首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The insulin-like growth factor (IGF) system plays an important role in cell proliferation and survival. However, more recently, a small number of studies have shown that IGFs induce apoptosis in some cells. Our initial studies showed this occurred in LIM 1215 colon cancer cells but not RD rhabdomyosarcoma cells. IGFs induced both proliferation and apoptosis in LIM 1215 cells, and the induction of apoptosis was dose-dependent. [R54, R55]IGF-II, which binds to the IGF-I receptor with normal affinity but does not bind to the IGF-II receptor, induced apoptosis to the same extent as IGF-II, whereas [L27]IGF-II, which binds to the IGF-I receptor with 1000-fold reduced affinity, had no effect on apoptosis. These results suggest that the IGF-I receptor is involved in induction of apoptosis. Western blot analyses demonstrated that Akt and Erk1/2 were constitutively activated in RD cells. In contrast, phosphorylation of Akt and Erk1/2 were transient and basal expression of Akt protein was lower in LIM 1215 cells. Analysis of apoptosis-related proteins showed that IGFs decreased pro-caspase-3 levels and increased expression of pro-apoptotic Bad in LIM 1215 cells. IGFs co-activate proliferative and apoptotic pathways in LIM 1215 cells, which may contribute to increased cell turnover. Since high turnover correlates with poor prognosis in colorectal cancer, this study provides further evidence for the role of the IGF system in its progression.  相似文献   

2.
Epidermal growth factor (EGF) receptor ligands such as EGF and transforming growth factor-alpha (TGF-alpha) play an important role in controlling the proliferation, survival, morphology, and motility of colonic epithelial cells. There is also increasing evidence that growth factors and extracellular matrix (ECM) proteins cooperate to regulate these cellular processes. We have reported previously that autocrine TGF-alpha and an unidentified ECM protein in the serum-free conditioned medium of the human colon carcinoma cell line LIM1215 synergize to induce spreading of these cells in low-density cultures. We have now purified the ECM protein secreted by LIM1215 cells and show that it synergizes with EGF to induce spreading of LIM1215 cells and other human cell lines from the colon and other tissues. The purified ECM migrated as a single protein band with an apparent molecular mass of approximately 800 kDa on SDS-PAGE under nonreducing conditions and, under reducing conditions, as three protein bands of approximately 360, 210, and 200 kDa. Immunoblotting experiments and mass spectrometry analysis of tryptic digests on the purified protein identified the 360-, 210-, and 200-kDa protein bands as laminin alpha5, beta1, and gamma1 chains, respectively, indicating that LIM1215 cells secrete laminin-10 (alpha5 beta1 gamma1). In serum-free medium, LIM1215 cells adhere to laminin-10 primarily via alpha2 beta1 and alpha3 beta1 integrin receptors. EGF-induced spreading of LIM1215 cells on laminin-10 is partially inhibited by pretreatment of the cells with blocking antibodies directed against integrin alpha3 or beta1 but not alpha2, alpha6, or beta4 subunits. Spreading is almost completely inhibited by blocking alpha3 + alpha2, alpha3 + alpha6, or beta1 + beta4 integrin chains and results in cell death. Increased spreading in the presence of EGF correlates with up-regulation of alpha6 beta4 integrins in these cells after exposure to EGF. These results indicate that colon cancer cells attach and spread on laminin-10 via multiple integrin receptors and suggest a critical role for alpha3 beta1 integrins in the spreading response. Together, our results support the concept that the adhesive properties of colon cancer cells are modulated by autocrine production of TGF-alpha and laminin-10 and autocrine induction of appropriate integrins.  相似文献   

3.
4.
5.
Many carcinoma cells secrete transforming growth factor alpha (TGF alpha). A 23 base anti-sense oligonucleotide that recognizes the TGF alpha mRNA inhibits both DNA synthesis and the proliferation of the colon carcinoma cell line LIM 1215. The effects of the anti-sense TGF alpha oligonucleotide are reversed by epidermal growth factor (EGF) at 20 ng/ml. When the LIM 1215 cells are grown under serum free conditions, the anti-sense TGF alpha oligonucleotides have their greatest effects at high cell density (2 x 10(5) cells/cm2), indicating that the secreted TGF alpha is acting as an exogenous growth stimulus. In addition, at higher cell densities, the kinase activity of the EGF receptor is activated and the receptor is down-modulated. The cell density dependent activation of the EGF receptor is inhibited by the application of the antisense TGF alpha oligonucleotides.  相似文献   

6.
7.
Colonic mucosal wounds are repaired, in part, by epithelial migration. Signaling mechanisms regulating this migration are poorly characterized. This study aimed to examine the role that the epidermal growth factor (EGF) receptor (EGF-R) and its ligands, EGF and transforming growth factor-alpha (TGF-alpha), play in migration in wounded in vitro models of colonic epithelium. Migration was assessed over 24 h in circular wounds made in confluent monolayers of LIM1215 human colon cancer cells. EGF and TGF-alpha stimulated migration twofold from 4 h after wounding. Basal migration and the motogenic effects of short chain fatty acids and hepatocyte growth factor were mediated through enhanced binding of TGF-alpha to EGF-R, while trefoil peptide-mediated motogenesis required EGF-R activation independently of TGF-alpha binding. Activation of protein kinase C (PKC) stimulated migration, an effect more potent than, and independent of, EGF-R activation. However, neither inhibition of PKC by Ro 31-8220 nor depletion of PKC by pretreatement with phorbol myristate acetate attenuated EGF-R-mediated motogenesis. In conclusion, EGF-R activation via TGF-alpha binding, or intracellularly, mediates basal LIM1215 migration and the effects of several motogens, with the exception of PKC activators. Since EGF-R and PKC have physiological activators in vivo, they may control colonic mucosal repair processes following injury.  相似文献   

8.
The role of PKC epsilon in amyloid precursor protein (APP) processing was investigated using APP-overexpressing B103 cells. As reported previously, a PKC activator, phorbol-12,13-dibutyrate (PDBu), enhanced secretion of APP alpha, and this effect was blocked by a PKC inhibitor, GF109203X in this system. Selective inhibition of PKC epsilon by overexpressing the PKC epsilon V1 region, which binds specifically to the receptor for activated C-kinase (RACK), blocked PDBu-induced enhancement of APP alpha secretion as well as PDBu-induced decrease in beta-secretase-derived APP C-terminal fragment production. On the other hand, the level of PKC epsilon, but not that of PKC alpha or PKC gamma, was substantially lower in the brains of Alzheimer's disease patients compared to age-matched controls. These results add to a growing body of evidence that PKC epsilon plays an important role in modulating APP processing, and suggest that reduced PKC epsilon activity may contribute to the development of Alzheimer's disease.  相似文献   

9.
Protein kinase C (PKC) has been implicated in a variety of cellular responses such as proliferation, differentiation, and secretion. We assessed the role of PKC in the mitogenic effects of gastrin-releasing peptide (in a small cell lung cancer (SCLC) cell line. Using antisera that specifically recognize the PKC isoforms alpha, beta, gamma, delta, and epsilon, we determined that PKC epsilon is the major isoform in the SCLC cell line NCI-N417, followed by PKC alpha and delta. In addition to the 90-kDa PKC epsilon, our anti-PKC epsilon antiserum specifically detected a 40-kDa immunoreactive protein. Treatment of the cells with either 20 nM phorbol myristate acetate or 50 nM GRP enhanced significantly the level of the 40-kDa protein in a time-dependent (1-8 h), cycloheximide-sensitive fashion. Subcellular fractionation revealed that 90% of PKC epsilon was in particulate form, while the 40-kDa immunoreactive protein was cytosolic. To test the hypothesis that the 40-kDa soluble protein represented a catalytically independent PKC epsilon fragment, cytosolic extracts were assayed for kinase activity. 45-50% of the activity was apparent in the absence of the PKC activators phosphatidylserine and diacylglycerol. This effector-independent kinase activity was further purified by affinity chromatography using a synthetic peptide corresponding to the pseudosubstrate region of PKC epsilon (ERMRPRKRQGAVRRRV) coupled to Sepharose. The partially purified protein, recognized by the anti-PKC epsilon antiserum, exhibited histone kinase activity with kinetics similar to those of the tryptically generated catalytic fragment of brain PKC epsilon. This activity was inhibited by staurosporine (IC50 = 1 x 10(-8) M) and by the pseudosubstrate inhibitor peptide (IC50 = 7.7 x 10(-8) M). The SCLC kinase and the brain PKC epsilon catalytic fragment were similar as indicated by the relative sizes of the PKC epsilon immunoreactive peptides generated with protease V8 from Staphylococcus aureus (Mr approximately 37,000, 34,000, 28,000, 26,000, and 25,000). Taken together, we conclude that a variant SCLC cell line expresses a constitutively active catalytic fragment of PKC epsilon. Regulation by 12-O-tetradecanoyl-13-acetate or GRP via de novo protein synthesis suggests a novel mechanism of control of PKC diversity with implications for small cell lung cancer and possibly other malignancies.  相似文献   

10.
Blocked differentiation is a hallmark of cancer cells and the restoration of differentiation programs in vivo is an actively pursued clinical aim. Understanding the key regulators of cyto-differentiation may focus therapies on molecules that reactivate this process. c-myb expression declines rapidly when human colon cancer epithelial cells are induced to differentiate with the physiologically relevant short-chain fatty acid, sodium butyrate. These cells show increased expression of alkaline phosphatase and cytokeratin 8. Similarly, murine Immorto-epithelial cells derived from wild-type colon cells also show c-myb mRNA declines when induced to differentiate with sodium butyrate. Immorto-cells harboring a single APC mutation are indistinguishable from wild-type cells with regard to differentiation, while addition of activated RAS alone markedly enhances differentiation. In marked contrast, complete differentiation arrest occurs when both APC and RAS are mutated. Expression of MybER, a 4-hydroxytamoxifen-activatable form of c-Myb, blocks differentiation in wildtype and APC mutant Immorto-cell lines as well as LIM1215 human colon carcinoma cells. These data identify two pathways of oncogenic change that lead to retarded epithelial cell differentiation, one involving the presence of a single APC mutation in conjunction with activated RAS or alternatively constitutive c-myb expression.  相似文献   

11.
Protein kinase C (PKC) isoenzymes are involved in cell function, growth, apoptosis and neoplastic transformation in the prostate gland. We detected by means of Western blot the expression of the classical alpha and beta1, the novel epsilon and the atypical zeta isoforms of PKC in ventral prostates from rats with different extents of plasma testosterone levels and/or androgen imprinting on the gland. The expression of the four isoforms decreased in 5-day castrated rats showing apoptotical regression of the gland and a drastic reduction of circulating testosterone. However, the expression of PKC isoenzymes (alpha, beta1, epsilon ) increased in prostates from pubertal (35-days old) rats that are characterized by relatively low but extremely bioactive testosterone plasma levels. Treatment of adult rats for 14 days with flutamide (daily s.c. injection of 15 mg/Kg B.W.) resulted in increased expression of the four isoenzymes; it occurred in the presence of increased (normal rats) or drastically reduced (rats castrated after 9 days of flutamide administration) levels of plasma testosterone conceivably through a direct effect of this nonsteroidal antiandrogen on prostate cells. Measurements of PKC(alpha) activity were in agreement with the observations on protein expression and showed that flutamide (that is extensively used in the treatment of advanced prostate cancer) elicits some impairment in the mechanisms of translocation of this isoform from the cytosol to the membrane. Thus, in addition to the possibility of direct effects of flutamide upon the rat prostate, we present evidence that the levels of circulating androgens and/or their bioactivity in the gland regulate the expression of various important PKC isoforms.  相似文献   

12.
Flutamide is a nonsteroidal antiandrogen that is frequently used for total androgen blockage in the treatment of advanced prostate cancer. We investigated the effect of this antiandrogen on the expression of protein kinase C (PKC) isoenzymes (alpha, beta1, epsilon, zeta) that are involved in cell growth, apoptosis and neoplastic transformation. Androgen-dependent (LNCaP) and independent (PC3) human prostate cancer cells were cultured in a medium that contained fetal bovine serum (FBS) or charcoal-stripped serum (CSS) and treated with 10 microM flutamide. The expression of PKC isoenzymes and the androgen receptor (AR) were analyzed by Western blot and RT-PCR, respectively. Serum steroids differentially regulate the expression of PKC isoenzymes in LNCaP and PC3 cells. Flutamide up-regulated the expression of alpha, beta1 and zeta, but not epsilon, PKC isoenzymes in CSS-LNCaP cells. These results were not homogeneously reproduced in the presence of androgens. We observed an opposite effect of flutamide, compared to CSS, on PKCbeta1 isoform expression in CSS-LNCaP suggesting that this antiandrogen exerts an agonistic effect. In PC3 cells flutamide potentiated the expression of the four PKC isoenzymes in almost all conditions tested (FBS- and CSS-cultured cells). Such effect of flutamide in PC3 cells is independent of AR since no expression of AR was detected. These results provide new evidence on antagonistic/agonistic responses of prostate cancer cells to antiandrogen drugs that are widely used in therapy and show that flutamide can elicit responses in prostate cancer cells that do not express AR.  相似文献   

13.
The Raf protein kinases function downstream of Ras guanine nucleotide-binding proteins to transduce intracellular signals from growth factor receptors. Interaction with Ras recruits Raf to the plasma membrane, but the subsequent mechanism of Raf activation has not been established. Previous studies implicated hydrolysis of phosphatidylcholine (PC) in Raf activation; therefore, we investigated the role of the epsilon isotype of protein kinase C (PKC), which is stimulated by PC-derived diacylglycerol, as a Raf activator. A dominant negative mutant of PKC epsilon inhibited both proliferation of NIH 3T3 cells and activation of Raf in COS cells. Conversely, overexpression of active PKC epsilon stimulated Raf kinase activity in COS cells and overcame the inhibitory effects of dominant negative Ras in NIH 3T3 cells. PKC epsilon also stimulated Raf kinase in baculovirus-infected Spodoptera frugiperda Sf9 cells and was able to directly activate Raf in vitro. Consistent with its previously reported activity as a Raf activator in vitro, PKC alpha functioned similarly to PKC epsilon in both NIH 3T3 and COS cell assays. In addition, constitutively active mutants of both PKC alpha and PKC epsilon overcame the inhibitory effects of dominant negative mutants of the other PKC isotype, indicating that these diacylglycerol-regulated PKCs function as redundant activators of Raf-1 in vivo.  相似文献   

14.
Rat embryo fibroblasts and liver epithelial cell lines normally express two isoforms of protein kinase C (PKC), PKC alpha and PKC epsilon. Derivatives of these cells transformed by an activated human c-H-ras oncogene display a several-fold increase in expression of PKC alpha and a concomitant decrease in PKC epsilon, at both the protein and mRNA levels. Similar changes are seen when the transformed phenotype is induced by Zn2+ in cells carrying the activated ras oncogene under the control of a metallothionein promoter. Studies using cell lines that express very high levels of PKC beta 1, studies using a specific inhibitor of PKC (CGP 41251), and studies in which PKC activity is down-regulated by treatment with a phorbol ester tumor promoter provide evidence that the effects of the ras oncogene on the expression of PKC alpha and PKC epsilon are mediated mainly through a PKC-independent pathway. The present results provide the first evidence that transformation of cells by an oncogene can alter the relative expression of specific isoforms of PKC. It is possible that these changes contribute to the malignant phenotype of these cells.  相似文献   

15.
There is evidence involving protein kinase C (PKC) in the signal transduction pathways that regulate the differentiation of myoblasts into mature multinucleated muscle cells (myotubes). In order to obtain information on the possible role of individual PKC isozymes in myogenesis, in the present work we investigated the differential expression of PKC isoforms alpha, beta, delta, epsilon, and zeta during muscle cell development in vitro. Chick embryo myoblasts cultured from 1 to 6 days were used as experimental model. Morphological characterization and measurement of specific biochemical parameters in cultures, e.g., DNA synthesis, creatine kinase activity, and myosin levels, revealed a typical muscle cell developmental pattern consisting of an initial proliferation of myoblasts followed by their differentiation into myotubes. PKC activity was high at the proliferation stage, decreased as myoblasts elongated and fused, and increased again in differentiated myotubes. In proliferating myoblasts, the PKC inhibitors calphostin C and bisindolylmaleimide I decreased DNA synthesis whereas in myoblasts undergoing differentiation they exerted the opposite effect, suggesting that PKC plays a role at both stages of myogenesis. Western blot analysis of changes in the expression of PKC isoforms during muscle cell development showed high levels of PKC alpha in the proliferating phase which markedly decreased as myoblasts differentiated. Treatment with TPA of proliferative myoblasts inhibited DNA synthesis and selectively down-regulated PKC alpha, suggesting that this isozyme may have an important role in maintaining myoblast proliferation. On the other hand, an increase in the expression of PKC beta, delta, and epsilon was detected during myogenesis, suggesting that one or more of these isoforms may participate in the differentiation process of myoblasts.  相似文献   

16.
17.
18.
Studies from our laboratory have demonstrated rapid ( < 1 min) non-genomic activation of Na(+)-H(+) exchange, K(+) recycling, PKC activity and a PKC-dependent Ca(2+) entry through L-type Ca(2+) channels specifically by mineralocorticoids in distal colon. Aldosterone directly stimulates the activity of the PKC alpha isoform (but not PKC delta, PKC epsilon and PKC zeta) in a cell-free assay system containing only purified commercially available enzyme, appropriate substrate peptide, co-factors and lipid vesicles. The primary ion transport target of the non-genomic signal transduction cascade elicited by aldosterone in epithelia is the Na(+)-H(+) exchanger. In isolated colonic crypts, aldosterone produced a PKC alpha sensitive intracellular alkalinisation within 1 min of hormone addition. Intracellular alkalinisation upregulates an ATP-dependent K(+) channel, which is involved in K(+) recycling to maintain the electrical driving force for Na(+) absorption, while inhibiting a Ca(2+) -dependent K(+) channel, which generates the charge balance for Cl(-) secretion. The non-genomic response to aldosterone in distal colon appears to enhance the capacity for absorption while down-regulating the potential for secretion. We have also demonstrated rapid (< 1 min) non-genomic activation of Na(+)-H(+) exchange, K(+) recycling, PKC alpha activity, and a PKC delta- and PKA-dependent Ca(2+) entry through di-hydropyridine-blockable Ca(2+) channels specifically by 17beta-estradiol in distal colon. These rapid effects are female gender specific and are insensitive to inhibitors of the classical estrogen receptor (ER). 17 beta-Estradiol directly stimulated the activity of both PKC delta and PKC alpha (but not PKC epsilon or PKC zeta) in a cell-free assay system. E2 rapidly inhibited basolateral K(Ca) channel activity which would be expected to result in an acute inhibition of Cl(-) secretion. Physiological concentrations of E2 (0.1-10 nM) reduced both basal and secretagogue-induced Cl(-) secretion. This anti-secretory effect of E2 is sensitive to PKC inhibition, intracellular Ca(2+) chelation, and is female gender specific and insensitive to inhibitors of the classical ER. These observations link rapid non-genomic activation of second messengers with a rapid gender-specific physiological effect in the whole tissue. Aldosterone and E2 differ in their protein kinase signal transduction and both hormones stimulate specific PKC isoforms indicating both common and divergent signalling systems for salt-retaining steroid hormones. The physiological function of non-genomic effects of aldosterone and estradiol is to shift the balance from net secretion to net absorption in a pluripotential epithelium.  相似文献   

19.
The hypertriglyceridemia of diabetes is accompanied by decreased lipoprotein lipase (LPL) activity in adipocytes. Although the mechanism for decreased LPL is not known, elevated glucose is known to increase diacylglycerol, which activates protein kinase C (PKC). To determine whether PKC is involved in the regulation of LPL, we studied the effect of 12-O-tetradecanoyl phorbol 13-acetate (TPA) on adipocytes. LPL activity was inhibited when TPA was added to cultures of 3T3-F442A and rat primary adipocytes. The inhibitory effect of TPA on LPL activity was observed after 6 h of treatment, and was observed at a concentration of 6 nM. 100 nM TPA yielded maximal (80%) inhibition of LPL. No stimulation of LPL occurred after short term addition of TPA to cultures. To determine whether TPA treatment of adipocytes decreased LPL synthesis, cells were labeled with [35S]methionine and LPL protein was immunoprecipitated. LPL synthetic rate decreased after 6 h of TPA treatment. Western blot analysis of cell lysates indicated a decrease in LPL mass after TPA treatment. Despite this decrease in LPL synthesis, there was no change in LPL mRNA in the TPA-treated cells. Long term treatment of cells with TPA is known to down-regulate PKC. To assess the involvement of the different PKC isoforms, Western blotting was performed. TPA treatment of 3T3-F442A adipocytes decreased PKC alpha, beta, delta, and epsilon isoforms, whereas PKC lambda, theta, zeta, micro, iota, and gamma remained unchanged or decreased minimally. To directly assess the effect of PKC inhibition, PKC inhibitors (calphostin C and staurosporine) were added to cultures. The PKC inhibitors inhibited LPL activity rapidly (within 60 min). Thus, activation of PKC did not increase LPL, but inhibition of PKC resulted in decreased LPL synthesis by inhibition of translation, indicating a constitutive role of PKC in LPL gene expression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号