specific amplification of particular proteins prior to their purification.  相似文献   

12.
The structural genes for the entire bacitracin synthetase 2 (component II) and for a part of the putative bacitracin synthetase 3 (component III) from Bacillus licheniformis ATCC 10716 were cloned and expressed in Escherichia coli. A cosmid library of B. licheniformis DNA was constructed. The library was screened for the ability to produce bacitracin synthetase by in situ immunoassay using anti-bacitracin synthetase antiserum. A positive clone designated B-15, which has a recombinant plasmid carrying about a 32-kilobase insert of B. licheniformis DNA, was further characterized. Analysis of crude cell extract from B-15 by polyacrylamide gel electrophoresis and Western blotting (immunoblotting) showed that the extract contains two immunoreactant proteins with high molecular weight. One band with a molecular weight of about 240,000 comigrates with bacitracin synthetase 2; the other band is a protein with a molecular weight of about 300,000. Partial purification of the gene products encoded by the recombinant plasmid by gel filtration and hydroxyapatite column chromatography revealed that one gene product catalyzes L-lysine- and L-ornithine-dependent ATP-PPi exchange reactions which are characteristic of bacitracin synthetase 2, and the other product catalyzes L-isoleucine-, L-leucine, L-valine-, and L-histidine-dependent ATP-PPi exchange activities, suggesting the activities of a part of bacitracin synthetase 3. Subcloning experiments indicated that the structural gene for bacitracin synthetase 2 is located near the middle of the insert.  相似文献   

13.
The bleomycin resistance gene (ble) of transposon Tn5 is known to decrease the death rate of Escherichia coli during stationary phase. Bleomycin is a DNA-damaging agent and bleomycin resistance is produced by improved DNA repair which also requires the host genes aidC and polA coding, respectively, for an alkylation-inducible gene product and DNA polymerase I. In the absence of the drug, this DNA repair system is believed to cause the slower death rate of bleomycin-resistant bacteria. In this study, the effect of ble and aidC genes on the viability of bacteria and their growth rate in chemostat competitions was studied. The results indicate, that bleomycin-resistant bacteria display greater fitness under these conditions. Another beneficial effect of transposon Tn5 had been previously attributed to the insertion sequence IS50R. We were not able to reproduce this result with IS50R, however, the complete transposon was beneficial under similar conditions. Moreover, we showed the Tn5 fitness effect to be aidC-dependent. The ble gene was discovered after the fitness effect of IS50R had been established; it has not previously been considered to mediate the beneficial effect of Tn5. This possibility is discussed based on the molecular mechanism of bleomycin resistance.  相似文献   

14.
The superoxide dismutase (SOD) gene (slr 1516) from the cyanobacterium Synechocystis sp. PCC 6803 was cloned and overexpressed in Escherichia coli BL 21 (DE3) using the pET-20b(+) expression vector. E. coli cells transformed with pET-SOD overexpressed the protein in cytosol, upon induction by isopropyl beta-D-thiogalactopyranoside (IPTG). The recombinant protein was purified to near homogeneity by gel filtration and ion-exchange chromatography. The SOD activity of the recombinant protein was sensitive to hydrogen peroxide and sodium azide, confirming it to be FeSOD. The pET-FeSOD transformed E. coli showed significantly higher SOD activity and tolerance to paraquat-mediated growth inhibition compared to the empty vector transformed cells. Based on these results it is suggested that overexpression of FeSOD gene from a heterologous source like Synechocystis sp. PCC 6803 may provide protection to E. coli against superoxide radical-mediated oxidative stress mediated by paraquat.  相似文献   

15.
A new gene mvrC conferring resistance to methyl viologen, a powerful superoxide radical propagator, was cloned on 13.5 kilo base (kb) EcoRI DNA fragment. It gave resistance against methyl viologen to even a wild-type strain with gene dosage dependence. From the physical maps obtained by restriction enzyme digestions, it was predicted to locate at 580 kbp (12.3 min) on the physical map of E.coli. This was confirmed by the Southern hybridization of lambda phages covering this region with mvrC probe. The DNA sequence of mvrC gene was determined and its deduced protein encoding a 12 kd hydrophobic protein was confirmed by maxicell labeling of MvrC protein.  相似文献   

16.
Classical mutagenesis could desensitize the feedback inhibition of l-tryptophan (l-Trp) biosynthesis. Among the mutants, a5-fluorotryptophan-resistant strain, Escherichia coli EMS4-C25 produced 3 g/l of l-Trp within 18 h. The feedback-resistant l-Trp operon gene (trp) prepared from E. coli EMS4-C25 was inserted into pUC19 and pHSG576 to generate pTC701 and pTC576, respectively. When pHSG576 and pTC701 were introduced into E. coli EMS4-C25, chromosomal integration occured through homologous recombination. By using Souther hybridization, we demostrated that the integrated plasmids existed as multicopies. The strains with integrated foreign trp operon gene had higher activities of anthranilate synthase and Trp synthase than those found for the host strain and produced 9.2 g/l of l-Trp with 13% conversion yield from d-glucose. The integration and implification of the trp-operon-beraing plasmid avoided the plasmid instability and increased l-TRp production. Correspondence to: E.-C. Chan  相似文献   

17.
A glutamate-dependent acid resistance gene in Escherichia coli.   总被引:7,自引:0,他引:7       下载免费PDF全文
Stationary-phase cultures of Escherichia coli can survive several hours or exposure to extreme acid (pH 2 to 3), a level well below the pH range for growth (pH 4.5 to 9). To identify the genes needed for survival in extreme acid, a microliter screening procedure was devised. Colonies from a Tn10 transposon pool in E. coli MC4100 were inoculated into buffered Luria broth, pH 7.0, in microtiter wells, grown overnight, and then diluted in Luria broth, pH 2.5, at 37 degrees C for 2 h. From 3,000 isolates screened, 3 Tet(r) strains were identified as extremely acid sensitive (<0.1% survival at pH 2.5 for 2 h). Flanking sequences of the Tn10 inserts were amplified by inverse PCR. The sequences encoded a hydrophobic partial peptide of 88 residues. A random-primer-generated probe hybridized to Kohara clones 279 and 280 at 32 min (33.7 min on the revised genomic map EcoMap7) near gadB (encoding glutamate decarboxylase). The gene was designated xasA for extreme acid sensitive. xasA::Tn10 strains grown at pH 7 to 8 showed 100-fold-less survival in acid than the parent strain. Growth in mild acid (pH 5 to 6) restored acid resistance; anaerobiosis was not required, as it is for acid resistance in rpoS strains. xasA::Tn10 eliminated enhancement of acid resistance by glutamic acid. xasA was found to be a homolog of gadC recently sequenced in Shigella flexneri, in which it appears to encode a permease for the decarboxylated product of GadB. These results suggest that GadC (XasA) participates in a glutamate decarboxylase alkalinization cycle to protect E. coli from cytoplasmic acidification. The role of the glutamate cycle is particularly important for cultures grown at neutral pH before exposure to extreme acid.  相似文献   

18.
The predominant cellular target of the herbicide glyphosate is thought to be the enzyme 5-enolpyruvylshikimate-3-phosphoric acid synthase (EPSP synthase). As a means of biologically testing this finding, we cloned a segment of DNA from Escherichia coli that encodes this enzyme. Clones carrying the gene for EPSP synthase were identified by genetic complementation. Cells that contain a multicopy plasmid carrying the EPSP synthase gene overproduce the enzyme 5- to 17-fold and exhibit at least an 8-fold increased tolerance to glyphosate. These experiments provide direct biological evidence that EPSP synthase is a major site of glyphosate action in E. coli and that, in an amplified form, it can serve as a selectable glyphosate resistance marker.  相似文献   

19.
AIMS: Identification of a gene for self-protection from the antibiotic-producing plant pathogen Xanthomonas albilineans, and functional testing by heterologous expression. METHODS AND RESULTS: Albicidin antibiotics and phytotoxins are potent inhibitors of prokaryote DNA replication. A resistance gene (albF) isolated by shotgun cloning from the X. albilineans albicidin-biosynthesis region encodes a protein with typical features of DHA14 drug efflux pumps. Low-level expression of albF in Escherichia coli increased the MIC of albicidin 3000-fold, without affecting tsx-mediated albicidin uptake into the periplasm or resistance to other tested antibiotics. Bioinformatic analysis indicates more similarity to proteins involved in self-protection in polyketide-antibiotic-producing actinomycetes than to multi-drug resistance pumps in other gram-negative bacteria. A complex promoter region may co-regulate albF with genes for hydrolases likely to be involved in albicidin activation or self-protection. CONCLUSIONS: AlbF is the first apparent single-component antibiotic-specific efflux pump from a gram-negative antibiotic producer. It shows extraordinary efficiency as measured by resistance level conferred upon heterologous expression. SIGNIFICANCE AND IMPACT OF THE STUDY: Development of the clinical potential of albicidins as potent bactericidial antibiotics against diverse bacteria has been limited because of low yields in culture. Expression of albF with recently described albicidin-biosynthesis genes may enable large-scale production. Because albicidins are X. albilineans pathogenicity factors, interference with AlbF function is also an opportunity for control of the associated plant disease.  相似文献   

20.
A recombinant plasmid, designated pUC1002, was constructed by ligation of a HindIII restriction endonuclease fragment of Escherichia coli chromosomal DNA to vector plasmid pMB9. Strains carrying this plasmid were selected by transformation of an E. coli strain bearing the xyl-7 mutation to a xylose-positive (Xyl+) phenotype. Strains containing pUC1002 produced coordinately elevated levels of D-xylose isomerase and D-xylulose kinase. Under appropriate conditions, the isomerase also efficiently catalyzed the conversion of D-glucose to D-fructose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号