首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Elephants are locally concentrated in Bwindi Impenetrable National Park. Vegetation damage attributable to elephants appears to be increasing and may result in the modification of the forest. We examined the implied selectivity of stem damage due to elephants. We followed 26.84 km of recent elephant trails and used 122 plots to document tree damage in relation to species, stem sizes and locations. Of 897 trees (DBH ≥2 cm), 542 (60.4%) were intact, 22 (2.5%) debarked, 274 (30.5%) toppled and 172 (19.2%) had broken branches. Small trees were more likely to be pushed over or have their branches broken, whereas large trees were more commonly debarked. The species most frequently selected for damage included mid‐successional species such as Newtonia buchananii, Myrianthus holstii and Chrysophyllum albidum. These species may be vulnerable to increasing elephant numbers. Our analyses using general linear models indicate that elephants are selective concerning where, how and what tree stems they damage. We found a higher incidence of elephant damage per‐tree stem in open areas than in more closed areas, suggesting feedback in which elephants maintain open habitats that may be conducive for other species such as mountain gorillas. More work is needed to better determine how changing elephant numbers may influence Bwindi's conservation values.  相似文献   

2.
Question: Do New Zealand tree ferns have recognizable shade tolerance niches? Location: Lowland temperate rain forest of New Zealand (41°20′S, 174°58′E). Methods: Growth, death and recruitment of five tree fern species were estimated from a 38‐year record of stem heights, collected within a 2.25‐ha block of forest, and electron transport rates (ETR) of photosystem II of fronds were measured. Results: Two species of Cyathea were comparatively common (603 and 351 stems in total) and two were comparatively rare (155 and 17 stems in total) on the site. The common species had lower rates of growth, recruitment and mortality than the rare species, had skewed age distributions typical of shade‐tolerant species and were probably recruited soon after a catastrophic earthquake in 1855. The two rare species were failing to recruit under closed forests; their age distributions indicated that all had regenerated long after the earthquake. ETR were higher for faster‐growing than for the shade‐tolerant species. A tree fern that regenerates vegetatively from aerial buds, Dicksonia squarrosa, was common on the site (361 stems in total). Its age distribution suggested it was relatively shade tolerant, but its mortality and recruitment rates were much higher than those of the two shade‐tolerating Cyathea species, suggesting that this multi‐stemmed species functions differently from the monopodial Cyathea species. Conclusions: New Zealand Cyathea tree ferns occupy distinct niches along a shade tolerance spectrum and their relative abundances are strongly influenced by disturbance history. The study provides evidence that tree fern species differ strongly in their responses to canopy disturbance and are not ecologically equivalent.  相似文献   

3.
Aim A major question with regard to the ecology of temperate rain forests in south‐central Chile is how pioneer and shade‐tolerant tree species coexist in old‐growth forests. We explored the correspondence between tree regeneration dynamics and life‐history traits to explain the coexistence of these two functional types in stands apparently representing a non‐equilibrium mixture. Location This study was conducted in northern Chiloé Island, Chile (41.6° S, 73.9° W) in a temperate coastal rain forest with no evidence of stand disruption by human impact. Methods We assessed stand structure by sampling all stems within two 50 × 20 m and four 5 × 100 m plots. A 600‐m long transect, with 20 uniformly spaced sampling points, was used to quantify seedling and sapling densities, obtain increment cores, and randomly select 10 tree‐fall gaps. We used tree‐ring analysis to assess establishment periods and to relate the influences of disturbances to the regeneration dynamics of the main canopy species. Results Canopy emergent tree species were the long‐lived pioneer Eucryphia cordifolia and the shade‐tolerant Aextoxicon punctatum. Shade‐tolerant species such as Laureliopsis philippiana and several species of Myrtaceae occupied the main canopy. The stem diameter distribution for E. cordifolia was distinctly unimodal, while for A. punctatum it was multi‐modal, with all age classes represented. Myrtaceae accounted for most of the small trees. Most tree seedlings and saplings occurred beneath canopy gaps. Based on tree‐ring counts, the largest individuals of A. punctatum and E. cordifolia had minimum ages estimated to be > 350 years and > 286 years, respectively. Shade‐tolerant Myrtaceae species and L. philippiana had shorter life spans (< 200 years). Most growth releases, regardless of tree species, were moderate and have occurred continuously since 1750. Main conclusions We suggest that this coastal forest has remained largely free of stand‐disrupting disturbances for at least 450 years, without substantial changes in canopy composition. Release patterns are consistent with this hypothesis and suggest that the disturbance regime is dominated by individual tree‐fall gaps, with sporadic multiple tree falls. Long life spans, maximum height and differences in shade tolerance provide a basis for understanding the long‐term coexistence of pioneer and shade‐tolerant tree species in this coastal, old‐growth rain forest, despite the rarity of major disturbances.  相似文献   

4.
Abstract. Shrubs persist in the understorey layer of forests throughout their lives, while tall trees remain there only during the juvenile stage and then grow into the canopy layer. Thus demographic parameters (recruitment‐, mortality‐, and growth‐rates) of shrub species are expected to differ from those of tall tree species. We investigated aspects of the demography of four dominant deciduous‐shrub species (Viburnum furcatum, Lindera umbellata var. membranacea, Magnolia salicifolia, and Hydrangea paniculata) in Fagus crenata forests at the beginning and at the end of a 7‐yr period in a 1‐ha permanent plot. For each species, the number of stems changed little (within ± 10%) during the study period, while total basal area increased markedly (11.7–33.8%), because (1) new stems continuously recruited by vegetative growth replaced the substantial number of dead stems, and (2) vegetative stems grew vigorously, probably due to nutrient support from parents. The results indicate that these four understorey shrub species have high ability to maintain their population size in the shaded forest understorey. While in each species more than half of the dead stems were standing dead, a substantial proportion of the dead stems (9.0–38.5%) showed signs of mechanical damage, such as stem breakage and suppression by fallen branches or trees. Snow pressure that resulted in decumbent stems was also an important mortality agent for V. furcatum (20.7%) and L. umbellata var. membranacea (5.6%). Probability of damage was constant across all DBH‐classes for all study species. In each species, newly recruited stems and dead stems were spatially aggregated, largely due to habits of vegetative growth and mechanical damage, respectively. This study revealed that several demographic traits, resulting from recruitment by vegetative growth and death by mechanical damage, were shrub‐species specific and markedly different from those of tall tree species.  相似文献   

5.
African forest elephants (Loxodonta cyclotis) are ecosystem engineers that browse and damage large quantities of vegetation during their foraging and movement. Though elephant trail networks and clearings are conspicuous features of many African forests, the consequences of elephant foraging for forest structure and diversity are poorly documented. In this study in northeastern Gabon, we compare stem size, stem density, proportional damage, species diversity, and species relative abundance of seedlings and saplings in the vicinity of seven tree species that produce elephant-preferred fruits (“elephant trees”) relative to control trees that do not. Across 34 survey trees, with a combined census area of 2.04 ha, we recorded data on 26,128 woody stems in three sizes classes. Compared with control trees, the area around elephant trees had the following: (a) a significantly greater proportion of damaged seedlings and a marginally greater proportion of damaged saplings (with 82% and 24% greater odds of damage, respectively); (b) no significant difference in stem density or species diversity; and (c) a significantly greater relative abundance of seedlings of elephant tree species. Increasing distance away from focal elephant trees was associated with significantly reduced sapling stem damage, significantly increased sapling stem density, and significantly increased sapling species diversity. Considered in sum, our results suggest that elephants can affect the structure and diversity of Afrotropical forests through their foraging activities, with some variation based on location and plant size class. Developing a more complete understanding of elephants’ ecological effects will require continued research, ideally with manipulative experiments.  相似文献   

6.
Wood density (WD) is not only an important parameter to estimate aboveground biomass but also an indicator of timber quality and plant adaptation strategies to stressful conditions (i.e., windthrow, pests, and pathogens). This study had three objectives: (1) to compare WD among seven subtropical tree species; (2) to determine how tree growth traits may influence possible differences in WD between the pioneer and shade‐tolerant species; and (3) to examine whether or not WD differs by tree social status (dominant vs. suppressed trees) within species. To do this, 70 trees were destructively harvested. From each tree, disks at different stem heights were obtained and subjected to a method of stem analysis to measure whole tree level WD. The results showed that WD differed significantly among the seven species (< .001). Their average WD was 0.537 g/cm3, ranging from 0.409 g/cm3 for Choerospondias axillaris to 0.691 g/cm3 for Cyclobalanopsis glauca. The average WD of the four pioneer species (0.497 ± 0.13 g/cm3) was significantly lower (< .01) than that of the three shade‐tolerant species (0.589 ± 0.12 g/cm3). The WD of the pioneers had a significant positive correlation with their stem diameter at breast height (DBH), tree height (H), and tree age, but WD had a significant negative correlation with relative growth rate (RGR). In contrast, the WD of the shade‐tolerant tree species had no significant relationships with DBH, H, tree age, or RGR. The dominant trees of the pioneer species had a higher WD than the suppressed trees, whereas the shade‐tolerant species had a lower WD for dominant trees than the suppressed trees. However, the differences in WD between dominant and suppressed trees were not significant. Taken together, the results suggest that classifying species into pioneer and shade‐tolerant groups to examine the effects of tree growth traits and social status could improve our understanding of intra‐ and interspecific variation in WD among subtropical tree species.  相似文献   

7.
This study assessed the level of bark damage on baobab trees (Adansonia digitata) as caused by elephants (Loxodonta africana), and the possibility of finding refuges where baobab could escape bark damage within the Pendjari Biosphere Reserve (PBR). Distributions of elephants and baobab trees within the PBR were compared using presence records of both species taken along transect lines. Two sites (National Park vs. hunting zone) that differ in elephant density were compared for intensity of bark damage and correlations between the intensity of bark damage and stem size of the baobab trees and population structure of the baobab trees. Elephants and baobabs showed co‐occurrence in PBR suggesting that there is nowhere to hide for baobabs. The intensity of bark damage was positively correlated with elephant density and baobab girth. Baobab population girth classes were not significantly different in areas with and without bark damage. Future studies should test whether there are certain baobab genotypes that can resist elephant damage. It could also be tested whether effective conservation of elephants in the PBR has resulted in a bull‐biased population over its carrying capacity.  相似文献   

8.
Valuable timber tree species frequently show poor regeneration after selective logging in tropical forests. Small size of logging gaps, lack of soil disturbance, and limited seed availability have each been blamed for observed regeneration failures. We investigated seed germination and seedling performance using a split‐plot factorial design involving light availability and litter removal for six Central African timber tree species, hypothesizing that canopy gaps and litter removal would improve seedling establishment, and that less shade‐tolerant species would show stronger responses to both factors. Contrary to our expectations, significantly more germinants established on intact litter than on exposed mineral soil 3 mo after seeding. After 18 mo, seedling survival, height and diameter growth, leaf area, and rooting depth were all much higher in gap plots than in the understory for all species, with the exception of Gilbertiodendron dewevrei, a highly shade‐tolerant species whose survival was higher in the understory. Leaf production was negatively influenced by litter removal in the least shade‐tolerant species, Nauclea diderrichii, with weak or positive effects in other species. G. dewevrei, while displaying a low‐light threshold for growth, exhibited a surprisingly high growth response to increasing light comparable to more shade‐intolerant species, a response that may help explain its local competitive dominance in the region. Due to the rapid closure of small gaps, we suggest that shade‐intolerant species such as N. diderrichii, Khaya anthotheca, and Entandrophragma utile might benefit from more intensive silvicultural practices that create larger canopy gaps.  相似文献   

9.
The stems of the ant-plant, Endospermum labios Schodde, serve as colonization sites for the ant, Camponotus quadriceps F. Smith. They are also subject to damage by insect borers. We sampled young E. labios trees in distutbed forest to compare evidence of stem boring insect and stem miner damage in plants with and without colonies of C. quadriceps. Dissections of a subsample of plants showed that dipteran stem borers and stem miner damage were significantly more common in plants lacking C, quadriceps colonies than in plants with established colonies. Evidence from these dissections and from field counts of meristem damage caused by emerging borers suggested that coleopteran stem borers were also more abundant when ants were not present. In addition to the incidence of stem boring insects and ant colonies, we examined relative levels of leaf pubescence by measuring trichome density and leaf size for E. labios trees. We found that trichome density was significantly greater in trees with evidence of prior shoot damage (presumably from stem borer emergence at the meristem) but was not significantly related to the presence or absence of an ant colony. This prompted us to compare trichome density on leaves of nearby small trees and of different branches of the same tree, pairing a stem/branch that appeared damaged with one that appeared healthy. Trichome densities on leaves from damaged stems and branches were significantly greater than were trichome densities on healthy branches and stems. Based on these empirical data, we present several possible explanations for the patterns of association between ants, stem borers, and pubescence. Although feeding preference tests with a common folivore showed no effect of trichome densities on leaves, we suggest further study on how trichomes may affect ovipositing stem borers.  相似文献   

10.
This study identifies patterns of elephant Loxodonta africana africana impacts upon tree species and woody plant communities in Hluhluwe-Imfolozi Park, a South African savannahs/woodlands area. Elephants were reintroduced there from 1981, following more than 80 years of absence. Data were collected in 2003 on elephant impact on woodland in the Park. Different vegetation types were susceptible to different types and levels of damage by elephants, suggesting that elephants will not homogenize the vegetation. Elephants targeted larger stems for all types of damage, with a strong preference for some of the less abundant species such as Albizia versicolor (breaking and toppling) and Cordia caffra and Schotia brachypetala (debarking). Elephant impacts tended to be distributed evenly across the park landscape, irrespective of stem density or proximity to permanent water. Overall, elephants have little impact on slowing or reversing the spread of undesirable woody species, but are having a marked impact on certain less common tree species and larger tree size-classes in the Hluhluwe-Imfolozi Park.  相似文献   

11.
Acacia erioloba woodlands provide important forage and shade for wildlife in northern Botswana. Mortality of mature trees caused by browsing elephants has been well documented but the lack of regeneration of new trees has received little attention. Annual growth of new shoots and changes in height were measured to determine the influence of elephants and small ungulate browsers, rainfall and fire on the growth and survival of established A. erioloba seedlings from 1995 to 1997 in the Savuti area of Chobe National Park. All above‐ground vegetation was removed from 40% of established seedlings in 1995 and 28% in 1997 by browsing elephants, and the mean height of remaining seedlings decreased from >550 mm to <300 mm. When seedlings browsed by kudu, impala and steenbok but not elephants are considered, mean seedling height increased <50 mm per year, even though mean new shoot growth remaining at the end of the dry season was 100–200 mm. Fires burned portions of the study area in 1993 and 1997, killing above‐ground vegetation, but most established A. erioloba seedlings survived, producing coppice growth from roots. While elephants and fire caused the greatest reduction in established seedling height and number, small browsers suppressed growth, keeping seedlings vulnerable to fire and delaying growth to reproductive maturity.  相似文献   

12.
Thomas Wagner 《Biotropica》2000,32(3):502-514
Beetles were collected on 64 trees of four species (Cynometra alexandri C. H. Wright, Rinorea beniemis (Welwitsch ex Olivier) Kuntze, Teclea nobilis Delile, and Trichilia rubescens Olivier) in Budongo Forest, Uganda, using an insecticidal fogging technique. Selected tree species were abundant, taxonomically not closely related, and different in the shape of leaves, growth form, and size, with heights between 7 and 35 m. Trees were fogged in an old primary forest stand, in an area of secondary forest where selective logging was performed, and in a swamp forest. Eight conspecific trees per forest type were fogged. A total of 29,736 beetles were collected from all trees that could be assigned to 1433 (morpho)‐species; 41.6 percent were singletons and 89.6 percent of species were found with less than ten individuals. Abundant beetle taxa included Latridiidae (N= 4093), Chrysomelidae (3952), Staphylinidae (2931), Apioninae (2621), and Curculionidae (2457). Most species‐rich groups were Staphylinidae (N= 196 spp.), Curculionidae (189), and Chrysomelidae (148). Abundance increased in the order: primary < secondary < swamp forest. Due to the relatively high dominance of some species in the secondary forest, species richness increased in the order: secondary < primary < swamp forest. Beta diversity measures and factor analysis showed distinct differences among forest types but higher similarity of beetle communities on different tree species within one forest type. The taxonomic distribution of beetles in the secondary forest was more heterogeneous than in the primary forest. Analyses of the data revealed low host specificity even for phytophagous beetles, underlining the importance of habitat structure and chance effects on the spatial distribution of beetles in the canopy of Budongo Forest.  相似文献   

13.
Tree architecture has important consequences for tree performance as it determines resource capture, mechanical stability and dominance over competitors. We analyzed architectural relationships between stem and crown dimensions for 13 dominant Iberian canopy tree species belonging to the Pinaceae (six Pinus species) and Fagaceae (six Quercus species and Fagus sylvatica) and related these architectural traits to wood density, shade tolerance and climatic factors. Fagaceae had, compared with Pinaceae, denser wood, saplings with wider crowns and adults with larger maximal crown size but smaller maximal height. In combination, these traits enhance light acquisition and persistence in shaded environments; thus, contributing to their shade tolerance. Pinaceae species, in contrast, had low-density wood, allocate more resources to the formation of the central trunk rather than to branches and attained taller maximal heights, allowing them to grow rapidly in height and compete for light following disturbances; thus, contributing to their high light requirements. Wood density had a strong relationship with tree architecture, with dense-wooded species having smaller maximum height and wider crowns, probably because of cheaper expansion costs for producing biomechanically stable branches. Species from arid environments had shorter stems and shallower crowns for a given stem diameter, probably to reduce hydraulic path length and assure water transport. Wood density is an important correlate of variation in tree architecture between species and the two dominant families, with potentially large implications for their resource foraging strategies and successional dynamics.  相似文献   

14.
Questions: Fire appears to affect both replacement patterns and coexistence of Araucaria araucanaNothofagus pumilio forests in the Andean Araucarian region of south‐central Chile. A quantitative assessment of coexistence in the absence of recent fires, however, is lacking. In this study, we considered the life‐history attributes, time of recruitment and spatial pattern of individuals of both tree species to address the following questions. How regular has recruitment of both species been in time? Is there any temporal niche differentiation? Are the two species positively or negatively associated in space and, if so, at what scale and for what age and size classes? Is there any spatial niche differentiation? Location: Andean Araucarian region of Chile, Villarrica National Park (39°35′S, 71°31′W; 1300 m a.s.l.). Methods: We stem‐mapped and cored a total of 1073 trees in a 1ha plot in a late‐successional post‐fire stand to examine spatiotemporal patterns of establishment. We used semivariogram modelling and the pair‐correlation function to distinguish between regeneration modes and describe species interactions. Results: The two species differ in their regeneration mode: whereas A. araucana appeared to recruit more continuously in time and space, episodic pulses of establishment were dominant for N. pumilio. At small scales, younger ageclass stems of A. araucana were randomly distributed, while older ageclass stems were aggregated. This was in contrast to common patterns for temperate tree species, including N. pumilio, following processes of self‐thinning. Younger age classes of A. araucana were distributed independently of older trees of both species, but younger age classes of N. pumilio had a negative association with older conspecifics at scales similar to crown diameter. Conclusions: In the absence of recent fires, it is likely that A. araucana would dominate the stand alone, given its greater shade tolerance, greater longevity and continuous recruitment. However, while canopy closure is still incomplete, the shade‐intolerant N. pumilio will be able to recruit in those open areas after seed masting and will coexist with A. araucana.  相似文献   

15.
Comparative information on the composition and diversity in tree species associations in Miombo woodland is limited. This study assessed how tree species associations across forest reserves of Miombo woodland in Malawi varied in composition and diversity concerning site factors and resource use disturbances under co‐management versus government management. Eighty nested circular plots, randomly selected in ArcGIS, were sampled to record stem diameter at breast height (DBH) of tree species: 0.04 ha for stems 5–29.9 cm DBH and 0.16 ha for stems ≥30 cm DBH. The recorded 109 tree species grouped into communities and 14 sub‐communities, using stem counts by species in TWINSPAN analysis. Sub‐divisions to level 5 showed eigenvalues ≥0.3, symbolising the stability of sub‐divisions. North/South sub‐divisions related to site factors; historical/current resource use influenced differences at levels 3–5. Species importance differed, indicating few important species in each sub‐community. Brachystegia and Julbernardia species showed importance across sub‐communities while Uapaca sansibarica in government management. Disturbances stimulated high species diversity. Recommendations include the need for a policy review towards group‐felling mature stands to stimulate regeneration and selective thinning of suppressed stems in stand development stages to maintain species diversity, productive recovery, diverse resource use value, and monitoring of harvesting impacts.  相似文献   

16.
Questions: 1. Is there a trade‐off between gap dependency and shade tolerance in each of the life‐history stages of three closely related, coexisting species, Acer amoenum (Aa), A. mono (Am) and A. rufinerve (Ar)? 2. If not, what differences in life‐history traits contribute to the coexistence of these non‐pioneer species? Location: Ogawa Forest Reserve, a remnant (98 ha), species‐rich, temperate deciduous forest in central Japan (36°56’ N, 140°35’ E, 600 ‐ 660 m a.s.l.). Methods: We estimated the demographic parameters (survival, growth rate and fecundity) by stage of each species growing in gaps and under closed canopy through observations of a 6‐ha permanent plot over 12 years. Population dynamics were analysed with stage‐based matrix models including gap dynamics. Results : All of the species showed high seedling and sapling survival rates under closed canopies. However, demographic parameters for each growth stage in gaps and under closed canopies revealed inter‐specific differences and ontogenetic shifts. The trade‐off between survival in the shade and growth in gaps was detected only at the small sapling stage (height < 30 cm), and Ar had the highest growth rate both in the shade and in the gaps at most life stages. Conclusions: Inter‐specific differences and ontogenetic shifts in light requirements with life‐form differences may contribute to the coexistence of the Acer species in old‐growth forests, with Aa considered a long‐lived sub‐canopy tree, Am a long‐lived canopy tree, and Ar a short‐lived,‘gap‐phase’ sub‐canopy tree.  相似文献   

17.
Sprouting ability is highly variable among different tree species. In many cases, there are trade‐offs in carbon allocations between growth and storage in seedlings. However, this trade‐off is likely to change with growth stages from seedling to mature plant because carbon investments in reproductive activities and/or risk of disturbance also change by species and growth stage. To examine how sprouting ability and carbohydrate storage change with growth stage, we compared two tropical secondary‐forest trees, Macaranga bancana and M. gigantea, which have different ecological traits. Maximum tree size and growth rate are higher in M. gigantea. We monitored sprout growth and stored resources, including total non‐structural carbohydrate (TNC) and nitrogen in the root, among different tree sizes for 12 months following stem‐cutting treatment. Sprouting ability (total sprout mass) and TNC concentrations were significantly higher in small individuals than in larger specimens in both species. TNC concentration decreased in all size classes after stem cutting. Macaranga bancana had greater sprout survivorship than M. gigantea, which had higher sprouting ability in larger tree‐size classes. Thus, sprouting ability likely depends on root TNC concentration and tree‐size class in both Macaranga species. Higher TNC concentration and sprout survival rates in M. bancana may be related to greater carbon allocation in survival than in growth. This hypothesis is consistent with the ecological traits of M. bancana, such as its growth rate, which was lower than that of M. gigantea.  相似文献   

18.
Questions: Are there interspecific differences in mortality and recruitment rates across life stages between two shade‐tolerant dominant trees in a sub‐alpine old‐growth forest? Do such differences in demography contribute to the coexistence and co‐dominance of the two species? Location: Sub‐alpine, old‐growth forest on Mt. Ontake, central Honshu, Japan. Methods: From 1980 to 2005, we recorded DBH and status (alive or dead) of all Abies mariesii and A. veitchii individuals (DBH ≥ 5 cm) in a 0.44‐ha plot. Based on this 25 year census, we quantified mortality and recruitment rates of the two species in three life stages (small tree, 5 cm ≤ DBH < 10 cm; subcanopy tree, 10 cm ≤ DBH < 20 cm; canopy tree, DBH ≥ 20 cm). Results: Significant interspecific differences in mortality and recruitment rates were observed in both the small tree and sub‐canopy tree stages. In this forest, saplings (< 5 cm DBH) are mostly buried by snow‐pack during winter. As a consequence, saplings of A. mariesii, which is snow and shade tolerant, show higher rates of recruitment into the small tree stage than do those of A. veitchii. Above the snow‐pack, trees must tolerate dry, cold temperatures. A. veitchii, which can more readily endure such climate conditions, showed lower mortality rate at the subcanopy stage and a higher recruitment rate into the canopy tree stage. This differential mortality and recruitment among life‐stages determines relative dominance of the two species in the canopy. Conclusion: Differential growth conditions along a vertical gradient in this old forest determine survival of the two species prior to reaching the canopy, and consequently allow co‐dominance at the canopy stage.  相似文献   

19.
Tetramerista glabra has a remarkable combination of life history traits. It is a dense-wooded, large, common canopy tree in primary peat swamp rain forest. Its seedlings, although shade tolerant, can grow rapidly in high light conditions, but frequently lack structural stability. Most juvenile stems (94% in the understory and 38% in canopy gaps) collapse under their own weight or from branchfalls. Fallen stems then ramify into vegetative sprouts, which in turn may collapse, perpetuating a vegetative juvenile cycle. Most recruitment is from sprouts rather than from seed. Structural analysis of stem dimensions shows that stems 2–8 cm DBH (diameter at breast height) are close to the theoretical buckling limit, especially for those dependent on neighboring vegetation to maintain vertical form. Trees > 4 cm DBH persisting as upright stems develop stilt root support and become structurally independent at ca 8 cm DBH. Eventually, as stems thicken, stilt roots anastamose and trees adopt the cylindrical growth form of mature canopy trees (up to 150 cm DBH). Thus, the vegetative life history strategy of the species is to: (i) regenerate a large “ramet bank” from the majority of juveniles that fail structurally while suppressed in the understoty, and (ii) to maximize height growth at the expense of diameter growth in high light conditions. The growth pattern and plastic form of T. glabra shows how a shade tolerant species may adapt to utilize the ephemeral light resource in canopy gaps. The growth strategy of this species allows it to circumvent the normal trade-off between shade tolerance and rapid growth in canopy gaps.  相似文献   

20.
The structure and dynamics of cyclone‐prone tropical forests are driven in part by variation in tree species resistance to and survival after wind‐induced structural damage. We determined the factors associated with tree damage and 3‐yr survival following Category 5 Cyclone Olaf on the Polynesian island of Ta'u, American Samoa. Despite sustaining a high rate of severe damage (34.6% of all trees snapped, 23.0% uprooted), system resilience was high with 74.3 percent stem survival overall and an annual mortality rate of 7.9 percent compared with 2.1 percent in nearby undisturbed late successional forest. Three‐yr survival rate of trees sustaining severe damage was 63.1 percent, compared to about 89 percent for trees sustaining only branch loss or defoliation. Three‐yr survival differed according to damage type, 78.5 percent after snapping vs. 38.4 percent after uprooting. Species differed widely in resistance to and survival after snapping and uprooting. Several species and individual traits were associated with the probability of snapping or uprooting; however, wood density was the only species trait consistently, and negatively, associated with the probability of sustaining either damage type. Survival after snapping was negatively associated with the proportion of the tree snapped off, which was determined by individual tree architecture. Species growth rate was negatively associated with survival after uprooting, indicating the importance of shade tolerance for survival after uprooting. Thus, whereas species traits seemed to exclusively underpin resistance to and survival after uprooting, they only partly accounted for snapping resistance, and did not determine the intensity of snap damage or survival after snapping. Our results highlight the importance of considering each damage type separately when considering ecological trade‐offs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号