首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PROSTAGLANDIN (PG) Fhas antifertility effects in many species1–3 but there are conflicting suggestions as to its mechanism of action. For example, it may cause the degeneration of the corpus luteum by decreasing blood flow in the uteroovarian vein4; alternatively, its action may be due to a hypersecretion of luteinizing hormone (LH) by the pituitary3,5. I have investigated the effects of PGF, E2 and E1 on pregnancy in mice and examined the mechanism of action of PGF.  相似文献   

2.
POLYPHLORETIN phosphate (PPP), a polymer with an inhibitory effect on some enzyme systems, such as alkaline phosphatase and hyaluronidase, has been synthesized by Diczfalusy et al.1 by phosphorylating phloretin with phosphorus oxychloride. PPP has a molecular weight of about 15,000 and is readily soluble in water at pH 7. It has been tried in the treatment of oedema2,3 and in vitro it inhibits the aggregation of red blood corpuscles4 and selectively antagonizes the effect of prostaglandin E2 (PGE2) on the intraocular pressure of the rabbit eye5. In the light of this finding we have examined whether PPP (supplied by Dr B. Högberg) could also modify the action of prostaglandins, when tested on some other preparation— in this case isolated human bronchi. During this study an investigation of the inhibition by PPP of the PGE2 and PGF action on isolated bird colon, rabbit jejunum and uterus has been reported6. It has been shown that PGE1 and usually also PGE2 have a bronchodilating effect in guinea-pig7,8 and man9, while PGF constricts bronchial smooth muscle in vivo and invitro8,10,11. PGF and PGE2 have been isolated from human lungs12,13 and both seem to be released in the anaphylactic reaction of isolated guinea-pig lung.  相似文献   

3.
F0F1ATPsynthase is now known to be expressed as a plasma membrane receptor for several extracellular ligands. On hepatocytes, ecto–F0F1ATPsynthase binds apoA–I and triggers HDL endocytosis concomitant with ATP hydrolysis. Considering that inhibitor protein IF1 was shown to regulate the hydrolytic activity of ecto–F0F1ATPsynthase and to interact with calmodulin (CaM) in vitro, we investigated the subcellular distributions of IF1, calmodulin (CaM), OSCP and β subunits of F0F1ATPsynthase in HepG2 cells. Using immunofluorescence and Western blotting, we found that around 50% of total cellular IF1 is localized outside mitochondria, a relevant amount of which is associated to the plasma membrane where we also found Ca2+–CaM, OSCP and β. Confocal microscopy showed that IF1 colocalized with Ca2+–CaM on plasma membrane but not in mitochondria, suggesting that Ca2+–CaM may modulate the cell surface availability of IF1 and thus its ability to inhibit ATP hydrolysis by ecto–F0F1ATPsynthase. These observations support a hypothesis that the IF1–Ca2+–CaM complex, forming on plasma membrane, functions in the cellular regulation of HDL endocytosis by hepatocytes.  相似文献   

4.

   

Endotoxemia in bitches with pyometra can cause severe systemic effects directly or via the release of inflammatory mediators. Plasma endotoxin concentrations were measured in ten bitches suffering from pyometra with moderately to severely deteriorated general condition, and in nine bitches admitted to surgery for non-infectious reasons. Endotoxin samples were taken on five occasions before, during and after surgery. In addition, urine and uterine bacteriology was performed and hematological, blood biochemical parameters, prostaglandin F metabolite 15-ketodihydro-PGF (PG-metabolite), progesterone and oestradiol (E2-17β) levels were analysed.  相似文献   

5.
6.
Maize (Zea mays L.) doubled haploid lines are typically produced from F1 plants. Studies have suggested that the low frequency of recombinants in doubled haploids may reduce the response to selection. My objective was to determine if, for sustaining long-term response, doubled haploids should be induced in F1 or F2 plants during maize inbred development. In simulation experiments, I examined the response to multiple cycles of testcross selection among doubled haploid lines derived from F1 plants (denoted by DH), doubled haploid lines derived from F2 plants (DHF2), and recombinant inbred (RI) lines derived by single-seed descent. For a trait controlled by 100 or more quantitative trait loci (QTL), the cumulative responses to selection were up to 4–6% larger among DHF2 lines than among DH lines. The cumulative responses were up to 5–8% larger among RI lines than among DH lines. The QTL become unlinked as the number of QTL in a finite genome decreases, and the responses among RI, DH, and DHF2 lines were equal or nearly equal when only 20 QTL controlled the trait. Metabolic-flux epistasis reduced the differences in the response among RI, DH, and DHF2 lines. Overall, the results indicated that doubled haploids should be induced from F2 plants rather than from F1 plants. If year-round nurseries are used and new F1 crosses for inbred development are initially created on a speculative basis, the development of doubled haploids from F2 rather than F1 plants should not cause a delay in inbred development.  相似文献   

7.
Sodium Nitroprusside (SNP) and S-Nitrosoglutathione (GSNO) differently affect mitochondrial H2O2 release at Complex-I. mM SNP increases while GSNO decreases the release induced by succinate alone or added on top of NAD-linked substrates. Stimulation likely depends on Nitric Oxide ( . NO) (released by SNP but not by GSNO) inhibiting cytochrome oxidase and mitochondrial respiration. Preincubations with SNP or high GSNO (10 mM plus DTE to increases its . NO release) induces an inhibition of the succinate dependent H2O2 production consistent with a . NO dependent covalent modification. However maximal inhibition of the succinate dependent H2O2 release is obtained in the presence of low GSNO (20–100 μM), but not with SNP. This inhibition appears independent of . NO release since μM GSNO does not affect mitochondrial respiration, or the H2O2 detection systems and its effect is very rapid. Inhibition may be partly due to an increased removal of O2.− since GSNO chemically competes with NBT and cytochrome C in O2.− detection.  相似文献   

8.
Subunit α of the Escherichia coli F1FO ATP synthase has been produced, and its low-resolution structure has been determined. The monodispersity of α allowed the studies of nucleotide-binding and inhibitory effect of 4-Chloro-7-nitrobenzofurazan (NBD-Cl) to ATP/ADP-binding. Binding constants (K d ) of 1.6 μM of bound MgATP-ATTO-647N and 2.9 μM of MgADP-ATTO-647N have been determined from fluorescence correlation spectroscopy data. A concentration of 51 μM and 55 μM of NBD-Cl dropped the MgATP-ATTO-647N and MgADP-ATTO-647N binding capacity to 50% (IC50), respectively. In contrast, no effect was observed in the presence of N,N′-dicyclohexylcarbodiimide. As subunit α is the homologue of subunit B of the A1AO ATP synthase, the interaction of NBD-Cl with B of the A-ATP synthase from Methanosarcina mazei Gö1 has also been shown. The data reveal a reduction of nucleotide-binding of B due to NBD-Cl, resulting in IC50 values of 41 μM and 42 μM for MgATP-ATTO-647N and MgADP-ATTO-647N, respectively.  相似文献   

9.
While ~30% of the human genome encodes membrane proteins, only a handful of structures of membrane proteins have been resolved to high resolution. Here, we studied the structure of a member of the Cys-loop ligand gated ion channel protein superfamily of receptors, human type A γ2α1β2α1β2 gamma amino butyric acid receptor complex in a lipid bilayer environment. Studying the correlation between the structure and function of the gamma amino butyric acid receptor may enhance our understanding of the molecular basis of ion channel dysfunctions linked with epilepsy, ataxia, migraine, schizophrenia and other neurodegenerative diseases. The structure of human γ2α1β2α1β2 has been modeled based on the X-ray structure of the Caenorhabditis elegans glutamate-gated chloride channel via homology modeling. The template provided the first inhibitory channel structure for the Cys-loop superfamily of ligand-gated ion channels. The only available template structure before this glutamate-gated chloride channel was a cation selective channel which had very low sequence identity with gamma aminobutyric acid receptor. Here, our aim was to study the effect of structural corrections originating from modeling on a more reliable template structure. The homology model was analyzed for structural properties via a 100 ns molecular dynamics (MD) study. Due to the structural shifts and the removal of an open channel potentiator molecule, ivermectin, from the template structure, helical packing changes were observed in the transmembrane segment. Namely removal of ivermectin molecule caused a closure around the Leu 9 position along the ion channel. In terms of the structural shifts, there are three potential disulfide bridges between the M1 and M3 helices of the γ2 and 2 α1 subunits in the model. The effect of these disulfide bridges was investigated via monitoring the differences in root mean square fluctuations (RMSF) of individual amino acids and principal component analysis of the MD trajectory of the two homology models—one with the disulfide bridge and one with protonated Cys residues. In all subunit types, RMSF of the transmembrane domain helices are reduced in the presence of disulfide bridges. Additionally, loop A, loop F and loop C fluctuations were affected in the extracellular domain. In cross-correlation analysis of the trajectory, the two model structures displayed different coupling in between the M2–M3 linker region, protruding from the membrane, and the β1-β2/D loop and cys-loop regions in the extracellular domain. Correlations of the C loop, which collapses directly over the bound ligand molecule, were also affected by differences in the packing of transmembrane helices. Finally, more localized correlations were observed in the transmembrane helices when disulfide bridges were present in the model. The differences observed in this study suggest that dynamic coupling at the interface of extracellular and ion channel domains differs from the coupling introduced by disulfide bridges in the transmembrane region. We hope that this hypothesis will be tested experimentally in the near future.  相似文献   

10.
NORADRENALINE increases the intracellular concentration of adenosine 3′,5′-monophosphate (cyclic AMP)1,2 which, in turn, enhances glycogenosis3 and lipolysis4,5 in adipose tissue by increasing Phosphorylase and lipase activities. Prostaglandin E1 (PGE1) antagonizes the induced increases in Phosphorylase activity6,7 and glycerol release in human adipose tissues8,9 and isolated adipocytes7. The finding that the stimulatory effects of the cyclic AMP analogue N6—O2 dibutyryl cyclic AMP, which mimics the hormonal effect of noradrenaline in human fat cells, are not blocked by PGE17 suggests that noradrenaline and PGE1 alter fat cell metabolism by acting on the adenyl cyclase system10. Whether noradrenaline and PGE1 alter concentrations of cyclic AMP in human fat cells, however, has not been reported.  相似文献   

11.
The character of inheritance of the morphological traits of spike and grain color and morphometric parameters of the grain in simple and backcross F1 and F2 hybrids of spelt and soft wheat has been investigated. The experiments confirmed that single homologous genes determine the trait of grain width in different species of wheat. Incomplete dominance of the gene that determines the trait of grain length has been revealed. The increase of the dosage of genes from one wheat species in a backcross hybrid has been shown to increase the deviation from the other species and to bring the values of the quantitative parameters of the grain closer to the values for the saturating species. Splitting of the spike color trait in the F2 offspring has been shown to follow the 15: 1 dihybrid cross scheme and to be controlled by two dominant homologous genes.  相似文献   

12.
The effect of the β-amyloid peptide Aβ25–35 and fullerene C60 on the activity of the cytoplasmic enzymes lactate dehydrogenase (LDH) and glutathione peroxidase (GLP), and membrane-bound phosphofructokinase (PFK) and Na+,K+-ATPase in human erythrocytes has been studied. When used in combination, the cytotoxins decrease the activity of LDH and PFK in a nonadditive manner; in this case, Aβ25–35 protects PFK against the inhibitory effect of C60. The activity of LDH, GLP, and PFK decreases within the first 2–20 min of incubation of erythrocytes with Aβ25–35 in the absence of glucose. The addition of glucose sharply decreases the inhibitory action of Aβ25–35 on LDH and GLP but does not affect the fourfold decrease in activity of PFK; the activity of membrane-bound Na+,K+-ATPase does not depend on the presence of glucose. Possible mechanisms of interaction of Aβ25–35 and fullerene C60 with the erythrocyte membrane and enzymes are discussed.  相似文献   

13.
THE urate-binding α1–α2 globulin has been isolated from human plasma in a highly purified state1. The protein was purified by DEAE-‘Sephadex’, ammonium sulphate precipitation and semi-preparative Polyacrylamide gel electrophoresis. The urate-binding α1–α2 globulin is a rod-shaped glycoprotein, containing 12.1% carbohydrate, with an isoelectric point of 4.6 and a molecular weight of 67,000 ± 4,000. Amino-acid analysis indicated an unknown basic compound which appeared as an extra peak just in front of lysine1. To identify this compound, high voltage paper electrophoresis has been carried out on a plate electrophoresis apparatus in pyridine-acetate buffer pH 3.5. A spot separated out corresponding to ornithine. Amino-acid analysis on a BC-200 automatic analyser (Bio-Cal Instruments Co., West Germany), with a 54 cm column at 55° C and with 0.35 M sodium citrate buffer, pH 5.28, as elution buffer at a flow-rate of 150 ml./h, showed that ornithine was present. The presence of ornithine in the protein hydrolysate was also verified by gas chromatography/mass spectrometry2.  相似文献   

14.
Massive anthropogenic acceleration of the global nitrogen (N) cycle has stimulated interest in understanding the fate of excess N loading to aquatic ecosystems. Nitrate (NO3 ) is traditionally thought to be removed mainly by microbial respiratory denitrification coupled to carbon (C) oxidation, or through biomass assimilation. Alternatively, chemolithoautotrophic bacterial metabolism may remove NO3 by coupling its reduction with the oxidation of sulfide to sulfate (SO4 2−). The NO3 may be reduced to N2 or to NH4 +, a form of dissimilatory nitrate reduction to ammonium (DNRA). The objectives of this study were to investigate the importance of S oxidation as a NO3 removal process across diverse freshwater streams, lakes, and wetlands in southwestern Michigan (USA). Simultaneous NO3 removal and SO4 2− production were observed in situ using modified “push-pull” methods in nine streams, nine wetlands, and three lakes. The measured SO4 2− production can account for a significant fraction (25–40%) of the overall NO3 removal. Addition of 15NO3 and measurement of 15NH4 + production using the push–pull method revealed that DNRA was a potentially important process of NO3 removal, particularly in wetland sediments. Enrichment cultures suggest that Thiomicrospira denitrificans may be one of the organisms responsible for this metabolism. These results indicate that NO3 -driven SO4 2− production could be widespread and biogeochemically important in freshwater sediments. Removal of NO3 by DNRA may not ameliorate problems such as eutrophication because the N remains bio-available. Additionally, if sulfur (S) pollution enhances NO3 removal in freshwaters, then controls on N processing in landscapes subject to S and N pollution are more complex than previously appreciated. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
INTRODUCTION: We hypothesize that adenosine and PGE(2) could have a complementary immunosuppressive effect that is mediated via common cAMP-PKA signaling. MATERIALS AND METHODS: To test this hypothesis, the effect of adenosine and PGE(2) on the cytotoxic activity and cytokine production of lymphokine activated killer (LAK) cells was investigated. RESULTS: PGE(2) and adenosine inhibited LAK cells cytotoxic activity and production of INF-gamma, GM-CSF and TNF-alpha. In combination they showed substantially higher inhibition than each modality used alone. Using agonists and antagonists specific for PGE(2) and adenosine receptors we found that cooperation of PGE(2) and adenosine in their inhibitory effects are mediated via EP(2) and A(2A) receptors, respectively. LAK cells have 35-fold higher expression of EP(2) than A(2A). Combined PGE(2) and adenosine treatment resulted in augmentation of cAMP production, PKA activity, CREB phosphorylation and inhibition of Akt phosphorylation. Wortmannin and LY294002 enhanced the suppressive effects of adenosine and PGE(2). In contrast, Rp-8-Br-cAMPS, an inhibitor of PKA type I blocked their immunosuppressive effects, suggesting that the inhibitory effects of PGE(2) and adenosine are mediated via common pathway with activation of cAMP-PKA and inhibition of Akt. CONCLUSION: In comparison to other immunosuppressive molecules (TGF-beta and IL-10), adenosine and PGE(2) are unique in their ability to inhibit the executive function of highly cytotoxic cells. High intratumor levels of adenosine and PGE(2) could protect tumor from immune-mediated destruction by inactivation of the tumor infiltrating functionally active immune cells.  相似文献   

16.
Using a microelectrode technique, we studied the effects of alimentary vitamin В1 deficiency on synaptic transmission in isolated phrenico-hemidiaphragmatic murine preparations. Animals of group І (control) were on a standard thiamine-controlled diet (16 mg/kg thiamine) with no limitations. Animals of group II (control with alimentary limitation) were on the same diet, but daily consumption in these animals was limited and made similar to the amount of food consumed by the animals of group ІІІ within idential periods of cage housing (for differentiation of the effects of anorexia related to the thiamine-deficient state in group III and proper effects of В1 hypovitaminosis). Animals of group ІІІ (thiamine-deficient) were on a standard diet (with no limitations) mostly analogous to that in group І but containing no thiamine. In phrenicohemidiaphragmatic preparations obtained from animals of group ІІІ, the amplitude of end-plate potentials (EPPs) and miniature EPPs (mEPPs) on the 10th day of consumption of the thiamine-defficient diet and the quantum composition of EPPs on the 20th day became significantly (Р < 0.01) smaller than in preparations obtained from animals of both groups І and ІІ. The frequency of mEPPs and membrane potential of muscle fibers in group ІІІ remained unchanged. Two processes, a decrease in the dimension of the transmitter quantum (which is observed within rather early stages of the development of thiamine-defficient state) and a decrease in the quantum composition of evoked EPPs (at later stages) underlie a gradual decrease in the amplitude of EPPs related to the development of alimentary vitamin В1 deficiency. Neirofiziologiya/Neurophysiology, Vol. 40, No. 4, pp. 322–331, July–August, 2008.  相似文献   

17.
Molecular docking simulations were performed in this study to investigate the importance of both structural and catalytic zinc ions in the human alcohol dehydrogenase beta(2)beta(2) on substrate binding. The structural zinc ion is not only important in maintaining the structural integrity of the enzyme, but also plays an important role in determining substrate binding. The replacement of the catalytic zinc ion or both catalytic and structural zinc ions with Cu(2+) results in better substrate binding affinity than with the wild-type enzyme. The width of the bottleneck formed by L116 and V294 in the substrate binding pocket plays an important role for substrate entrance. In addition, unfavorable contacts between the substrate and T48 and F93 prevent the substrate from moving too close to the metal ion. The optimal binding position occurs between 1.9 and 2.4 A from the catalytic metal ion.  相似文献   

18.
19.
The nucleation, ice crystal shapes and thermodynamic stability of polar stratospheric clouds particles are interesting concerns owing to their implication in the ozone layer destruction. Some of these particles are formed by conformers of H2O, HNO3, and H2SO4. We carried out calculations using density functional theory (DFT) to obtain optimized structures. Several stable trimers are achieved —divided in two groups, one with HNO3 moiety, second with H2SO4 moiety— after pre-optimization at B3LYP/6-31G and subsequently optimization at B3LYP/aug-cc-pVTZ level of theory. For both most stable conformers five H2O molecules are added to their optimized trimers to calculate hydrated geometries. The OH stretching harmonic frequencies are provided for all aggregates. The zero-point energy correction (ZEPC), relative electronic energies (?E), relative reaction Gibbs free energies ?(?G)k-relative, and cooling constant (K cooling ) are reported at three temperatures: 188 K, 195 K, and 210 K. Shapes given in our calculations are compared with various experimental shapes as well as comparisons with their thermo-stabilities.
Graphical Abstract Facet shapes and thermo-stabilities of H2SO4?HNO3 hydrates involved in polar stratospheric clouds. IR spectrum of WNS-1+5W structure and its circular facet
  相似文献   

20.
The ATP synthase is a ubiquitous nanomotor that fuels life by the synthesis of the chemical energy of ATP. In order to synthesize ATP, this enzyme is capable of rotating its central rotor in a reversible manner. In the clockwise (CW) direction, it functions as ATP synthase, while in counter clockwise (CCW) sense it functions as an proton pumping ATPase. In bacteria and mitochondria, there are two known canonical natural inhibitor proteins, namely the ε and IF1 subunits. These proteins regulate the CCW F1FO-ATPase activity by blocking γ subunit rotation at the αDPDP/γ subunit interface in the F1 domain. Recently, we discovered a unique natural F1-ATPase inhibitor in Paracoccus denitrificans and related α-proteobacteria denoted the ζ subunit. Here, we compare the functional and structural mechanisms of ε, IF1, and ζ, and using the current data in the field, it is evident that all three regulatory proteins interact with the αDPDP/γ interface of the F1-ATPase. In order to exert inhibition, IF1 and ζ contain an intrinsically disordered N-terminal protein region (IDPr) that folds into an α-helix when inserted in the αDPDP/γ interface. In this context, we revised here the mechanism and role of the ζ subunit as a unidirectional F-ATPase inhibitor blocking exclusively the CCW F1FO-ATPase rotation, without affecting the CW-F1FO-ATP synthase turnover. In summary, the ζ subunit has a mode of action similar to mitochondrial IF1, but in α-proteobacteria. The structural and functional implications of these intrinsically disordered ζ and IF1 inhibitors are discussed to shed light on the control mechanisms of the ATP synthase nanomotor from an evolutionary perspective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号