首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
T. Hori  J. C. Green 《Protoplasma》1985,125(1-2):140-151
Summary Mitosis and cytokinesis have been studied in the flagellate algaIsochrysis galbana Parke (Prymnesiophyceae). Nuclear division is preceded by replication of the flagella and haptonema, the Golgi body and the chloroplast; fission in the chloroplast occurs in the region of the pyrenoid. During prophase, spindle microtubules radiating from two ill-defined poles are formed. The nuclear envelope breaks down and the chromatin condenses. At metaphase the spindle is fully developed, some pole-to-pole microtubules passing through the well-defined chromatin plate, others terminating at it. No kinetochores or individual chromosomes were observed. By late metaphase, many Golgi-derived vesicles may be seen against the two poleward faces of the metaphase plate. During anaphase, the two daughter masses of chromatin move towards the poles. In early telophase, the nuclear envelope of each daughter nucleus is complete only on the side towards the adjacent chloroplast, remaining open on the interzonal side. However, during telophase each nucleus becomes reorientated so that it lies lateral to the long axis of the spindle and with its open side towards the chloroplasts. By late telophase, each new nuclear envelope is complete and confluence with the adjacent chloroplast ER established.Cytokinesis and subsequent segregation of the daughter cells are effected by the dilation of Golgi- and ER-derived vesicles in the interzonal region. No microtubular structures are involved. Comparisons with the results from other studies of mitosis in members of thePrymnesiophyceae show that they all have a number of features in common, but that there are differences in detail between species.  相似文献   

2.
J. W. Taylor  K. Wells 《Protoplasma》1979,98(1-2):31-62
Summary Mitosis in the imperfect yeast-like basidiomyceteBullera alba was studied by comparative light and electron microscopy. During mitosis the chromatin containing part of the nucleus moved into the progeny cell, and the nucleolus containing part of the nucleus remained in the parent cell. The two portions of the nucleus then separated and the nucleolar part degenerated. Metaphase and anaphase took place in the progeny cell. Subsequently one mass of chromatin returned to the parent cell, and two new nuclei were formed. The study concentrated on the nuclear envelope, nucleolus, spindle pole body, chromatin, spindle, and cytoplasmic microtubules. Mitosis inB. alba was compared with reports of mitosis in other basidiomycetes, theUredinales, and theAscomycotina and was deemed closest to the heterobasidiomycete yeasts.Histochemical evidence for the presence of lipid, glycogen, and polyphosphate in the cytoplasm was presented.  相似文献   

3.
SYNOPSIS. The ultrastructure of interphase and mitotic nuclei of the epimastigote form of Trypanosoma cyclops Weinman is described. In the interphase nucleus the nucleolus is located centrally while at the periphery of the nucleus condensed chromatin is in contact with the nuclear envelope. The nucleolus fragments at the onset of mitosis, but granular material of presumptive nucleolar origin is often recognizable in the mitotic nucleus. Peripheral chromatin is in contact with the nuclear envelope throughout mitosis, and it seems reasonable to assume that the nuclear envelope is involved in its segregation to the daughter nuclei. Spindle microtubules extend between the poles of the dividing nucleus and terminate close to the nuclear envelope. The basal body and kinetoplast divide before the onset of mitosis and do not appear to have any morphologic involvement in that process. Spindle pole bodies, kinetochores, and chromosomal microtubules have not been observed.  相似文献   

4.
Summary The interphase nucleus ofLeishmania adleri has clumps of chromatin associated with the nuclear envelope and a large centrally located nucleolus. Prior to mitosis the basal bodies replicate at the cell anterior. Subsequently, dense plaques appear in the equatorial region of the nucleus at the time of spindle development. Microtubules appear in the nucleus adjacent to the nuclear envelope and embedded in the matrix of the plaques. A central spindle composed of a single bundle of microtubules develops and spans the nucleus. Plaques and nucleolar components laterally associate with the spindle and migrate towards the poles. The central spindle elongates to three to four times its original length separating the forming daughter nuclei and producing an interzonal spindle. A remnant of the interzonal spindle remains attached to each of the daughter nuclei until late into cytokinesis. The kinetoplast does not divide until after the completion of mitosis.  相似文献   

5.
Summary Nuclei in protoplasts ofEntomophaga aulicae contain abundant condensed chromatin and a large central nucleolus. The metaphase spindle occupies a small eccentric area of the nucleus while the remainder of the nucleus is filled with condensed chromatin. Small portions of condensed chromatin are aligned along a broad metaphase plate and connected to the spindle poles by kinetochore microtubules. The nucleus associated organelle (NAO) is a solid barlike structure which lies at the spindle poles and is closely associated with the outer membrane of the nuclear envelope. Comparison of the nuclear characteristics ofE. aulicae with those of other members of theEntomophthorales supports the separation of theEntomophthoraceae from theBasidiobolaceae andAncylistaceae. Further comparison of details of nuclear division in theEntomophthoraceae, specifically NAO morphology, may be useful in helping to delineate evolutionary lines within the family.  相似文献   

6.
At the ultrastructural level, cell division in Ochromonas danica exhibits several unusual features. During interphase, the basal bodies of the 2 flagella replicate and the chloroplast divides by constriction between its 2 lobes. The rhizoplast, which is a fibrous striated root attached to the basal body of the long flagellum, extends under the Golgi body to the surface of the nucleus in interphase cells. During proprophase, the Golgi body replicates, apparently by division, and a daughter rhizoplast, appears. During prophase, the 2 pairs of flagellar basal bodies, each with their accompanying rhizoplast and Golgi body, begin to separate. Three or 4 flagella are already present at this stage. At the same time, there is a proliferation of microtubules outside the nuclear envelope. Gaps then appear in the nuclear envelope, admitting the microtubules into the nucleus, where they form a spindle. A unique feature of mitosis in O. danica is that the 2 rhizoplasts form the poles of the spindle, spindle microtubules inserting directly onto the rhizoplasts. Some of the spindle microtubules extend from pole to pole; others appear to attach to the chromosomes. Kinetochores, however, are not present. The nuclear envelope breaks down, except, in the regions adjacent, to the chloroplasts; chloroplast ER remains intact throughout mitosis. At late anaphase the chromosomes come to lie against part of the chloroplast ER. This segment of the chloroplast ER appears to be incorporated as part of the reforming nuclear envelope, thus reestablishing the characteristic nuclear envelope—chloroplast ER association of the interphase cell.  相似文献   

7.
The metazoan nucleus is disassembled and re-built at every mitotic cell division. The nuclear envelope, including nuclear pore complexes, breaks down at the beginning of mitosis to accommodate the capture of massively condensed chromosomes by the spindle apparatus. At the end of mitosis, a nuclear envelope is newly formed around each set of segregating and de-condensing chromatin. We review the current understanding of the membrane restructuring events involved in the formation of the nuclear membrane sheets of the envelope, the mechanisms governing nuclear pore complex assembly and integration in the nascent nuclear membranes, and the regulated coordination of these events with chromatin de-condensation.  相似文献   

8.
D. B. Gromov 《Protoplasma》1985,126(1-2):130-139
Summary The fine structure ofAmoeba proteus nuclei has been studied during interphase and mitosis. The interphase nucleus is discoidal, the nuclear envelope is provided with a honeycomb layer on the inside. There are numerous nucleoli at the periphery and many chromatin filaments and nuclear helices in the central part of nucleus.In prophase the nucleus becomes spherical, the numerous chromosomes are condensed, and the number of nucleoli decreases. The mitotic apparatus forms inside the nucleus in form of an acentric spindle. In metaphase the nuclear envelope loses its pore complexes and transforms into a system of rough endoplasmic reticulum cisternae (ERC) which separates the mitotic apparatus from the surrounding cytoplasm; the nucleoli and the honeycomb layer disappear completely. In anaphase the half-spindles become conical, and the system of ERC around the mitotic spindle persists. Electron dense material (possibly microtubule organizing centers—MTOCs) appears at the spindle pole regions during this stage. The spindle includes kinetochore microtubules attached to the chromosomes, and non-kinetochore ones which pierce the anaphase plate. In telophase the spindle disappears, the chromosomes decondense, and the nuclear envelope becomes reconstructed from the ERC. At this stage, nucleoli can already be revealed with the light microscope by silver staining; they are visible in ultrathin sections as numerous electron dense bodies at the periphery of the nucleus.The mitotic chromosomes consist of 10 nm fibers and have threelayered kinetochores. Single nuclear helices still occur at early stages of mitosis in the spindle region.  相似文献   

9.
Frans A. C. Kouwets 《Protoplasma》1996,191(3-4):191-204
Summary The ultrastructure of mitosis and cytokinesis is studied in the typical and a multicentriolar form of the multinucleate green algaBracteacoccus minor (Chodat) Petrovà. These processes are essentially identical in both forms, and are similar to those in other uni- and multinucleate chlorellalean algae. The mitotic spindle is closed and centric, and a fragmentary perinuclear envelope is present. In multinuclear cells mitosis is synchronous and may occur at the same time as cytokinesis. Cleavage is simultaneous and centrifugal, starting near the nucleus-associated centrioles and apparently mediated by phycoplast microtubules of the trochoplast type. Flagellated wall-less spores are usually formed. In the typical form ofB. minor, each interphase nucleus is associated with two mature centrioles (= one set) which function as centrosomal markers. At the onset of mitosis these centrioles duplicate and segregate and eventually establish the two poles of the spindle, where polar fenestrae develop in the nuclear envelope. In the multicentriolar form, however, each interphase nucleus generally is associated with two or three sets of centrioles. Consequently, during mitosis each half-spindle is associated with two or three sets. These centrioles are not necessarily all associated with the fenestrae at the spindle poles, but one or more sets are frequently associated with the nuclear membrane, more or less remote from the nuclear poles. However, the spindle in this multicentriolar form remains essentially bipolar. Cleavage generally results in zoospores with two, four or six flagella. The behaviour of the extra centrioles during the cell cycle and their possible relationship with centrosomes are discussed.  相似文献   

10.
The mature spermatozoon of Admetus pomilio is a spherical cell containing nucleus and tightly coiled flagellum. In early spermatids the Golgi apparatus forms the acrosomal vesicle and at the opposite side the distal centriole gives rise to the axonemal complex of the sperm tail. As the nucleus elongates, chromatin forms twisted filaments and the spermatid nucleus takes on a helical form. Microtubules are juxtaposed with the nucleus envelope, which is separated from a central chromatin mass by an electron lucid region. A long perforatorium, located on the border of the chromatin mass, runs helically in the nucleus from the centriolar region to subacrosomal space. During tail elongation, the anterior part of the axoneme is surrounded by a long, spiral mitochondrial sheath. In the late spermatid, chromatin filaments appear twisted and become aggregated. The nucleus and flagellum undergo further contortions in which the nucleus coils and the flagellum winds up into the body of the cell and coils in a regular fashion. The mitochondrial sheath surrounds about 2/3 of the 9 + 3 axoneme. These features of spermatid ultrastructure resemble those in the primitive Liphistiomorpha.  相似文献   

11.
During mitosis, the vertebrate cell nucleus undergoes profound changes in architecture. At the onset of mitosis, the nuclear envelope breaks down, the nuclear lamina is depolymerized, and interphase chromatin is condensed to chromosomes. Concomitantly, cytoplasmic microtubules are reorganized into a mitotic spindle apparatus, a highly dynamic structure required for the segregation of sister chromatids. Many of the above events are controlled by reversible phosphorylation. Hence, our laboratory is interested in characterizing the kinases involved in promoting progression through mitosis and in identifying their relevant substrates. Prominent among the kinases responsible for regulating entry into mitosis is the Cdc2 kinase, the first member of the cyclin dependent kinase (Cdk) family. Recently, we found that Cdc2 phosphorylates HsEg5, a human kinesin-related motor protein associated with centrosomes and the spindle apparatus. Our results indicate that phosphorylation regulates the association of HsEg5 with the mitotic spindle and that the function of this plus-end directed motor is essential for centrosome separation and bipolar spindle formation. Another kinase implicated in regulating progression through mitosis is Plk1 (polo-like kinase 1), the human homologue of theDrosophilagene product “polo.” By antibody microinjection we have found that Plk1 is required for the functional maturation of centrosomes and hence for entry into mitosis. Furthermore, we found that microinjected anti-Plk1 antibodies caused a more severe block to cell cycle progression in diploid fibroblasts than in immortalized tumor cells. This observation hints at the existence of a checkpoint linking Cdc2 activation to the presence of functional centrosomes.  相似文献   

12.
Summary Mitotic divisions during sporangiogenous plasmodial cleavage inWoronina pythii were studied with transmission electron microscopy. We conclude that these nuclear divisions (e.g., transitional nuclear division, and sporangial mitoses) share basic similarities with the cruciform nuclear divisions inW. pythii and other plasmo-diophoraceous taxa. The major distinction appeared to be the absence of nucleoli during sporangial mitosis and the presence of nucleoli during cruciform nuclear division. The similarities were especially evident with regard to nuclear envelope breakdown and reformation. The mitotic divisions during formation of sporangia were centric, and closed with polar fenestrae, and characterized by the formation of intranuclear membranous vesicles. During metaphase, anaphase, and telophase, these vesicles appeard to bleb from the inner membrane of the original nuclear envelope and appeared to coalesce on the surface of the separating chromatin masses. By late telophase, the formation of new daughter nuclear envelopes was complete, and original nuclear envelope was fragmented. New observation pertinent to the mechanisms of mitosis in thePlasmodiophoromycetes include a evidence for the incorporation of membrane fragments of the original nuclear envelope into new daughter nuclear envelopes, and b the change in orientation of paired centrioles during sporangial mitosis.  相似文献   

13.
Spermiogenesis in the aplysiid, Aplysia kurodai (Gastropoda, Opisthobranchia) was studied by transmission electron microscopy, with special attention to acrosome formation and the helical organization of the nucleus and the other sperm components. In the early spermatid, the periphery of the nucleus differentiates into three characteristics parts. The first part is that electron-dense deposits accumulate on the outer nuclear envelope. This part is destined to be the anterior side of the sperm because a tiny acrosome is organized on its mid-region at the succeeding stage of spermiogenesis. The second part, in which electron-dense material attaches closely to the inner side of the nuclear envelope, is the presumptive posterior side. A centriolar fossa is formed in this part and the axoneme of the flagellum extends from the fossa. A number of lamellar vesicles derived from mitochondria assemble around the axoneme and form the flagellum complex. The third part is recognized by the chromatin which condenses locally along the inner nuclear envelope. During development of the spermatid, this part extends to form a spiral nucleus accompanied by chromatin condensation and formation of microtubular lamellae outside the extending nucleus.
Finally, in the mature sperm, a tiny, spherical acrosomal vesicle is detected at the apex. The slender nucleus, overlapping both the primary and secondary helices which are composed of different structural elements, winds around the flagellum axoneme.  相似文献   

14.
Summary Light microscopical observations on the cell division of the small dinoflagellate Woloszynskia micra are correlated for the first time with an electron microscopical study. In prophase, whilst the nucleus enlarges and becomes pearshaped, the chromosomes divide to give pairs of chromatids. This process starts at one end and works to the other giving Y- and V-shaped chromosomes as it occurs. Cytoplasmic invaginations pass through the nucleus and by the end of prophase these are seen to contain a number of microtubules of about 180 Å diameter. There is no connection between the microtubules in the nuclear in vagination and either the flagellar bases or the chromosomes. At anaphase the nucleus expands laterally and the sister chromatids move towards opposite ends. The cell hypocone is now partially divided and the two longitudinal flagella well separate. The nucleus completes its division into two daughter nuclei and for a time portions of the cytoplasmic invaginations remain visible. Cell cleavage is completed by the division of the epicone. The nuclear membrane remains intact throughout division and the nucleolus does not break down.The mitotic division in this organism, which is unusual in comparison with the mitosis of higher organisms, is discussed in the light of other types of mitosis which have been reported and of earlier light microscopical observations on dinoflagellates.  相似文献   

15.
Summary Ultracentrifugation of living cells from the liver of the mouse, rat, dog, frog, Necturus, follicle cells, of grasshopper testis, and meristem of the onion root tip shows evidence that the interphase chromatin is attached to the nuclear envelope. Because of its relatively high density, the bulk of the interphase chromatin, and often the nucleoli, are displaced to the centrifugal side of the nucleus and, when this occurs, the chromatin bodies attached to the centripetal side of the nucleus are drawn out into long filaments which extend across the nucleus centrifugally. They generally break before becoming detached from the envelope. Onion root tip chromosomes in early prophase also appear to be attached to the nuclear envelope. The Barr body strongly adheres to the nuclear envelope as evidenced by the high centrifugal force necessary to displace it. Nucleoli of ultracentrifuged meristematic cells of the onion root show evidence of a stratification of materials within them.Supported by Grant GM 04706 from the U.S.P.H.S.  相似文献   

16.
Interphase HeLa cells exposed to solutions that are 1.6 x isotonic manifest a series of morphological transformations, several of which grossly resemble those which occur when untreated cells enter prophase. These include chromosome condensation with preferential localization at the nuclear envelope and nucleolus, ruffling of the nuclear envelope, and polyribosome breakdown. The nucleolus loses its fibrous component and appears diffusely granular. At 2.8 x isotonicity the nuclear envelope is selectively dispersed although other membranes show morphological alterations also. The characteristic transitions of the lysosomes, Golgi complex, and microtubules seen in normal mitosis do not occur during hypertonic treatment. All the changes induced with hypertonic solutions are rapidly reversible, and the nucleus particularly goes through a recovery phase which bears some similarity to that of the telophase nucleus. The prophase-like condensation of the chromatin following exposure of the intact cell to hypertonic medium cannot be reproduced on an ultrastructural level in the isolated nucleus with any known variation in salt concentration, suggesting significant modifications of the nuclear contents during isolation. In addition to these morphological responses, hypertonic solutions also markedly and reversibly depress macromolecular synthesis. The polyribosome disaggregation that results from exposure to hypertonic solutions may be partially prevented by prior exposure to elevated Mg++ concentrations; this same ion is also partially effective in preventing the polyribosome breakdown which normally occurs as cells enter mitosis.  相似文献   

17.
L. W. Olson  L. Lange 《Protoplasma》1978,97(2-3):275-290
Summary The meiospore ofPhysoderma maydis (Phycomycetes, Chytridiales, Physodermataceae) has a nuclear cap enclosing the cellular ribosomes within a double membrane, and double membranes traversing the nuclear cap. Aggregates of ribosomes not incorporated into the nuclear cap are also enclosed by double membranes. A vesicular network is observed in the anterior portion of the spore in direct connection with the nuclear cap membrane and with a stacked parallel array of membranes, which itself is connected with the nuclear cap membrane.The meiospore ofP. maydis contains a side body complex of the type observed in spores of theBlastocladiales. Vesicles enclose the side body complex and these vesicles are connected to the nuclear cap membrane and the nuclear envelope, and form a network which partially encloses the kinetosomal apparatus.The nuclear cap membrane, stacked array of membranes, and the vesicles which surround the side body complex and the kinetosomal apparatus contain an electron-dense amorphous material. On the basis of their ultrastructural appearance, these membranes are interpreted as part of a highly divided microbody.The ultrastructural organization of the meiospore ofP. maydis is compared to the structural organization observed in spores of theChytridiales, Blastocladiales, Monoblepharidales, andHarpochytriales. It is concluded that the structural organization of the meiospores ofP. maydis is the same as observed for members of theBlastocladiales, and it is suggested that thePhysodermataceae should be transferred from theChytridiales to theBlastocladiales.  相似文献   

18.
The spermatozoon of Chiton marginatus is a long uniflagellate cell displaying structural features of “modified sperm.” The nucleus presents a conical shape with a long apical cylindrical extension. The chromatin is homogeneously dense. Scattered inside the condensed nucleus, a few nuclear lacunae are visible. The acrosomal complex is lacking. Some mitochondria are located in a laterofrontal structure side by side with the nucleus. The typical midpiece is absent. The cytoplasm forms a thin layer around the nucleus and the mitochondria. The proximal centriole is in a basal nuclear indent. The distal centriole serves to form the axoneme tail with the usual microtubular pattern. During nuclear maturation, the early spermatid nucleus is spherical and contains fine granular chromatin patches. The nuclear envelope shows a deposit of dense material at the base of the nucleus, forming a semicircular invagination occupied by a flocculent mass. In middle spermatid stage, the chromatin gets organized in filaments, coiled as a hank, attached over the inner surface of the basal thickening of the nuclear envelope. The nucleus starts to elongate anteroposteriorly. At the pointed apical portion of the spermatid, a group of microtubules is observed seeming to impose external pressure to the nucleus giving rise to the long apical nuclear point. The mitochondria have a basal position. Late spermatids have an elongated conical nucleus. The chromatin filaments are further condensed, and lacunae appear inside the nucleus. Some mitochondria migrate to a lateral position.  相似文献   

19.
The fine structure of stages in mitosis in a colorless euglenoid, Anisonema sp., reveals that chromosomes remain condensed throughout the life cycle and are attached to the nuclear envelope at interphase. The onset of mitosis is marked by the anterior migration of the nucleus towards the base of the reservoir and by elongation of the nucleolus. The nuclear envelope persists throughout mitosis. Microtubules are generated in the peripheral nucleoplasm adjacent to the envelope and attach to the chromosomes while they are still associated with the envelope. The region of microtubular contact develops into a distinct layered kinetochore as the developing spindle with attached chromosomes separates from the nuclear envelope and moves into the nucleoplasm. The mature spindle consists of a number of subspindles each containing about 8–10 microtubules and a few associated chromosomes. Both chromosomal and non-chromosomal microtubules are present in each subspindle and extend towards the envelope terminating at or near the nuclear pores. Chromosomal segregation is concomitant with nuclear elongation. By late division, an interzonal spindle develops in the dumbbell-shaped nucleus and nucleolar separation occurs. Continued invagination of the nuclear envelope in the region of the interzonal spindle eventually separates the daughter nuclei. A remnant of the interzonal spindle persists in the cytoplasm until cytokinesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号