首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ras p21 proteins cycle between inactive, GDP-bound forms and active GTP-bound forms. Hydrolysis of bound GTP to GDP is mediated by proteins referred to as GAPs, two forms of which have been described. The first, p120-GAP, contains regions of homologies with tyrosine kinase oncogenes, and interacts with tyrosine phosphoproteins as well as with ras proteins; p120-GAP may therefore connect signalling pathways that involve tyrosine kinase and ras p21 proteins. The second type of GAP is the product of the neurofibromatosis type 1 gene (NF1-GAP). This is a protein of 325,000 Da that is defective in patients with NF1; NF1-GAP is regulated by signalling lipids, and may serve to connect ras p21 with phospholipid second messenger systems. The significance of ras p21 interaction with distinct GAPs is discussed.  相似文献   

2.
The use of guanosine 5'-O-(gamma-thio)triphosphate as a substrate for p21 c-Ha-ras was established. By using chirally labeled [gamma-17O,18O]guanosine 5'-O-(gamma-thio)triphosphate, the stereochemical course of the GTPase reaction was determined. The analysis shows that the hydrolysis occurs with inversion at the gamma-phosphorus. This shows that the most likely mechanism is a single step, in-line transfer, without a phosphoenzyme or other phosphorylated intermediate.  相似文献   

3.
Guanine nucleotides modified by acetylation of the ribose moiety with the small fluorophore N-methylanthranilic acid(mant) have been shown to bind to p21 ras with similar equilibrium and kinetic rate constants as the parent nucleotides. Hydrolysis of p21.mantGTP to p21.mantGDP results in a 10% decrease in fluorescence intensity occurring at the same rate as the cleavage step. A similar process occurs with the non-hydrolysable analogue mantGMP.PNP, and this has led to the proposal that a conformational change of p21.mantGTP precedes and controls the rate of the cleavage step. The fluorescence change with p21.mantGMP.PNP is accelerated in the presence of the C-terminal catalytic domain of GAP, which is consistent with this mechanism. The same conformational change does not occur with oncogenic mutants of p21 ras, Asp-12 and Val-12, but does occur with the weakly oncogenic Pro-12 mutant. Stopped flow measurements of the interaction of GAP with p21.mantGTP show an exponential decrease in fluorescence, the rate of which does not vary linearly with GAP concentration. These data imply a rapidly reversible formation of the p21.mantGTP complex with GAP followed by the isomerization of this complex. This is at least 10(5)-fold faster than the same process in the absence of GAP.  相似文献   

4.
Arf (ADP-ribosylation factor) GAPs (GTPase-activating proteins) are enzymes that catalyse the hydrolysis of GTP bound to the small GTP-binding protein Arf. They have also been proposed to function as Arf effectors and oncogenes. We have set out to characterize the kinetics of the GAP-induced GTP hydrolysis using a truncated form of ASAP1 [Arf GAP with SH3 (Src homology 3) domain, ankyrin repeats and PH (pleckstrin homology) domains 1] as a model. We found that ASAP1 used Arf1-GTP as a substrate with a k(cat) of 57+/-5 s(-1) and a K(m) of 2.2+/-0.5 microM determined by steady-state kinetics and a kcat of 56+/-7 s(-1) determined by single-turnover kinetics. Tetrafluoroaluminate (AlF4-), which stabilizes complexes of other Ras family members with their cognate GAPs, also stabilized a complex of Arf1-GDP with ASAP1. As anticipated, mutation of Arg-497 to a lysine residue affected kcat to a much greater extent than K(m). Changing Trp-479, Iso-490, Arg-505, Leu-511 or Asp-512 was predicted, based on previous studies, to affect affinity for Arf1-GTP. Instead, these mutations primarily affected the k(cat). Mutants that lacked activity in vitro similarly lacked activity in an in vivo assay of ASAP1 function, the inhibition of dorsal ruffle formation. Our results support the conclusion that the Arf GAP ASAP1 functions in binary complex with Arf1-GTP to induce a transition state towards GTP hydrolysis. The results have led us to speculate that Arf1-GTP-ASAP1 undergoes a significant conformational change when transitioning from the ground to catalytically active state. The ramifications for the putative effector function of ASAP1 are discussed.  相似文献   

5.
Dynamic fatty acylation of p21N-ras.   总被引:36,自引:6,他引:30       下载免费PDF全文
To study the acylation of p21N-ras with palmitic acid we have used cells which express the human N-ras gene to high levels under control of the steroid-inducible MMTV--LTR promoter. Addition of [3H]palmitate to these cells resulted in detectable incorporation of label into p21N-ras within 5 min, which continued linearly for 30-60 min. Inhibition of protein synthesis for up to 24 h before addition of [3H]palmitate had no effect on acylation of p21N-ras, suggesting that this can occur as a late post-translational event. Acylated p21N-ras with a high SDS--PAGE mobility is found only in the membrane fraction, whereas approximately 50% of the [35S]methionine-labelled p21N-ras is cytoplasmic and has a lower mobility. Conversion of the acylated high mobility form to a deacylated form of slightly lower mobility can be achieved with neutral hydroxylamine, which is known to cleave thioesters. This treatment also results in partial removal of p21N-ras from the membranes. A remarkably high rate of turnover of the palmitate moiety can be demonstrated by pulse--chase studies (t1/2 approximately 20 min in serum-containing medium) which cannot be attributed to protein degradation. The data suggest an active acylation--deacylation cycle for p21N-ras, which may be involved in its proposed function as a signal transducing protein.  相似文献   

6.
TC10, a Rho family GTPase, has been shown to play an important role in the exocytosis of GLUT4 and other proteins, primarily by tethering the vesicles at the plasma membrane. Using a newly developed probe based on fluorescence resonance energy transfer, we found that TC10 activity at tethered vesicles dropped immediately before vesicle fusion in HeLa cells stimulated with epidermal growth factor (EGF), suggesting that GTP hydrolysis by TC10 is a critical step in vesicle fusion. In support of this model, a GTPase-deficient TC10 mutant potently inhibited EGF-induced vesicular fusion in HeLa cells and depolarization-induced neuronal secretion. Furthermore, we found that GTP hydrolysis by TC10 in the vicinity of the plasma membrane was dependent on Rac and the redox-regulated Rho GAP, p190RhoGAP-A. We propose that an EGF-stimulated GAP accelerates GTP hydrolysis of TC10, thereby promoting vesicle fusion.  相似文献   

7.
The use of ribose-modified guanine nucleotides and tryptophan mutants of p21ras, neither of which have significant effect on the kinetic mechanism of the p21ras GTPase and the GAP-activated p21ras GTPase, will now allow a detailed kinetic study of how GAP and other regulatory proteins interact with p21ras. This will lead to a better understanding of how the relative concentrations of 'active' p21ras. GTP and 'inactive' p21ras. GDP are regulated in the cell.  相似文献   

8.
The Ras-like GTPases regulate diverse cellular functions via the chemical cycle of binding and hydrolyzing GTP molecules. They alternate between GTP- and GDP-bound conformations. The GTP-bound conformation is biologically active and promotes a cellular function, such as signal transduction, cytoskeleton organization, protein synthesis/translocation, or a membrane budding/fusion event. GTP hydrolysis turns off the GTPase switch by converting it to the inactive GDP-bound conformation. The fundamental GTP hydrolysis mechanism by these GTPases has generated considerable interest over the last two decades but remained to be firmly established. This review provides an update on the catalytic mechanism with discussions on recent developments from kinetic, structural, and model studies in the context of the various GTP hydrolysis models proposed over the years.  相似文献   

9.
The crystal structure of the H-ras oncogene protein p21 complexed to the slowly hydrolysing GTP analogue GppNp has been determined at 1.35 A resolution. 211 water molecules have been built into the electron density. The structure has been refined to a final R-factor of 19.8% for all data between 6 A and 1.35 A. The binding sites of the nucleotide and the magnesium ion are revealed in high detail. For the stretch of amino acid residues 61-65, the temperature factors of backbone atoms are four times the average value of 16.1 A2 due to the multiple conformations. In one of these conformations, the side chain of Gln61 makes contact with a water molecule, which is perfectly placed to be the nucleophile attacking the gamma-phosphate of GTP. Based on this observation, we propose a mechanism for GTP hydrolysis involving mainly Gln61 and Glu63 as activating species for in-line attack of water. Nucleophilic displacement is facilitated by hydrogen bonds from residues Thr35, Gly60 and Lys16. A mechanism for rate enhancement by GAP is also proposed.  相似文献   

10.
R Langen  T Schweins  A Warshel 《Biochemistry》1992,31(37):8691-8696
The residue Gln61 is assumed to play a major role in the mechanism of ras p21, and mutations of this residue are often found in human tumors. Such mutations lead to a major reduction in the rate of GTP hydrolysis by the complex of ras p21 and the GTPase activating protein (GAP) and lock the protein in a growth-promoting state. This work examines the role of Gln61 in ras p21 by using computer simulation approaches to correlate the structure and energetics of this system. Free energy perturbation calculations and simpler electrostatic considerations demonstrate that Gln61 is unlikely to serve as the general base in the intrinsic GAP-independent reaction of p21. Glutamine is already a very weak base in water, and surprisingly the GlnH+ OH-reaction intermediate is even less stable in the protein active site than in the corresponding reaction in water. The electrostatic field of Glu63, which could in principle stabilize the protonated Gln61, is found to be largely shielded by the surrounding solvent. However, it is still possible that Gln61 is a general base in the GAP/ras p21 complex since this system could enhance the electrostatic effect of Glu63. It is also possible that the gamma-phosphate acts as general base and that Gln61 accelerates the reaction by stabilizing the OH- nucleophile. If such a mechanism is operative, then GAP may enhance the effect of Gln61 by preorienting its hydrogen bonds in the transition-state configuration.  相似文献   

11.
Time-resolved Fourier transform infrared spectroscopy (FTIR) in combination with photo-induced release of (18)O-labeled caged nucleotide has been employed to address mechanistic issues of GTP hydrolysis by Ras protein. Infrared spectroscopy of Ras complexes with nitrophenylethyl (NPE)-[alpha-(18)O(2)]GTP, NPE-[beta-(18)O(4)]GTP, or NPE-[gamma-(18)O(3)]GTP upon photolysis or during hydrolysis afforded a substantially improved mode assignment of phosphoryl group absorptions. Photolysis spectra of hydroxyphenylacyl-GTP and hydroxyphenylacyl-GDP bound to Ras and several mutants, Ras(Gly(12))-Mn(2+), Ras(Pro(12)), Ras(Ala(12)), and Ras(Val(12)), were obtained and yielded valuable information about structures of GTP or GDP bound to Ras mutants. IR spectra revealed stronger binding of GDP beta-PO(3)(2-) moiety by Ras mutants with higher activity, suggesting that the transition state is largely GDP-like. Analysis of the photolysis and hydrolysis FTIR spectra of the [beta-nonbridge-(18)O(2), alphabeta-bridge-(18)O]GTP isotopomer allowed us to probe for positional isotope exchange. Such a reaction might signal the existence of metaphosphate as a discrete intermediate, a key species for a dissociative mechanism. No positional isotope exchange was observed. Overall, our results support a concerted mechanism, but the transition state seems to have a considerable amount of dissociative character. This work demonstrates that time-resolved FTIR is highly suitable for monitoring positional isotope exchange and advantageous in many aspects over previously used methods, such as (31)P NMR and mass spectrometry.  相似文献   

12.
Biochemical and biological properties of the human N-ras p21 protein.   总被引:11,自引:8,他引:11       下载免费PDF全文
We characterized the normal (Gly-12) and two mutant (Asp-12 and Val-12) forms of human N-ras proteins produced by Escherichia coli. No significant differences were found between normal and mutant p21 proteins in their affinities for GTP or GDP. Examination of GTPase activities revealed significant differences between the mutant p21s: the Val-12 mutant retained 12% of wild-type GTPase activity, whereas the Asp-12 mutant retained 43%. Both mutant proteins, however, were equally potent in causing morphological transformation and increased cell motility after their microinjection into quiescent NIH 3T3 cells. This lack of correlation between transforming potency and GTPase activity or guanine nucleotide binding suggests that position 12 mutations affect other aspects of p21 function.  相似文献   

13.
T D Ting  Y K Ho 《Biochemistry》1991,30(37):8996-9007
During the visual transduction process in rod photoreceptor cells, transducin (T) mediates the flow of information from photoexcited rhodopsin (R*) to the cGMP phosphodiesterase (PDE) via a cycle of GTP binding and hydrolysis. The pre-steady-state kinetics of GTP hydrolysis by T was studied by rapid quenching and filtration techniques in a reconstituted system containing purified R* and T. Kinetic analyses have shown that the turnover of T-bound GTP can be dissected into four partial reactions: (1) the R*-catalyzed GTP binding via a GDP/GTP exchange reaction, (2) the on-site hydrolysis of bound GTP, which leads to the formation of a T-GDP.Pi complex, (3) the release of the tightly bound inorganic phosphate (Pi) from T-GDP.Pi, and (4) the recycling of T-GDP. The R*-catalyzed GTP binding was estimated to occur in less than 1 s. In rapid acid quenching experiments, the rate of Pi formation due to GTP hydrolysis exhibited biphasic characteristics. An initial burst of Pi formation occurred between 1 and 4 s, which was followed by a slow steady-state rate. Increasing T concentration yielded a proportional increase in the burst and steady-state rate. The addition of Gpp(NH)p decreased both parameters. D2O decreased the rise of the initial burst with a kinetic isotope effect of approximately 1.7 but has no effect on the steady-state rate of Pi formation. These results indicate that the burst represents the fast hydrolysis of GTP at the binding site of T, which results in the accumulation of T-GDP.Pi complexes. The steady-state rate represents the slow release of Pi. This finding was further supported by rapid filtration experiments that monitored the formation of free Pi in solution. An initial lag time in the formation of free Pi was observed before a steady-state rate was established, indicating that the initially formed Pi was tightly bound to T. Finally, the release of GDP from T-GDP.Pi was not detected. This suggests that another cycle of GTP exchange catalyzed by R* should occur before the release of bound GDP. The rate of Pi release from T-GDP.Pi was measured under single-turnover conditions and had a half life of approximately 20 s, which was identical with the rate of deactivation of the PDE due to GTP hydrolysis by T.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Dynamin II is a 98 kDa protein (870 amino acids) required for the late stages of clathrin-mediated endocytosis. The GTPase activity of dynamin is required for its function in the budding stages of receptor-mediated endocytosis and synaptic vesicle recycling. This activity is stimulated when dynamin self-associates on multivalent binding surfaces, such as microtubules and anionic liposomes. We first investigated the oligomeric state of dynamin II by analytical ultracentrifuge sedimentation equilibrium measurements at high ionic strength and found that it was best described by a monomer-tetramer equilibrium. We then studied the intrinsic dynamin GTPase mechanism by using a combination of fluorescence stopped-flow and HPLC methods using the fluorescent analogue of GTP, mantdGTP (2'-deoxy-3'-O-(N-methylanthraniloyl) guanosine-5'-triphosphate), under the same ionic strength conditions. The results are interpreted as showing that mantdGTP binds to dynamin in a two-step mechanism. The dissociation constant of mantdGTP binding to dynamin, calculated from the ratio of the off-rate to the on-rate (k(off)/k(on)), was 0.5 microM. Cleavage of mantdGTP then occurs to mantdGDP and P(i) followed by the rapid release of mantdGDP and P(i). No evidence of reversibility of hydrolysis was observed. The cleavage step itself is the rate-limiting step in the mechanism. This mechanism more closely resembles that of the Ras family of proteins involved in cell signaling than the myosin ATPase involved in cellular motility.  相似文献   

15.
B Antonny  P Chardin  M Roux  M Chabre 《Biochemistry》1991,30(34):8287-8295
We have substituted leucine 56 or tyrosine 64 of p21 ras with a tryptophan. The intrinsic fluorescence of this tryptophan was used as an internal conformational probe for time-resolved biochemical studies of the ras protein. The slow intrinsic GTPase, GDP/GTP exchange induced by the SDC25 "exchange factor", and the fast GTP hydrolysis induced by GAP were studied. Tryptophan fluorescence of mutated ras is very sensitive to magnesium binding, GDP/GTP exchange, and GTP hydrolysis (changes in tyrosine fluorescence of wild-type ras are also observed but with a lower sensitivity). Nucleotide affinities, exchange kinetics, and intrinsic GTPase rates of the mutated ras could be measured by this method and were found to be close to those of wild-type ras. The SDC25 gene product enhances GDP/GTP exchange in both mutants. In both mutants, a slow fluorescence change follows the binding of GTP gamma S; its kinetics are close to those of the intrinsic GTPase, suggesting that a slow conformational change precedes the GTPase and is the rate-limiting step, as proposed by Neal et al. (1990) (Proc. Natl. Acad. Sci. U.S.A. 87, 3562-3565). GAP interacts with both mutant ras proteins and accelerates the GTPase of (L56W)ras but not that of (Y64W)ras, suggesting a role for tyrosine 64 in GAP-induced GTP hydrolysis. However, GAP does not accelerate the slow conformational change following GTP gamma S binding in either of the mutated ras proteins. This suggests that the fast GAP-induced catalysis of GTP hydrolysis that is observed with (L56W)ras bypasses the slow conformational change associated with the intrinsic GTPase and therefore might proceed by a different mechanism.  相似文献   

16.
The membrane-anchored atlastin GTPase couples nucleotide hydrolysis to the catalysis of homotypic membrane fusion to form a branched endoplasmic reticulum network. Trans dimerization between atlastins anchored in opposing membranes, accompanied by a cross-over conformational change, is thought to draw the membranes together for fusion. Previous studies on the conformational coupling of atlastin to its GTP hydrolysis cycle have been carried out largely on atlastins lacking a membrane anchor. Consequently, whether fusion involves a discrete tethering step and, if so, the potential role of GTP hydrolysis and cross-over in tethering remain unknown. In this study, we used membrane-anchored atlastins in assays that separate tethering from fusion to dissect the requirements for each. We found that tethering depended on GTP hydrolysis, but, unlike fusion, it did not depend on cross-over. Thus GTP hydrolysis initiates stable head-domain contact in trans to tether opposing membranes, whereas cross-over formation plays a more pivotal role in powering the lipid rearrangements for fusion.  相似文献   

17.
There is strong, albeit indirect, evidence for a mitogenic signal transduction pathway comprising growth factors, growth factor receptors, the GTPase activating protein (p120-GAP), and p21ras. To demonstrate a direct physical association between these proteins in the absence of other cell constituents, their interaction was studied in vitro. Our results obtained with homogeneous protein preparations show that the activated epidermal growth factor (EGF) receptor phosphorylates p120-GAP at one site. Phosphorylated p120-GAP remains firmly bound to the receptor at physiological salt concentration; this leads to product inhibition of the receptor kinase activity as shown by diminished autophosphorylation activity and lack of turnover in p120-GAP phosphorylation. Phosphorylated p120-GAP is as active in stimulating the p21ras.GTPase as unphosphorylated GAP. p120-GAP, however, when bound to the EGF receptor is by a factor of 2 less active in stimulating the p21ras.GTPase than free p120-GAP. This effect might contribute to regulate the steady-state level of p21-GTP.  相似文献   

18.
ras p21 GTPase-activating protein (GAP) has been proposed to interact with the putative effector domain of ras p21s, and smg p21, a ras p21-like guanine nucleotide binding protein (G protein), has been shown to have the same amino acid sequence as ras p21s in this region. In the present studies, we examined the effects of ras p21 GAP on the GTPase activity of smg p21 purified from human platelets, of smg p21 on the ras p21 GAP-stimulated GTPase activity of c-Ha-ras p21 purified from Escherichia coli, and of c-Ha-ras p21 on the smg p21 GAP1- or -2-stimulated GTPase activity of smg p21. ras p21 GAP stimulated the GTPase activity of c-Ha-ras p21 but not that of smg p21. The GTP-bound form of smg p21, however, inhibited the ras p21 GAP-stimulated GTPase activity of c-Ha-ras p21 in a dose-dependent manner. The half-maximum inhibition by smg p21 was obtained at 0.4 microM which was more potent than previously observed for ras p21 (2-200 microM). The GDP-bound form also inhibited the ras p21 GAP-stimulated GTPase activity of c-Ha-ras p21, but the efficiency was 40-50% that of the GTP-bound form. smg p21 GAP1 and -2 stimulated the GTPase activity of smg p21 but not that of c-Ha-ras p21. c-Ha-ras p21 did not inhibit the smg p21 GAP1- or -2-stimulated GTPase activity of smg p21. These results indicate that ras p21 GAP interacts with smg p21 without the subsequent stimulation of its GTPase activity.  相似文献   

19.
Hydrolysis of fluorescent GTP analogues BODIPY FL guanosine 5 '-O-(thiotriphosphate) (BGTPgammaS) and BODIPY FL GTP (BGTP) by Galpha(i1) and Galpha was characterized using on-line capillary electrophoresis (o) laser-induced fluorescence assays in order that changes in sub-strate, substrate-enzyme complex, and product could be monitored separately. Apparent k values (V /[E]) (max cat) steady-state and K(m) values were determined from assays for each substrate-protein pair. When BGTP was the substrate, maximum turnover numbers for Galpha and Galpha(i1) were 8.3 +/- 1 x 10(-3) and 3.0 +/- 0.2 x 10(-2) s(-1), respectively, and K(m) values were 120 +/- 60 and 940 +/- 160 nm. Assays with BGTPgammaS yielded maximum turnover numbers of 1.6 +/- 0.1 x 10(-4) and 5.5 +/- 0.3 x 10(-4) s(-1) for Galpha and Galpha(i1); K(m) values were 14 (o)(+/-)8 and 87 +/- 22 nm. Acceleration of Galpha GTPase activity by regulators of G protein signaling (RGS) was demonstrated in both steady-state and pseudo-single-turnover assay formats with BGTP. Nanomolar RGS increased the rate of enzyme product formation (BODIPY(R) FL GDP (BGDP)) by 117-213% under steady-state conditions and accelerated the rate of G protein-BGTP complex decay by 199 -778% in pseudo-single-turnover assays. Stimulation of GTPase activity by RGS proteins was inhibited 38-81% by 40 mum YJ34, a previously reported peptide RGS inhibitor. Taken together, these results illustrate that Galpha subunits utilize BGTP as a substrate similarly to GTP, making BGTP a useful fluorescent indicator of G protein activity. The unexpected levels of BGTPgammaS hydrolysis detected suggest that caution should be used when interpreting data from fluorescence assays with this probe.  相似文献   

20.
It has been found that preparations of Escherichia coli (MRE-600) ribosomes can display GTPase and ATPase activities independent of elongation factors EF-Tu and EF-G. The GTPase and ATPase are localized on ribosomal 50S subparticles, whereas 30S subparticles are free of the activities and do not stimulate them upon association with the 50S subparticles to form complete ribosomes. The GTPase and ATPase can be removed from the ribosomes and their 50S subparticles by treatment with 1 M NH4Cl or 50% ethanol in the cold. Ribosomal preparations freed from the factor-independent GTPase and ATPase retain their basic functional features. The data obtained do not permit to solve finally whether the factor-independent GTPase and ATPase revealed are components of ribosomes or represent a contamination rather firmly bound to the ribosomes. However, in any case this finding can contribute to an uncoupled hydrolysis of GTP and should be considered when studying the stoichiometry of triphosphate expenditure in the process of ribosomal protein synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号