首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of junctions between main roots and lateral roots on water flow was investigated for the desert succulents Agave deserti and Ferocactus acanthodes during 21 d of drying in soil. Under wet conditions, the junctions did not restrict xylem water flow from lateral roots to main roots, consistent with predictions of axial conductance based on vessel diameters. Embolism caused by drying reduced such axial conductance more at the junctions than in adjoining root regions. Connective tracheary elements at the junctions were abundantly pitted and had large areas of unlignified primary wall, apparently making them more susceptible to embolism than vessels or tracheids elsewhere in the roots. Unlike the decrease in axial conductance, the overall hydraulic conductivity of the junction increased during drying because of an increase in the conductivity of the radial pathway. Despite such increases, main roots may not lose substantial amounts of water to a dry soil during drought, initially because embolism at the junctions can limit xylem flow and later because soil hydraulic conductivity decreases. Moreover, the increased root hydraulic conductivity and a potentially rapid recovery from embolism by connective tracheary elements may favor water uptake near the junctions upon soil rewetting.  相似文献   

2.
Concurrent determinations of changes in hydraulic conductivity and tissue anatomy were made for roots of Agave deserti excised during drying and following rewetting in soil. At 30 d of drought, hydraulic conductivity had declined less than twofold for older nodal roots, tenfold for young nodal roots, and more than 20-fold for lateral roots (“rain roots” occurring as branches on the nodal roots). These decreases were consistent with increases in cortical lacunae caused by cell shrinkage and collapse. Similarly, reduction of lacunae in response to rewetting after 7 d of drought corresponded to levels of recovery in hydraulic conductivity, with young nodal roots showing full recovery, lateral roots returning to only 21 % of initial conductivity, and older nodal roots changing only slightly. Increases in suberization in the exodermis, endodermis, and cortex adjacent to the endodermis in response to drying coincided with decreases in hydraulic conductivity. Measurements of axial hydraulic conductance per unit length before and after pressurization indicated that embolism caused reductions in axial conductance of 98% for lateral roots, 35% for young nodal roots, and 20% for older nodal roots at 7 d of drought. Embolism, cortical lacunae, and increasing suberization caused hydraulic conductivity to decline during drought in the three root types, thereby helping limit water loss to dry soil; the recovery in hydraulic conductivity for young nodal roots after rewetting would allow them to take up water readily once soil moisture is replenished.  相似文献   

3.
Developmental changes in the root apex and accompanying changes in lateral root growth and root hydraulic conductivity were examined for Opuntia ficus-indica (L.) Miller during rapid drying, as occurs for roots near the soil surface, and more gradual drying, as occurs in deeper soil layers. During 7 d of rapid drying (in containers with a 3-cm depth of vermiculite), the rate of root growth decreased sharply and most root apices died; such a determinate pattern of root growth was not due to meristem exhaustion but rather to meristem mortality after 3 d of drying. The length of the meristem, the duration of the cell division cycle, and the length of the elongation zone were unchanged during rapid drying. During 14 d of gradual drying (in containers with a 6-cm depth of vermiculite), root mortality was relatively low; the length of the elongation zone decreased by 70%, the number of meristematic cells decreased 30%, and the duration of the cell cycle increased by 36%. Root hydraulic conductivity ( L P) decreased to one half during both drying treatments; L P was restored by 2 d of rewetting owing to the emergence of lateral roots following rapid drying and to renewed apical elongation following gradual drying. Thus, in response to drought, the apical meristems of roots of O. ficus-indica near the surface die, whereas deeper in the substrate cell division and elongation in root apices continue. Water uptake in response to rainfall in the field can be enhanced by lateral root proliferation near the soil surface and additionally by resumption of apical growth for deeper roots.  相似文献   

4.
The tropical epiphytic cacti Epiphyllum phyllanthus and Rhipsalis baccifera experience extreme variations in soil moisture due to limited soil volumes and episodic rainfalls. To examine possible root rectification, whereby water uptake from a wet soil occurs readily but water loss to a dry soil is minimal, responses of root hydraulic conductivity (Lp) to soil drying and rewetting were investigated along with the underlying anatomical changes. After 30 d of soil drying, Lp decreased 50%–70% for roots of both species, primarily because increased suberization of the periderm reduced radial conductivity. Sheaths composed of soil particles, root hairs, and mucilage covered young roots and helped reduce root desiccation. Axial (xylem) conductance increased during drying due to vessel differentiation and maturation, and drought-induced embolism was relatively low. Within 4 d of rewetting, Lp for roots of both species attained predrought values; radial conductivity increased for young roots due to the growth of new branch roots initiated during drying and for older roots due to the development of radial breaks in the periderm. The decreases in Lp during drought reduced plant water loss to a dry soil, and yet maximal water uptake and transpiration occurred within a few days of rewetting, helping these epiphytes to take advantage of episodic rainfalls in a moist tropical forest.  相似文献   

5.
Drought-induced changes in root hydraulic conductance (LP) and mercury-sensitive water transport were examined for distal (immature) and mid-root (mature) regions of Opuntia acanthocarpa. During 45 d of soil drying, LP decreased by about 67% for distal and mid-root regions. After 8 d in rewetted soil, LP recovered to 60% of its initial value for both regions. Axial xylem hydraulic conductivity was only a minor limiter of LP. Under wet conditions, HgCl2 (50 microM), which is known to block membrane water-transport channels (aquaporins), decreased LP and the radial hydraulic conductance for the stele (L(R, S)) of the distal root region by 32% and 41%, respectively; both LP and L(R, S) recovered fully after transfer to 2-mercaptoethanol (10 mM). In contrast, HgCl2 did not inhibit LP of the mid-root region under wet conditions, although it reduced L(R, S) by 41%. Under dry conditions, neither LP nor L(R, S) of the two root regions was inhibited by HgCl2. After 8 d of rewetting, HgCl2 decreased LP and L(R, S) of the distal region by 23% and 32%, respectively, but LP and L(R, S) of the mid-root region were unaltered. Changes in putative aquaporin activity accounted for about 38% of the reduction in LP in drying soil and for 61% of its recovery for the distal region 8 d after rewetting. In the stele, changes in aquaporin activity accounted for about 74% of the variable L(R, S) during drought and after rewetting. Thus, aquaporins are important for regulating water movement for roots of O. acanthocarpa.  相似文献   

6.
Plants of the desert succulent Agave deserti were grown in partitionedcontainers to determine whether heterogeneity in soil moistureleads to differences in cellular development and hydraulic conductivityalong individual roots. Roots from containers with a dry distalcompartment (furthest from the shoot), a wet middle compartment,and a dry proximal compartment had distal regions (includingthe root tips) that were more suberized and lignified in theendodermis and adjacent cell layers than were root regions fromthe wet middle compartment. Proximal root regions about 40 mmfrom the succulent shoot base were also relatively unsuberized,suggesting that both external and internal supplies of waterdelayed tissue maturation. Root segments from wet middle compartmentsand from dry proximal compartments had higher hydraulic conductivitythan did the more suberized root segments from dry distal compartments.Unlike distal root segments from wet compartments, segmentsfrom dry compartments suffered no decrease in hydraulic conductivityafter immersion in mercuric chloride, suggesting that aquaporinactivity diminished for roots during drought. The possible closureof water channels could help limit root water loss to a dryingsoil. The delayed development of suberized cell layers may allowroot regions to maximize water uptake from wet soil patches(such as under rocks), and the relatively immature, absorptiveroot region near the base of the shoot may help A. deserti capturewater from a briefly wetted surface soil. Copyright 2000 Annalsof Botany Company Agave deserti, root plasticity, water uptake, aquaporins, suberization, endodermis, divided pots.  相似文献   

7.
North  Gretchen B.  Nobel  Park S. 《Plant and Soil》1997,191(2):249-258
Water movement between roots and soil can be limited by incomplete root–soil contact, such as that caused by air gaps due to root shrinkage, and can also be influenced by rhizosheaths, composed of soil particles bound together by root exudates and root hairs. The possible occurrence of air gaps between the roots and the soil and their consequences for the hydraulic conductivity of the root–soil pathway were therefore investigated for the cactus t Opuntia ficus-indica, which has two distinct root regions: a younger, distal region where rhizosheaths occur, and an older, proximal region where roots are bare. Resin-embedded sections of roots in soil were examined microscopically to determine root–soil contact for container-grown plants kept moist for 21 days, kept moist and vibrated to eliminate air gaps, droughted for 21 days, or droughted and vibrated. During drought, roots shrank radially by 30% and root–soil contact in the bare root region of nonvibrated containers was reduced from 81% to 31%. For the sheathed region, the hydraulic conductivity of the rhizosheath was the least limiting factor and the root hydraulic conductivity was the most limiting; for the bare root region, the hydraulic conductivity of the soil was the least limiting factor and the hydraulic conductivity of the root–soil air gap was the most limiting. The rhizosheath, by virtually eliminating root–soil air gaps, facilitated water uptake in moist soil. In the bare root region, the extremely low hydraulic conductivity of the root–soil air gap during drought helped limit water loss from roots to a drier soil.  相似文献   

8.
A technique used for hydroponics was adapted to measure instantaneousroot water uptake from the soil for a leaf succulent CAM species,Agave deserti. Comparisons were made to previously modelledwater fluxes for A. deserti and to Encelia farinosa, a non-succulentC3species. Net CO2uptake and transpiration forA. deserti underwell-watered conditions occurred primarily at night whereasroot water uptake was relatively constant over 24 h. Leaf thicknessdecreased when transpiration commenced and then increased whenrecharge from the stem and soil occurred, consistent with previousmodels. A drought of 90 d eliminated net CO2uptake and transpirationand reduced the water content of leaves by 62%. Rewetting theentire root system for 7 d led to a full recovery of leaf waterstorage but only 56% of maximal net CO2uptake. Root water uptakewas maximal immediately after rewetting, which replenished rootwater content, and decreased to a steady rate by 14 d. Whenonly the distal 50% of the root system was rewetted, the timefor net CO2uptake and leaf water storage to recover increased,but by 30 d gas exchange and leaf water storage were similarto 100% rewetting. Rewetting 10 or 20% of the root system resultedin much less water uptake; these plants did not recover leafwater storage or gas exchange by 30 d after rewetting. A redundancyin the root system of A. deserti apparently exists for dailywater uptake requirements under wet conditions but the entireroot system is required for rapid recovery from drought.Copyright1999 Annals of Botany Company Agave deserti Engelm., desert, drought, gas exchange, rewetting, roots, succulent, water uptake.  相似文献   

9.
Loss of axial hydraulic conductance as a result of xylem cavitation was examined for roots of the Crassulacean acid metabolism (CAM) succulents Agave deserti and Opuntia ficus-indica. Vulnerability to cavitation was not correlated with either root size or vessel diameter. Agave deserti had a mean cavitation pressure of -0.93 ± 0.08 MPa by both an air-injection and a centrifugal method compared to -0.70 ± 0.02 MPa by the centrifugal method for O. ficus-indica, reflecting the greater tolerance of the former species to low water potentials in its native habitat. Substantial xylem cavitation would occur at a soil water potential of -0.25 MPa, resulting in a predicted 22% loss of conductance for A. deserti and 32% for O. ficus-indica. For an extended drought of 3 mo, further cavitation could cause a 69% loss of conductance for A. deserti and 62% for O. ficus-indica. A model of axial hydraulic flow based upon the cavitation response of these species predicted that water uptake rates are far below the maximum possible, owing to the high root water potentials of these desert succulents. Despite various shoot adaptations to aridity, roots of A. deserti and O. ficus-indica are highly vulnerable to cavitation, which partially limits water uptake in a wet soil but helps reduce water loss to a drying soil.  相似文献   

10.
Variations in hydraulic conductivity (LP) and the underlying anatomical and morphological changes were investigated for main root-lateral root junctions of Agave deserti and Ferocactus acanthodes under wet, dry, and rewetted soil conditions. During 21 d of drying, LP and radial conductivity (LR) increased threefold to fivefold at junctions of both species. The increase in LR was accompanied by the formation of an apoplastic pathway for radial water movement from the surface of the junction to the stele for A. deserti and by the rupture of periderm by emerging primordia of secondary lateral roots for F. acanthodes. During 7 d of rewetting, LR decreased for junctions of A. deserti, as apoplastic water movement was not apparent, but LR was unchanged for F. acanthodes. Axial conductance (Kh) decreased during drying for both species, largely because of embolism related to the degradation of unlignified cell wall areas in tracheary elements at the root junction. The resulting apertures in the cell walls of such elements would admit air bubbles at pressure differences of only 0.12-0.19 MPa. Rewetting restored Kh for both species, but not completely, due to blockage of xylem elements by tyloses. About 40% of the primary lateral roots of the monocotyledon A. deserti abscised during 21 d of drying. For the dicotyledon F. acanthodes, which can form new conduits in its secondary xylem, only 10% of the primary lateral roots abscised during 21 d of drying, consistent with the much greater frequency of lateral roots that persist during drought in the field compared with the case for the sympatric A. deserti.  相似文献   

11.
Li  Yan  Wallach  Rony  Cohen  Yehezkel 《Plant and Soil》2002,243(2):131-142
A multiplexed TDR system and a heat-pulse system for stem sap flow measurements were used to determine the spatial and temporal pattern of root water uptake in field-grown corn. The TDR probes, 0.15 and 0.30 m in length, were buried vertically in the soil profile to a depth of 0.95 m below the soil surface and heat-pulse sensors were installed on the plant base. Nocturnal readings from TDR probes were used successfully to differentiate the two components of moisture change: root uptake and net drainage. The instantaneous rate of water extraction by the plant measured by the heat-pulse system agreed well with the integrated rate of root water uptake measured frequently (at half-hour or hourly intervals) by the TDR probes. This agreement enabled further exploration into the cause of the evolution of the spatial and temporal patterns of root water uptake during a drying cycle. The results indicated that right after irrigation in the well-watered soil profile, it is the spatial distribution of the roots that mainly determines the typical pattern of root extraction, in addition to the fact that the roots near the plant base are more effective than those farther away. The higher density and effectiveness of the roots near the plant base dry the soil rapidly so that soil hydraulic conductivity soon becomes a limiting factor for water uptake. Further analysis revealed that a decrease in root uptake occurs near the plant base under a given atmospheric demand when the relative bulk soil hydraulic conductivity decreases to 0.002K r. This suggests that low conductivity (high resistance) in the soil near the plant base is the initial cause for downward and lateral shifting of the root uptake pattern. Note that this critical value of hydraulic conductivity is not universal since it depends on the soil type and atmospheric water demand during the period under observation. Therefore, prior to the application of moisture content or suction head as measures of water availability or to control irrigation scheduling, it is suggested that these parameters be calibrated by the soil K() or K() curves, respectively, for the expected atmospheric water demand for the specific crop and growing period.  相似文献   

12.
为确定毛白杨(Populus tomentosa)根系是否存在水力再分配现象,并探究其发生特征与影响因子,该研究以四年生毛白杨为研究对象,利用热比率法对3株样树的共计7条侧根(R1–R7)进行长期液流监测,并对土壤水分以及气象因子进行同步测定。结果显示:毛白杨存在两种水力再分配模式,分别为干旱驱动的水力提升和降雨驱动的水力下降,水力再分配的发生模式与特征受侧根分布深度与直径大小的影响。在整个生长季尺度上,毛白杨根系再分配的水量较低;但在极端干旱条件下,部分侧根再分配的水量可达其日总液流量的64.6%,表明水力再分配会为干旱侧根提供大量水分。根系吸水与气象-土壤的耦合因子(太阳辐射(Rs)×土壤含水率(SWC)、水汽压亏缺(VPD)×SWC、参考蒸散发(ETo)×SWC)间存在显著相关关系,但水力再分配与所选因子基本不相关。此外,毛白杨浅层根中存在特殊的日间逆向液流现象,其液流量最高可占日液流总量的79.2%(R1)到90.7%(R2),该现象可能对浅层根系抗旱起到重要作用。  相似文献   

13.
Deep water uptake and hydraulic redistribution (HR) are important processes in many forests, savannas and shrublands. We investigated HR in a semi‐arid woodland above a unique cave system in central Texas to understand how deep root systems facilitate HR. Sap flow was measured in 9 trunks, 47 shallow roots and 12 deep roots of Quercus, Bumelia and Prosopis trees over 12 months. HR was extensive and continuous, involving every tree and 83% of roots, with the total daily volume of HR over a 1 month period estimated to be approximately 22% of daily transpiration. During drought, deep roots at 20 m depth redistributed water to shallow roots (hydraulic lift), while after rain, shallow roots at 0–0.5 m depth redistributed water among other shallow roots (lateral HR). The main driver of HR appeared to be patchy, dry soil near the surface, although water may also have been redistributed to mid‐level depths via deeper lateral roots. Deep roots contributed up to five times more water to transpiration and HR than shallow roots during drought but dramatically reduced their contribution after rain. Our results suggest that deep‐rooted plants are important drivers of water cycling in dry ecosystems and that HR can significantly influence landscape hydrology.  相似文献   

14.
The constraints on water uptake imposed by individual root tissueswere examined forOpuntia ficus-indicaunder wet, drying, andrewetted soil conditions. Root hydraulic conductivity (LP) andaxial conductance (Kh) were measured for intact root segmentsfrom the distal region with an endodermis and from midroot witha periderm;LPwas then measured for each segment with successivetissues removed by dissection. Radial conductivity (LR) wascalculated fromLPandKhfor the intact segment and for the individualtissues by considering the tissue conductivities in series.Under wet conditions,LRfor intact distal root segments was lowestfor the cortex; at midroot, where cortical cells are dead,LRforthe cortex was higher and no single tissue was the predominantlimiter ofLR.LRfor the endodermis and the periderm were similarunder wet conditions. During 30d of soil drying,LRfor the distalcortex increased almost three-fold due to the death of corticalcells, whereasLRfor the midroot cortex was unaffected;LRforthe endodermis and the periderm decreased by 40 and 90%, respectively,during drying. For both root regions under wet conditions, thevascular cylinder had the highestLR, which decreased by 50–70%during 30d of soil drying. After 3d of rewetting, new lateralroots emerged, increasingLRfor the tissues outside the vascularcylinder as well as increasing uptake of an apoplastic tracerinto the xylem of both the roots and the shoot. The averageLRforintact root segments was similar under wet and rewetted conditions,but the conductivity of the tissues outside the vascular cylinderincreased after rewetting, as did the contribution of the apoplasticpathway to water uptake. Opuntia ficus-indica; prickly pear; root hydraulic conductivity; endodermis; periderm; apoplast; lateral root emergence  相似文献   

15.
The importance of aquaporins for root hydraulic conductance (LP) was investigated along roots of the desert succulent Agave deserti in wet, dry and rewetted soil. Water channel activity was inferred from HgCl2‐induced reductions of LP that were reversible by 2‐mercaptoethanol. Under wet conditions, HgCl2 reduced LP for the distal root region by 50% and for the root region near the shoot base by 36% but did not affect LP for the mid‐root region. For all root regions, LP decreased by 30–60% during 10 d in drying soil and was not further reduced by HgCl2. After soil rewetting, LP increased to pre‐drying values and was again reduced by HgCl2 for the distal and the basal root regions but not the mid‐root region. For the distal region, water channels in the epidermis/exodermis made a disproportionately large contribution to radial hydraulic conductance of the intact segment; for the basal region, water channel activity was highest in the cortex and endodermis. The role of water channels was greatest in tissues in which cells were metabolically active both in the distal root region, where new apical growth occurs in wet soil, and in the basal region, which is the most likely root region to intercept light rainfall.  相似文献   

16.
Thermal and Water Relations of Roots of Desert Succulents   总被引:6,自引:0,他引:6  
Two succulent perennials from the Sonoran Desert, Agave desertiEngelm. and Ferocactus acanthodes (Lem.) Britton and Rose, loselittle water through their roots during drought, yet respondrapidly to light rainfall. Their roots tend to be shallow, althoughabsent from the upper 20 mm or so of the soil. During 12–15d after a rainfall, new root production increased total rootlength by 47 per cent to 740 m for A. deserti and by 27 percent to 230 m for F. acanthodes; root dry weight then averagedonly 15 per cent of shoot dry weight. The annual carbon allocatedto dry weight of new roots required 11 per cent of shoot carbondioxide uptake for A. deserti and 19 per cent for F. acanthodes.Elongation of new roots was greatest near a soil temperatureof 30°C, and lethal temperature extremes (causing a 50 percent decrease in root parenchyma cells taking up stain) were56°C and -7°C. Soil temperatures annually exceeded themeasured tolerance to high temperature at depths less than 20mm, probably explaining the lack of roots in this zone. Attached roots immersed in solutions with osmotic potentialsabove -2·6 MPa could produce new lateral roots, with50 per cent of maximum elongation occurring near -1·4MPa for both species. Non-droughted roots lost water when immersedin solutions with osmotic potentials below -0·8 MPa,and root hydraulic conductance decreased markedly below about-1·2 MPa. Pressure-volume curves indicated that, fora given change in water potential, non-droughted roots lostthree to five times more water than droughted roots, non-droughtedleaves, or non-droughted stems. Hence, such roots, which couldbe produced in response to a rainfall, will lose the most tissuewater with the onset of drought, the resulting shrinkage beingaccompanied by reduced root hydraulic conductance, less contactwith drying soil, and less water loss from the plant to thesoil. Agave deserti, Ferocactus acanthodes, roots, soil, temperature, water stress, drought, Crassulacean acid metabolism, succulents  相似文献   

17.
Water movement to and from a root depends on the soil hydraulicconductivity coefficient (Lsoil), the distance across any root-soilair gap, and the hydraulic conductivity coefficient of the root(LP). After analytical equations for the effective conductanceof each part of the pathway are developed, the influences ofsoil drying on the soil water potential and Lsoil are describedduring a 30 d period for a loamy sand in the field. The influencesof soil drying on LP for three desert succulents, Agave deserti,Ferocactus acanthodes, and Opuntia ficus-indica, are also describedfor a 30 d period. To quantify the effects of soil drying onthe development of a root-soil air gap, diameters of 6-week-oldroots of the three species were determined at constant watervapour potentials of –1.0 MPa and –10 MPa as wellas with the water vapour potential decreasing at the same rateas soil drying during a 30 d period. The shrinkage observedfor roots initially 2·0 mm in diameter averaged 19% duringthe 30d period. The predominant limiting factor for water movementwas LP of the root for the first 7 d of soil drying, the root-soilair gap for the next 13 d, and Lsoil thereafter. Compared withthe ease of water uptake from a wet soil, the decrease in conductancesduring soil drying, especially the decrease in Lsoil causedthe overall conductance to decrease by 3 x 103-fold during the30 d period for the three species considered, so relativelylittle water was lost to the dry soil. Such rectifier-like behaviourof water movement in the soil-root system resulted primarilyfrom changes in Lsoil and, presumably, is a general phenomenonamong plants, preventing water loss during drought but facilitatingwater uptake after rainfall. Key words: Agave deserti, Ferocactus acanthodes, Opuntia ficus-indica, rectification, soil water potential, water movement  相似文献   

18.
Soil water resulting from episodic growing season rainfall evaporatesrapidly in semi-arid regions. Plants may mnot benefit from suchwater additions if near-surface roots are unable to resume wateruptake rapidly following periods of soil water deficit. Ourobjectives were to develop a means of quantifying root uptakeresponses in the upper soil layer following rewetting aftersoil water deficit, and to evaluate the existence of genotypicdifferences among four diverse barley (Hordeum vulgare L.) genotypesin this regard. Plants were grown in replicate soil columnshaving hydraulically isolated surface and subsoil layers, andinstrumented with time-domain reflectometry (TDR) waveguides.The upper 0.05 m soil layer was allowed to dry to —1.8to —3.0 MPa for 10-14 d, during which time subsoil wetnesswas maintained at about —0.6 to —0.7 MPa. The time-courseof soil water uptake was monitored at 0.5 h intervals followingrewetting of the surface layer. Substantial water uptake began1 d after rewetting following 10 d, and 2-3 d after rewettingfollowing 14 d of water deficit. Rate of water uptake was morerapid in response to a second rewetting 5-7 d later. Consistentgenotypic responses in terms of cumulative water uptake on awhole plant and leaf area-specific basis were observed duringeach trial. These results have application to evaluating droughthardiness and interspecific competitive ability under semi-aridconditions, and to investigations of root physiological andmorphological changes that contribute to recovery from waterdeficit Key words: Hordeum vulgare, root water uptake, soil water deficit, time-domain reflectometry  相似文献   

19.
To investigate root distribution with depth, which can affect competition for water, surface areas of young and old roots were determined in 4-cm-thick soil layers for the C3 subshrub Encelia farinosa Torrey and A. Gray, the C4 bunchgrass Pleuraphis rigida Thurber, and the CAM (crassulacean acid metabolism) leaf succulent Agave deserti Engelm. At a site in the northwestern Sonoran Desert these codominant perennials had mean rooting depths of only 9-10 cm for isolated plants. Young roots had mean depths of 5-6 cm after a winter wet period, but 11-13 cm after a summer wet period. Young roots were most profuse in the winter for E. farinosa, which has the lowest optimum temperature for root growth, and in the summer for P. rigida, which has the highest optimum temperature. Roots for interspecific pairs in close proximity averaged 2-3 cm shallower for A. deserti and a similar distance deeper for the other two species compared with isolated plants, suggesting partial spatial separation of their root niches when the plants are in a competitive situation. For plants with a similar root surface area, the twofold greater leaf area and twofold higher maximal transpiration rate of E. farinosa were consistent with its higher root hydraulic conductivity, leading to a fourfold higher estimated maximal water uptake rate than for P. rigida. Continuous water uptake accounted for the shoot water loss by A. deserti, which has a high shoot water-storage capacity. A lower minimum leaf water potential for P. rigida than for A. deserti indicates greater ability to extract water from a drying soil, suggesting that temporal niche separation for water uptake also occurs.  相似文献   

20.
极端干旱环境下的胡杨木质部水力特征   总被引:2,自引:0,他引:2  
胡杨作为我国西北干旱区重要的乔木树种,研究其木质部水力特征对了解此树种适应极端干旱环境的生物学背景具有较重要的意义。本研究以塔里木河下游的胡杨成株和2年生胡杨幼苗为研究材料,对其木质部最大导水能力(ks(max))和自然栓塞程度(PLC)等木质部水力特征及其水力特征有关的木质部导管(或管饱)数量特征进行研究。结果表明,成株胡杨多年生枝条和侧根(2≤d<5 mm)木质部自然栓塞程度均较高,PLC均值高于50%,其中多年生枝条栓塞程度具有一定的日变化规律,清晨的PLC均值(58%)小于正午的(67%);河道边上成株胡杨侧根的均ks(max)和PLC均值都小于距河道200 m处的。随着土壤干旱程度的加剧,幼苗胡杨侧根的自然栓塞程度随之增加,而叶片气孔导度随之降低,土壤含水率与侧根自然栓塞程度,叶片气孔导度之间分别存在显著负相关关系(R =-0.9、R =-0.811)。在统一直径范围内(2≤d<5 mm),成株胡杨侧根均导管直径(dmean)和水力直径均大于(d95%、dh)胡杨幼苗,而导管密度胡杨幼苗高于成株胡杨;胡杨侧根木质部最大导水能力与均导管直径、水力直径之间具有显著正相关关系(R>0.9).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号