首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to improve antibody purification methods, recombinant proteins L and LG were tested in the purification of murine monoclonal immunoglobulin G (IgG) and its fragments. After affinity constant evaluation in different buffer systems, high-performance affinity chromatographic columns were prepared by coupling the proteins to Affi-prep 10 resin and tested with eight different murine monoclonal antibodies and their fragments of different isotypes. Affinity chromatographic experiments confirmed radioimmunoassay results showing that protein L bound 75% of the tested antibody fragments whereas protein LG had affinity for all the tested fragments. These results demonstrate that protein LG is the most powerful Ig-binding tool so far described.  相似文献   

2.
Immunoglobulin (Ig)-binding bacterial proteins have attracted theoretical interest for their role in molecular host-parasite interactions, and they are widely used as tools in immunology, biochemistry, medicine, and biotechnology. Protein L of the anaerobic bacterial species Peptostreptococcus magnus binds Ig light chains, whereas streptococcal protein G has affinity for the constant (Fc) region of IgG. In this report, Ig binding parts of protein L and protein G were combined to form a hybrid molecule, protein LG, which was found to bind a large majority of intact human Igs as well as Fc and Fab fragments, and Ig light chains. Binding to Ig was specific, and the affinity constants of the reactions between protein LG and human IgG, IgGFc fragments, and kappa light chains, determined by Scatchard plots, were 5.9 x 10(9), 2.2 x 10(9), and 2.0 x 10(9) M-1, respectively. The binding properties of protein LG were more complete as compared with previously described Ig-binding proteins when also tested against mouse and rat Igs. This hybrid protein thus represents a powerful tool for the binding, detection, and purification of antibodies and antibody fragments.  相似文献   

3.
Ig-binding bacterial proteins also bind proteinase inhibitors   总被引:8,自引:0,他引:8  
Protein G is a streptococcal cell wall protein with separate binding sites for IgG and human serum albumin (HSA). In the present work it was demonstrated that alpha 2-macroglobulin (alpha 2M) and kininogen, two proteinase inhibitors of human plasma, bound to protein G, whereas 23 other human proteins showed no affinity. alpha 2M was found to interact with the IgG-binding domains of protein G, and in excess alpha 2M inhibited IgG binding and vice versa. A synthetic peptide, corresponding to one of the homologous IgG-binding domains of protein G, blocked binding of protein G to alpha 2M. Protein G showed affinity for both native and proteinase complexed alpha 2M but did not bind to the reduced form of alpha 2M, or to the C-terminal domain of the protein known to interact with alpha 2M receptors on macrophages. Binding of protein G to alpha 2M and kininogen did not interfere with their inhibitory activity on proteinases, and the interaction between protein G and the two proteinase inhibitors was not due to proteolytic activity of protein G. The finding that protein G has affinity for proteinase inhibitors was generalized to comprise also other Ig binding bacterial proteins. Thus, alpha 2M and kininogen, were shown to bind both protein A of Staphylococcus aureus and protein L of Peptococcus magnus. The results described above suggest that Ig-binding proteins are involved in proteolytic events, which adds a new and perhaps functional aspect to these molecules.  相似文献   

4.
Protein L. A novel bacterial cell wall protein with affinity for Ig L chains   总被引:12,自引:0,他引:12  
A novel Ig-binding protein has been isolated from the surface of bacteria belonging to the anaerobic species Peptococcus magnus. To solubilize the protein, peptococci were treated with different proteolytic enzymes (papain, pepsin, and trypsin) or with mutanolysin, a bacteriolytic agent known to digest the cell walls of streptococci. Papain, trypsin, and mutanolysin all solubilized peptides showing affinity for radiolabeled human IgG in Western blot analysis. Compared with papain and trypsin, mutanolysin liberated a more homogeneous material, which also had a higher m.w. This mutanolysin-solubilized protein (Mr 95 kDa) was obtained highly purified by a single isolation step on IgG-Sepharose, and the molecule was found to exhibit unique Ig-binding properties. Thus, in dot blots and in Western blots, human IgG, F(ab')2 and Fab fragments of IgG, and human kappa and lambda L chains all showed affinity for the protein. Moreover, the molecule also bound human IgM and IgA, whereas no binding was recorded for IgG-Fc fragments or IgG H chains. Finally, the protein bound to human polyclonal Ig L chains immobilized on polyacrylamide beads. These different data demonstrate that the isolated peptococcal protein binds Ig through L chain interaction. The name protein L is therefore suggested for this novel Ig-binding bacterial cell wall protein.  相似文献   

5.
金黄色葡萄球菌蛋白A(Staphylococcal protein A,SpA)和链球菌蛋白G(Streptococcal protein G,SpG)是细菌产生的特异结合宿主抗体的细菌免疫球蛋白结合蛋白(Immunoglobulin(Ig)-binding proteins,IBPs)的代表分子。SpA和SpG均包含由多个序列高度同源的结合结构域重复组成的抗体结合区,各单结构域都具有完全的结合IgG的功能。为研究这些单结构域随机组合能否产生具有新结合特性的组合分子,将SpA的A、B、C、D、E以及SpG的B2、B3共7个单结合结构域随机组合构建成噬菌体展示文库后,应用人IgG1、2、3、4为诱饵分子对该文库进行4轮筛选,获得了SpA天然分子中不存在的单结构域排列组合分子D-C。在筛选过程中,阴性对照噬菌体的逐渐减少、展示两个结构域以上的噬菌体比例不断增多,尤其是D-C组合的选择性富集和其随机连接肽的严格筛选都显示了筛选的有效性和D-C组合的重要性。噬菌体ELISA进一步证实D-C与人IgG四亚类的结合能力远强于天然SpA分子。该研究应用分子进化技术首次获得了一种与人IgG四亚类具有结合优势的新型组合分子D-C,不仅可为IgG纯化、制备、检测等方面的应用提供新的候选分子,还为细菌IBP结构功能的进一步研究提供新的手段。  相似文献   

6.
Several bacterial species express surface proteins with affinity for the constant region (Fc) of immunoglobulin (Ig) G. The biological consequences of the interaction with IgG are poorly understood but it has been demonstrated that genes encoding different IgG Fc-binding proteins have undergone convergent evolution, suggesting that these surface molecules are connected with essential microbial functions. One of the molecules, protein H, is present in some strains of Streptococcus pyogenes, the most significant streptococcal species in clinical medicine. In contrast to other Ig-binding bacterial proteins tested, protein H was found to interact also with the neural cell adhesion molecule (N-CAM), a eukaryotic cell surface glycoprotein mediating homo- and heterophilic cell-cell interactions. The affinity for the interaction between protein H and N-CAM was 1.6 x 10(8)/M and the binding site on protein H was mapped to the NH2-terminal 80 amino acid residues. N-CAM and IgG are both members of the Ig superfamily and analogous to N-CAM, IgG binds to the NH2-terminal part of protein H. However, the binding sites for the two proteins were found to be separate, an unexpected result which was explained by the observation that the fibronectin type III (FNIII) domains and not the Ig-like domains of N-CAM are responsible for the interaction with protein H. Thus, the binding of N-CAM to protein H was blocked with fibronectin but not with IgG. Moreover, apart from fibronectin itself and N-CAM, fragments of fibronectin and the matrix protein cytotactin/tenascin containing FNIII domains also showed affinity for protein H.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Cell surface proteins that bind to the Fc part of Ig are expressed by many strains of group A streptococci, an important human pathogen. Two such bacterial strains, AP4 and AP1, were shown to bind IgA and IgG, respectively, in a temperature-dependent manner. The binding of radiolabeled Ig to the bacterial cells was lower at 37 degrees C than at 22 and 4 degrees C. Similarly, protein Arp, the IgA-binding protein isolated from strain AP4, and protein H, the IgG-binding protein isolated from strain AP1, displayed a strong Ig-binding at 22 degrees C and lower temperatures, and virtually no binding at all at 37 degrees C. The effect was reversible: lowering of the temperature restored the binding and vice versa. A gradual shift between binding and nonbinding took place between 27 and 37 degrees C. Gel chromatography and velocity sedimentation centrifugation showed that protein Arp and protein H appeared as noncovalently associated dimers at 10 and 22 degrees C, and as monomers at 37 degrees C. These results strongly suggest that the dimerization of protein Arp and protein H, rather than the low temperature itself, yielded the strong Ig-binding of the proteins at 10 and 22 degrees C. Indeed, after covalent cross-linking of the dimers at 10 degrees C by incubation with low concentrations of glutaraldehyde, full Ig-binding was achieved even at 37 degrees C. A carboxyl-terminal proteolytic fragment of protein Arp, which completely lacked the IgA-binding capacity at any temperature, showed the same temperature-dependent dimerization as intact protein Arp, suggesting that the Ig-binding part of the protein is not required for dimerization. The implications of these results for the function of Ig-binding group A streptococcal proteins, and their role in the host-parasite relationship are discussed.  相似文献   

8.
《ImmunoMethods》1993,2(1):9-15
Protein crystallography offers a powerful means of analyzing the molecular mechanisms that underlie the action of bacterial immunoglobulin-binding proteins. Successful approaches used to date involve the isolation of individual IgG-binding domains from the immunoglobulin-binding protein under study and the crystallization of these on their own or in complex with Fc or Fab fragments. Two structures of complexes that have been determined to high resolution by protein crystallography are compared. A single IgG-binding domain from protein A (from Staphylococcus) binds to a human Fc fragment through formation of two α-helices, which bind in the cleft between the CH2 and the CH3 domains. Recognition is mediated by side chains on protein A which interact with conserved side chains on the surface of the antibody, ensuring binding to IgG molecules from different subclasses and species. A similar analysis of the complex of a single IgG-binding domain from protein G (from Streptococcus) with an Fab fragment from mouse IgG1 reveals that the same problem in molecular recognition is tackled in a different way. Protein G binds via an antiparallel alignment of β-strands from the IgG-binding domain and the CH1 domain in Fab: this main chain-main chain interaction is supported by a number of specific hydrogen bonds between the side chains in both proteins. By recognition of a high proportion of main-chain atoms, protein G minimizes the effects of IgG sequence variability in a way that is distinct from that adopted by protein A.  相似文献   

9.
The M protein of Streptococcus equi subsp. equi known as fibrinogen-binding protein (FgBP) is a cell wall-associated protein with antiphagocytic activity that binds IgG. Recombinant versions of the seven equine IgG subclasses were used to investigate the subclass specificity of FgBP. FgBP bound predominantly to equine IgG4 and IgG7, with little or no binding to the other subclasses. Competitive binding experiments revealed that FgBP could inhibit the binding of staphylococcal protein A and streptococcal protein G to both IgG4 and IgG7, implicating the Fc interdomain region in binding to FgBP. To identify which of the two IgG Fc domains contributed to the interaction with FgBP, we tested two human IgG1/IgA1 domain swap mutants and found that both domains are required for full binding, with the CH3 domain playing a critical role. The binding site for FgBP was further localized using recombinant equine IgG7 antibodies with single or double point mutations to residues lying at the CH2-CH3 interface. We found that interaction of FgBP with equine IgG4 and IgG7 was able to disrupt C1q binding and antibody-mediated activation of the classical complement pathway, demonstrating an effective means by which S. equi may evade the immune response. The mode of interaction of FgBP with IgG fits a common theme for bacterial Ig-binding proteins. Remarkably, for those interactions studied in detail, it emerges that all the Ig-binding proteins target the CH2-CH3 domain interface, regardless of specificity for IgG or IgA, streptococcal or staphylococcal origin, or host species (equine or human).  相似文献   

10.

Background

Protein A, protein G and protein L are three well-defined immunoglobulin (Ig)-binding proteins (IBPs), which show affinity for specific sites on Ig of mammalian hosts. Although the precise functions of these molecules are not fully understood, it is thought that they play an important role in pathogenicity of bacteria. The single domains of protein A, protein G and protein L were all demonstrated to have function to bind to Ig. Whether combinations of Ig-binding domains of various IBPs could exhibit useful novel binding is interesting.

Results

We used a combinatorial phage library which displayed randomly-rearranged various-peptide-linked molecules of D and A domains of protein A, designated PA(D) and PA(A) respectively, B2 domain of protein G (PG) and B3 domain of protein L (PL) for affinity selection with human IgG (hIgG), human IgM (hIgM), human IgA (hIgA) and recombinant hIgG1-Fc as bait respectively. Two kinds of novel combinatorial molecules with characteristic structure of PA(A)-PG and PA(A)-PL were obtained in hIgG (hIgG1-Fc) and hIgM (hIgA) post-selection populations respectively. In addition, the linking peptides among all PA(A)-PG and PA(A)-PL structures was strongly selected, and showed interestingly divergent and convergent distribution. The phage binding assays and competitive inhibition experiments demonstrated that PA(A)-PG and PA(A)-PL combinations possess comparable binding advantages with hIgG/hIgG1-Fc and hIgM/hIgA respectively.

Conclusion

In this work, a combinatorial phage library displaying Ig-binding domains of protein A, protein G, or protein L joined by various random linking peptides was used to conducted evolutional selection in vitro with four kinds of Ig molecules. Two kinds of novel combinations of Ig-binding domains, PA(A)-PG and PA(A)-PL, were obtained, and demonstrate the novel Ig binding properties.  相似文献   

11.
Bacterial Protein A (PrtA) and Protein G (PrtG) are widely used for affinity purification of antibodies. An understanding of how PrtA and PrtG bind to different isotypes of immunoglobulin type G (IgG) and to their corresponding Fc fragments is essential for the development of PrtA and PrtG mimetic ligands and for the establishment of generic processes for the purification of various antibodies. In this paper, the interactions between the two IgG-binding proteins and IgG of two different subclasses, IgG1 and IgG4, as well as their analogous Fc fragments have been studied by isothermal titration calorimetry. The results indicate that both protein ligands bind IgG and Fc fragments strongly with Ka values in the range of 10(7) -10(8) M(-1) and for both ligands, the interaction with both IgG isotypes is enthalpically driven though entropically unfavorable. Moreover, variation in the standard entropic and standard enthalpic contribution to binding between the two isotypes as well as between IgG and Fc fragment implies that the specific interaction with PrtA varies according to IgG isotype. In contrast to PrtA, PrtG bound to F(ab')(2) fragment with a Ka value of 5.1 × 10(5) M(-1) ; thus underscoring the usefulness of PrtA as a preferred ligand for generic antibody purification processes.  相似文献   

12.
Protein G is an immunoglobulin (IgG)-binding bacterial cell wall protein recently isolated from group G streptococci. We have investigated the avidity of protein G for various monoclonal and polyclonal Ig of the IgG class, and compared it with the binding properties of protein A, the staphylococcal Fc-binding protein. Radiolabeled Ig were mixed with Sepharose-coupled protein G or protein A, and the amounts of radioactivity bound to the matrix-coupled bacterial proteins were determined. The avidity was found to be greater for protein G than for protein A for all examined Ig. Protein G bound all tested monoclonal IgG from mouse IgG1, IgG2a, and IgG3, and rat IgG2a, IgG2b, and IgG2c. In addition, polyclonal IgG from man, cow, rabbit, goat, rat, and mouse bound to protein G, whereas chicken IgG did not. The binding property of protein G was additionally exploited in the Western blot assay, in which iodine-labeled protein G was used successfully for the detection of a rat monoclonal antibody against ovalbumin, and for the detection of rabbit and goat polyclonal whole antisera against human urinary proteins. In these experimental situations, protein G was found to be a powerful reagent for the detection of IgG, and consequently the antigen against which these antibodies are directed.  相似文献   

13.
Thiophilic adsorption chromatography (TAC) was employed for the purification of a recombinant Fab fragment of the antibody IN-1 from the periplasmic protein fraction of Escherichia coli. Adsorption of the Fab fragment to the T-gel was achieved at a high concentration of ammonium sulfate and turned out to be independent of the presence of a His6 tag or Strep tag or of the human or murine nature of the CH1 and CL domains (subclass IgG1/κ). Elution was effected by means of a decreasing salt gradient, yielding fractions with the correctly assembled, heterodimeric Fab fragment at high purity. Interestingly, the single substitution of an alanine residue with phenylalanine in the CDR-L1 of the Fab fragment significantly enhanced the retention on the column so that quantitative elution necessitated prolonged application of a low-salt buffer. Our findings suggest that TAC is generally suitable for the isolation of bacterially produced Fab fragments and support the notion that aromatic side chains play an important role in the interaction with the affinity matrix. This method should prove valuable in the production of proteins for in vivo applications as might be the case for the Fab fragment of the antibody IN-1, which promotes axonal regeneration in the central nervous system.  相似文献   

14.
Protein L, a cell wall molecule of the bacterial species Peptostreptococcus magnus with affinity for immunoglobulin (Ig) light chains, was isolated after solubilization of the bacterial cell walls with mutanolysin or from the culture medium by a single affinity chromatography step on human IgG-Sepharose. A major protein band with an apparent molecular weight of 95,000 was obtained from both sources. The protein from the growth medium was size heterogeneous. From 1 ml of packed bacteria was prepared 0.92 mg of the mutanolysin-solubilized protein L (73% yield), whereas 4.1 mg of spontaneously released protein L (49% yield) was purified from the corresponding culture medium. The Mr of protein L was estimated to 76,000 by gel chromatography in 6 M guanidine HCl. Using this Mr value, the Stokes radius and the frictional ratio of protein L were determined to 4.74 nm and 1.70, respectively, suggesting an elongated fibrous molecule. No disulfide bond or subunit structure could be shown. The amino-terminal amino acid sequences of the whole protein and two internal non-IgG-binding tryptic fragments were determined and found to be unique. One of the tryptic fragments showed homology (40% identical residues) to a sequence within the cell wall-binding region of protein G, the Fc-binding protein of group C and G streptococci. The binding specificity of protein L was directed to the light chains of immunoglobulins; the affinity constant for polyacrylamide-coupled kappa-chains was 1.5 x 10(9) M-1 and for IgG, IgA, and IgM around 1 x 10(10) M-1. Maximal binding was achieved between pH 7 and 10. The binding to lambda-chains was too weak for determination of the affinity constant. 125I-Protein L was also shown to bind to mouse immunoglobulins. It could be used for detection of antigen-bound polyclonal and monoclonal antibodies in Western blots. This shows that the protein L/light chain reaction was not obstructed by occupation of the antigen-binding site. Finally, protein L and kappa-chains of human Ig formed precipitates upon double immunodiffusion analysis, an indication of at least two binding sites on protein L.  相似文献   

15.
Peptostreptococcus magnus protein L is a multidomain bacterial surface protein that correlates with virulence. It consists of up to five homologous Ig-binding domains (B1-B5) that interact with the variable domain of Ig kappa L chains. Intact protein L stimulates the synthesis and the release of IL-4 and IL-13 from human basophils in vitro. A protein L fragment covering the Ig-binding domains B1-B4 also induced IL-4 and IL-13 release from basophils. There was an excellent correlation (r(s) = 0.82; p < 0.001) between the maximal percent IL-4 release induced by protein L and that induced by anti-IgE and between intact protein L and the B1-B4 fragment (r(s) = 0.90; p < 0.01). Removal of IgE bound to basophils markedly reduced the IL-4 release induced by anti-IgE, protein L, and B1-B4. Preincubation of basophils with protein L or anti-IgE caused complete cross-desensitization to subsequent challenge with the heterologous stimulus. IgE purified from myeloma patients PS and PP (lambda chains) blocked anti-IgE-induced IL-4 release, but not the releasing activity of protein L. In contrast, IgE purified from myeloma patient ADZ (kappa chains) blocked both anti-IgE- and protein L-induced secretion. Cyclosporin A, but not cyclosporin H, inhibited protein L-induced release of IL-4 and IL-13 from basophils. Thus, protein L acts as a bacterial Ig superantigen to induce the synthesis and release of IL-4 and IL-13 from basophils by interacting with kappa L chains of the IgE isotype.  相似文献   

16.
Cyanogen bromide fragments of murine IgG2b and IgG2a immunoglobulins were used to localize the sequences that are bound by specific IgG2b and IgG2a Fc receptors on murine macrophages. One fragment from the CH2 domain of IgG2b bound to the gamma 2b Fc receptor. Two fragments from IgG2a--one one from the CH2 domain, differing by only four amino acids from the homologous IgG2b fragment, and the other from the CH3 domain--specifically bound to the gamma 2a Fc receptor. In both a rosetting assay and a radioactive binding assay, these two fragments from IgG2a competed with intact IgG2a: however, they did not compete with each other. Rather, binding of the fragment from the CH3 domain of IgG2a augmented the binding of the fragment from the CH2 domain of IgG2a but not that of the homologous fragment from IgG2b. The binding of both IgG2a fragments was abolished by trypsin treatment of macrophages. These data suggest that 1) a sequence in the CH2 domain of IgG2b is sufficient for binding to the gamma 2b Fc receptor, 2) sequences from both the CH2 and CH3 domains of IgG2a bind to the gamma 2a Fc receptor, and 3) the binding of sequences from the CH3 domain of IgG2a may induce a conformational change in the gamma 2a Fc receptor that leads to enhanced binding of sequences from the CH2 domain.  相似文献   

17.
Conformational properties of human myeloma immunoglobulins G belonging to four subclasses (IgG1 Van, IgG2 Kom, IgG3 Pla, IgG4 Ang), and also Fab, Fc and pFc′ fragments derived from IgG1 Van, IgG2 Kom and IgG3 Pla have been studied by temperature-perturbation and solvent-perturbation spectroscopy. It has been shown that the immunoglobulins studied practically do not differ in the number of tyrosine and tryptophan residues exposed to different solvent perturbants (saccharose, glycerol, dimethylsulfoxide). The same regularity is observed for isolated Fab and Fc fragments. At the same time, the immunoglobulins compared and their proteolytic fragments significantly differ in the number of aromatic chromophores perturbed by temperature. These data indicate that immunoglobulins of different subclasses and their subunits have a different rigidity of structure in relation to thermal perturbation. The Fc subunits of IgG1 are characterized by the lowest rigidity of structure of internal hydrophobic cores of domains (characterized by the rigidity of the microenvironment of tryptophan residues), as compared with the Fc subunits of IgG2 and IgG3. In the case of IgG1 and IgG2, these differences seem to be brought about by a different rigidity of structure of CH2 domains, since thermal-perturbation spectra of the pFc′ fragments of these subclasses practically coincide. The total number of chromophores exposed to different solvent perturbants in the isolated Fab and Fc fragments practically coincides with the number of exposed chromophores in intact immunoglobulins. Similar coincidence is observed for the tryptophan residues perturbed by temperature. These data indicate that neither the conformation of surface sites nor the conformation of internal hydrophobic cores of domains significantly changes on isolation of Fab and Fc fragments. At the same time, many more tyrosine residues are perturbed by temperature in the intact immunoglobulin G1 Van than in the corresponding sum of isolated Fab and Fc fragments, while for IgG2 Kom, which has the same length of hinge region, these values practically coincide. This fact can be explained by the greater temperature dependence of motions of subunits in IgG1 Van as compared with IgG2 Kom, and as a result of this by the higher mutual temperature-dependent influence of subunits on their internal structure (on interdomain interactions).  相似文献   

18.
Previous work has shown that IgG rheumatoid factors (RF) bind to the C gamma 2-C gamma 3 interface region of human IgG in the same area that binds staphylococcal protein A (SPA). Group A, C, and G strains of Streptococci possess Fc receptors that bind to IgG but not to fragments containing only the C gamma 2 or C gamma 3 domains. This work describes the binding site location on human IgG for the binding of the isolated Fc receptor from the T15 strain of a Group A streptococcus and its relationship to the site that binds SPA and the IgG RF. The isolated T15 Fc receptor (T15) with a molecular mass of 29.5 kD inhibited the binding of IgG RF to IgG. The binding of T15 itself to IgG was strongly inhibited by SPA (42.0 kD) and its monovalent fragment D (7 kD). Human IgG fragments consisting of the C gamma 3 domains did not inhibit the binding of T15 to IgG, whereas those with both domains were effective inhibitors. T15 did not bind to rabbit IgG fragments consisting of either the C gamma 2 or C gamma 3 domains, but did bind to those with both domains. An IgG3 myeloma protein was a poor inhibitor and has been shown to bind poorly to the IgG RF. Most IgG3 myeloma proteins did not bind to SPA. The substitution of Arg and Phe for His 435 and Tyr 436 is responsible for the poor binding of IgG3 to SPA and to the IgG RF. Chemical modification of His or Tyr on IgG reduced its ability to inhibit the binding of T15 to IgG. Reversal of the chemical modifications with hydroxylamine resulted in near complete restoration of inhibitory capacity. This information, collectively, coupled with the known positions in space of the His and Tyr residues in the C gamma 2-C gamma 3 interface region, verified that both His 435 and Tyr 436, and possibly His 310 and 433, are involved. These residues are also involved in binding SPA and the IgG RF. These data therefore indicate that the T15 Group A Streptococcal Fc receptor binds to the same location on the Fc of IgG as SPA and the IgG RF. The biologic relevance of these similarities between bacterial cell wall Fc receptors and IgG RF are not yet apparent, but suggest that RF could bear the internal image of these bacterial structures.  相似文献   

19.
The availability of highly pure animal antibodies is critical in the production of diagnostic tools and biosensors. The peptoid PL16, previously isolated from an ensemble of peptoid variants of the IgG-binding peptide HWRGWV, was utilized in this work as affinity ligand on WorkBeads resin for the purification of immunoglobulin G (IgG) from a variety of mammalian sources and chicken immunoglobulin Y (IgY). The chromatographic protocol initially optimized for murine serum and ascites was subsequently employed for processing rabbit, goat and sheep, donkey, llama, and chicken sera. The PL16-WorkBeads resin proved able to recover all antibody targets with values of yield between 50 and 90%, and purity consistently above 90%. Notably, PL16 not only binds a broader spectrum of animal immunoglobulins than the reference ligands Protein A and G, but it also binds equally well with all their subclasses. Unlike the protein ligands, in fact, PL16 afforded excellent values of yield and purity of mammalian polyclonal IgG, namely murine (47 and 94%), rabbit (66.5 and 91.7%), caprine IgG (63 and 91–95%), donkey, and llama (93 and 97%), as well as chicken IgY (42 and 92%). Of notice, it is also the ability of PL16 to target monomeric IgG without binding aggregated IgG; when challenged with a mixture of monomeric and aggregated murine IgG, PL16 eluted <3% of fed aggregates, against 11–13% eluted by Protein A and G. Collectively, these results prove the potential of the proposed peptoid ligand for large-scale purification of animal immunoglobulins.  相似文献   

20.
Chimeric Fc receptors, consisting of the IgG-binding domains of both staphylococcal protein A and streptococcal protein G, were constructed. An efficient bacterial expression system was used to produce the recombinant proteins, which vary in size and number of IgG-binding domains. The purified receptors were analyzed by immunodiffusion and a competitive enzyme-linked immunosorbent assay to establish the relative binding strength to various polyclonal and monoclonal immunoglobulins from different species. The results demonstrate that protein A and protein G have complementary binding patterns and that the chimeric receptors retain the binding capacities of both the parental constituents. This suggests that these novel chimeric receptors might be versatile reagents for immunochemical assays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号