首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytolytic T cell-centric active specific and adoptive immunotherapeutic approaches might benefit from the simultaneous engagement of CD4(+) T cells. Considering the difficulties in simultaneously engaging CD4(+) and CD8(+) T cells in tumor immunotherapy, especially in an Ag-specific manner, redirecting CD4(+) T cells to MHC class I-restricted epitopes through engineered expression of MHC class I-restricted epitope-specific TCRs in CD4(+) T cells has emerged as a strategic consideration. Such TCR-engineered CD4(+) T cells have been shown to be capable of synthesizing cytokines as well as lysing target cells. We have conducted a critical examination of functional characteristics of CD4(+) T cells engineered to express the alpha- and beta-chains of a high functional avidity TCR specific for the melanoma epitope, MART-1(27-35), as a prototypic human tumor Ag system. We found that unpolarized CD4(+)CD25(-) T cells engineered to express the MART-1(27-35) TCR selectively synthesize Th1 cytokines and exhibit a potent Ag-specific lytic granule exocytosis-mediated cytolytic effector function of comparable efficacy to that of CD8(+) CTL. Such TCR engineered CD4(+) T cells, therefore, might be useful in clinical immunotherapy.  相似文献   

2.
Genetic modification of vaccines by linking the Ag to lysosomal or endosomal targeting signals has been used to route Ags into MHC class II processing compartments for improvement of CD4+ T cell responses. We report in this study that combining an N-terminal leader peptide with an MHC class I trafficking signal (MITD) attached to the C terminus of the Ag strongly improves the presentation of MHC class I and class II epitopes in human and murine dendritic cells (DCs). Such chimeric fusion proteins display a maturation state-dependent subcellular distribution pattern in immature and mature DCs, mimicking the dynamic trafficking properties of MHC molecules. T cell response analysis in vitro and in mice immunized with DCs transfected with Ag-encoding RNA showed that MITD fusion proteins have a profoundly higher stimulatory capacity than wild-type controls. This results in efficient expansion of Ag-specific CD8+ and CD4+ T cells and improved effector functions. We used CMVpp65 and NY-ESO-1 Ags to study preformed immune responses in CMV-seropositive individuals and cancer patients. We show that linking these Ags to the MITD trafficking signal allows simultaneous, polyepitopic expansion of CD8+ and CD4+ T cells, resulting in distinct CD8+ T cell specificities and a surprisingly broad and variable Ag-specific CD4+ repertoire in different individuals.  相似文献   

3.
TGF-beta1 is a potent immunoregulatory cytokine. However, its impact on the generation and effector function of Ag-specific human effector memory CD8 T cells had not been evaluated. Using Ag-specific CD8 T cells derived from melanoma patients immunized with the gp100 melanoma Ag, we demonstrate that the addition of TGF-beta1 to the initial Ag activation cultures attenuated the gain of effector function by Ag-specific memory CD8 T cells while the phenotypic changes associated with activation and differentiation into effector memory were comparable to control cultures. These activated memory CD8 T cells consistently expressed lower mRNA levels for T-bet, suggesting a mechanism for TGF-beta1-mediated suppression of gain of effector function in memory T cells. Moreover, TGF-beta1 induced a modest expression of CCR7 on Ag-activated memory CD8 T cells. TGF-beta1 also suppressed cytokine secretion by Ag-specific effector memory CD8 T cells, as well as melanoma-reactive tumor-infiltrating lymphocytes and CD8 T cell clones. These results demonstrate that TGF-beta1 suppresses not only the acquisition but also expression of effector function on human memory CD8 T cells and tumor-infiltrating lymphocytes reactive against melanoma, suggesting that TGF-beta1-mediated suppression can hinder the therapeutic benefits of vaccination, as well as immunotherapy in cancer patients.  相似文献   

4.
Allergen-specific immunotherapy using peptides is an efficient treatment for allergic diseases. Recent studies suggest that the induction of CD4+ regulatory T (Treg) cells might be associated with the suppression of allergic responses in patients after allergen-specific immunotherapy. Our aim was to identify MHC class II promiscuous T cell epitopes for the birch pollen allergen Bet v 1 capable of stimulating Treg cells with the purpose of inhibiting allergic responses. Ag-reactive CD4+ T cell clones were generated from patients with birch pollen allergy and healthy volunteers by in vitro vaccination of PBMC using Bet v 1 synthetic peptides. Several CD4+ T cell clones were induced by using 2 synthetic peptides (Bet v 1(141-156) and Bet v 1(51-68)). Peptide-reactive CD4+ T cells recognized recombinant Bet v 1 protein, indicating that these peptides are produced by the MHC class II Ag processing pathway. Peptide Bet v 1(141-156) appears to be a highly MHC promiscuous epitope since T cell responses restricted by numerous MHC class II molecules (DR4, DR9, DR11, DR15, and DR53) were observed. Two of these clones functioned as typical Treg cells (expressed CD25, GITR, and Foxp3 and suppressed the proliferation and IL-2 secretion of other CD4+ T cells). Notably, the suppressive activity of these Treg cells required cell-cell contact and was not mediated through soluble IL-10 or TGF-beta. The identified promiscuous MHC class II epitope capable of inducing suppressive Treg responses may have important implication for the development of peptide-based Ag-specific immunotherapy to birch pollen allergy.  相似文献   

5.
The ex vivo priming and expansion of human CTL by APC, such as autologous monocyte-derived dendritic cells (DC), has the potential for use in immunotherapy for infectious diseases and cancer. To overcome the difficulty of obtaining sufficient number of autologous DC from patients, we have developed cell-based artificial APC (aAPC), designated Med-APC. These aAPC rapidly activate and expand the corresponding Ag-specific CD8+ T cells when pulsed with CTL epitope peptide(s) as efficiently as mature DC (mDC). We have also shown that Med-APC possess an innate cellular machinery that is sufficient to support the processing of complete Ag into immunodominant peptides, which considerably extends the usefulness of this technology. In addition, we have developed a novel expression vector system that expresses ubiquitinated Ag, resulting in an enhanced APC function of this system. Genetically encoded Ag can be easily introduced into Med-APC by transfection with this vector. Med-APC transfected with ubiquitinated Ag can efficiently expand the corresponding Ag-specific CTL without exogenous peptides. Therefore, Med-APC may have important therapeutic implications for adoptive immunotherapy and can be used for the detection of Ag-specific CTL for immunomonitoring.  相似文献   

6.
The failure to mount effective immunity to virus variants in a previously virus-infected host is known as original antigenic sin. We have previously shown that prior immunity to a virus capsid protein inhibits induction by immunization of an IFN-gamma CD8+ T cell response to an epitope linked to the capsid protein. We now demonstrate that capsid protein-primed CD4+ T cells secrete IL-10 in response to capsid protein presented by dendritic cells, and deviate CD8+ T cells responding to a linked MHC class I-restricted epitope to reduce IFN-gamma production. Neutralizing IL-10 while delivering further linked epitope, either in vitro or in vivo, restores induction by immunization of an Ag-specific IFN-gamma response to the epitope. This finding demonstrates a strategy for overcoming inhibition of MHC class I epitopes upon immunization of a host already primed to Ag, which may facilitate immunotherapy for chronic viral infection or cancer.  相似文献   

7.
Improvement of the strategy to target tumor Ags to dendritic cells (DCs) for immunotherapy requires the identification of the most appropriate ligand/receptor pairing. We screened a library of Ab fragments on mouse DCs to isolate new potential Abs capable of inducing protective immune responses. The screening identified a high-affinity Ab against CD36, a multi-ligand scavenger receptor primarily expressed by the CD8alpha+ subset of conventional DCs. The Ab variable regions were genetically linked to the model Ag OVA and tested in Ag presentation assays in vitro and in vivo. Anti-CD36-OVA was capable of delivering exogenous Ags to the MHC class I and MHC class II processing pathways. In vivo, immunization with anti-CD36-OVA induced robust activation of naive CD4+ and CD8+ Ag-specific T lymphocytes and the differentiation of primed CD8+ T cells into long-term effector CTLs. Vaccination with anti-CD36-OVA elicited humoral and cell-mediated protection from the growth of an Ag-specific tumor. Notably, the relative efficacy of targeting CD11c/CD8alpha+ via CD36 or DEC205 was qualitatively different. Anti-DEC205-OVA was more efficient than anti-CD36-OVA in inducing early events of naive CD8+ T cell activation. In contrast, long-term persistence of effector CTLs was stronger following immunization with anti-CD36-OVA and did not require the addition of exogenous maturation stimuli. The results identify CD36 as a novel potential target for immunotherapy and indicate that the outcome of the immune responses vary by targeting different receptors on CD8alpha+ DCs.  相似文献   

8.
The T cell response to infection consists of clonal expansion of effector cells, followed by contraction to memory levels. It was previously thought that the duration of infection determines the magnitude and kinetics of the T cell response. However, recent analysis revealed that transition between the expansion and contraction phases of the Ag-specific CD8+ T cell response is not affected by experimental manipulation in the duration of infection or Ag display. We studied whether the duration of infection and Ag display influenced the kinetics of the Ag-specific CD4+ T cell response to Listeria monocytogenes (LM) infection. We found that truncating infection and Ag display with antibiotic treatment as early as 24 h postinfection had minimal impact on the expansion or contraction of CD4+ T cells; however, the magnitudes of the Ag-specific CD4+ and CD8+ T cell responses were differentially affected by the timing of antibiotic treatment. Treatment of LM-infected mice with antibiotics at 24 h postinfection did not prevent generation of detectable CD4+ and CD8+ memory T cells at 28 days after infection, vigorous secondary expansion of these memory T cells, or protection against a subsequent LM challenge. These results demonstrate that events within the first few days of infection stimulate CD4+ and CD8+ T cell responses that are capable of carrying out the full program of expansion and contraction to functional memory, independently of prolonged infection or Ag display.  相似文献   

9.
Artificial APCs (aAPCs) genetically modified to express selective costimulatory molecules provide a reproducible, cost-effective, and convenient method for polyclonal and Ag-specific expansion of human T cells for adoptive immunotherapy. Among the variety of aAPCs that have been studied, acellular beads expressing anti-CD3/anti-CD28 efficiently expand CD4+ cells, but not CD8+ T cells. Cell-based aAPCs can effectively expand cytolytic CD8+ cells, but optimal costimulatory signals have not been defined. 4-1BB, a costimulatory molecule expressed by a minority of resting CD8+ T cells, is transiently up-regulated by all CD8+ T cells following activation. We compared expansion of human cytolytic CD8+ T cells using cell-based aAPCs providing costimulation via 4-1BB vs CD28. Whereas anti-CD3/anti-CD28 aAPCs mostly expand naive cells, anti-CD3/4-1BBL aAPCs preferentially expand memory cells, resulting in superior enrichment of Ag-reactive T cells which recognize previously primed Ags and efficient expansion of electronically sorted CD8+ populations reactive toward viral or self-Ags. Using HLA-A2-Fc fusion proteins linked to 4-1BBL aAPCs, 3-log expansion of Ag-specific CD8+ CTL was induced over 14 days, whereas similar Ag-specific CD8+ T cell expansion did not occur using HLA-A2-Fc/anti-CD28 aAPCs. Furthermore, when compared with cytolytic T cells expanded using CD28 costimulation, CTL expanded using 4-1BB costimulation mediate enhanced cytolytic capacity due, in part, to NKG2D up-regulation. These results demonstrate that 4-1BB costimulation is essential for expanding memory CD8+ T cells ex vivo and is superior to CD28 costimulation for generating Ag-specific products for adoptive cell therapy.  相似文献   

10.
Cutaneous vaccination with lentiviral vectors generates systemic CD8 T cell responses that have the potential to eradicate tumors for cancer immunotherapy. However, although s.c. immunization with <1 million lentiviral particles clearly primes cytotoxic T cells, vaccination with much higher doses has routinely been used to define the mechanisms of T cell activation by lentiviral vectors. In particular, experiments to test presentation of lentiviral Ags by dendritic cells (DC) require injection of high viral titers, which may result in aberrant transduction of different DC populations. We exploited inducible murine models of DC depletion to investigate which DC prime the lentiviral response after s.c. immunization with low doses of lentiviral particles. In this article, we demonstrate that conventional DC are required to present Ag to CD8 T cells in draining lymph nodes. Langerhans cells are not required to activate the effector response, and neither Langerhans cells nor plasmacytoid DC are sufficient to prime Ag-specific T cells. Immunization drives the generation of endogenous long-lived memory T cells that can be reactivated to kill Ag-specific targets in the absence of inflammatory challenge. Furthermore, lentiviral vaccination activates expansion of endogenous CD4 Th cells, which are required for the generation of effector CD8 T cells that produce IFN-γ and kill Ag-specific targets. Collectively, we demonstrate that after cutaneous immunization with lentiviral particles, CD4-licensed lymph node conventional DC present Ag to CD8 T cells, resulting in the generation of protective endogenous antitumor immunity that may be effective for cancer immunotherapy.  相似文献   

11.
Over the past decade, many efforts have been made to identify MHC class II-restricted epitopes from different tumor-associated Ags. Melan-A/MART-1(26-35) parental or Melan-A/MART-1(26-35(A27L)) analog epitopes have been widely used in melanoma immunotherapy to induce and boost CTL responses, but only one Th epitope is currently known (Melan-A51-73, DRB1*0401 restricted). In this study, we describe two novel Melan-A/MART-1-derived sequences recognized by CD4 T cells from melanoma patients. These epitopes can be mimicked by peptides Melan-A27-40 presented by HLA-DRB1*0101 and HLA-DRB1*0102 and Melan-A25-36 presented by HLA-DQB1*0602 and HLA-DRB1*0301. CD4 T cell clones specific for these epitopes recognize Melan-A/MART-1+ tumor cells and Melan-A/MART-1-transduced EBV-B cells and recognition is reduced by inhibitors of the MHC class II presentation pathway. This suggests that the epitopes are naturally processed and presented by EBV-B cells and melanoma cells. Moreover, Melan-A-specific Abs could be detected in the serum of patients with measurable CD4 T cell responses specific for Melan-A/MART-1. Interestingly, even the short Melan-A/MART-1(26-35(A27L)) peptide was recognized by CD4 T cells from HLA-DQ6+ and HLA-DR3+ melanoma patients. Using Melan-A/MART-1(25-36)/DQ6 tetramers, we could detect Ag-specific CD4 T cells directly ex vivo in circulating lymphocytes of a melanoma patient. Together, these results provide the basis for monitoring of naturally occurring and vaccine-induced Melan-A/MART-1-specific CD4 T cell responses, allowing precise and ex vivo characterization of responding T cells.  相似文献   

12.
CD4+ T cells that are activated by a MHC class II/peptide encounter can induce maturation of APCs and promote cytotoxic CD8+ T cell responses. Unfortunately, the number of well-defined tumor-specific CD4+ T cell epitopes that can be exploited for adoptive immunotherapy is limited. To determine whether Th cell responses can be generated by redirecting CD4+ T cells to MHC class I ligands, we have introduced MHC class I-restricted TCRs into postthymic murine CD4+ T cells and examined CD4+ T cell activation and helper function in vitro and in vivo. These experiments indicate that Ag-specific CD4+ T cell help can be induced by the engagement of MHC class I-restricted TCRs in peripheral CD4+ T cells but that it is highly dependent on the coreceptor function of the CD8beta-chain. The ability to generate Th cell immunity by infusion of MHC class I-restricted Th cells may prove useful for the induction of tumor-specific T cell immunity in cases where MHC class II-associated epitopes are lacking.  相似文献   

13.
CD8+ T lymphocytes are key effectors in the control of viral diseases and some tumours. In general, the majority of CD8+ T cells recognize a few immunodominant epitopes, but in some circumstances, subdominant specificities may be more relevant as targets for vaccines or immunotherapy. Epstein-Barr virus (EBV)-associated cancers are an example where knowledge of subdominant-specific CD8+ T cells is important because the immunodominant EBV proteins are not expressed in these cancers. We have developed a live-cell sorting method based on CD107 detection to remove CD8+ T cells recognising dominant EBV epitopes and show that this allows enrichment of subdominant-specific CD8+ T cells in subsequent cultures. This work shows that immunodomination in vitro suppresses the outgrowth of subdominant-specific CD8+ T cells in culture. The method may have broad applications for finding subdominant targets for immunotherapy and vaccines, and the principle suggests a means of improving subdominant CD8+ T-cell cultures grown for immunotherapy.  相似文献   

14.
We have developed an in vivo/in vitro immunization procedure with xenogeneic RBC as Ag that results in the generation of a lymphoid population that expresses potent delayed-type hypersensitivity (DTH) and produces little, if any, antibody. This lymphoid population contains Ag-specific CD8+ T cells that can inhibit the induction of a strong IgG response. These CD8+ T cells are shown to not only inhibit the antibody response in an Ag-specific manner but allow the Ag to induce cells of the target population to express DTH. Furthermore, the Ag-specific inhibition of the antibody response and the Ag-specific enhancement of the induction of DTH appear to be coordinately regulated, as the same number of CD8+ T cells cells is required to achieve both effects. Thus these CD8+ T cells are shown to switch the response induced by Ag from a humoral to a cell-mediated mode. These regulatory characteristics are consistent with a physiologic role for these cells of ensuring the absence of antibody production during a strong, cell-mediated response.  相似文献   

15.
The identification of many tumor-associated epitopes as nonmutated "self" Ags led to the hypothesis that the induction of large numbers of self/tumor Ag-specific T cells would be prevented because of central and peripheral tolerance. We report in this study on vaccination efforts in 95 HLA-A*0201 patients at high risk for recurrence of malignant melanoma who received prolonged immunization with the "anchor-modified" synthetic peptide, gp100209-217(210M). Vaccination using this altered peptide immunogen was highly effective at inducing large numbers of self/tumor-Ag reactive T cells in virtually every patient tested, with levels as high as 42% of all CD8+ T cells assessed by tetramer analysis. From 1 to 10% of all CD8+ cells were tumor-Ag reactive in 44% of patients and levels >10% were generated in 17% of patients. These studies were substantiated using the ELISPOT assay and a bulk cytokine release assay. Although our data regarding "tumor escape" were inconclusive, some patients had growing tumors that expressed Ag and HLA-A*0201 in the presence of high levels of antitumor T cells. There was no difference in the levels of antitumor Ag-specific T cells in patients who recurred compared with those that remained disease-free. Thus, the mere presence of profoundly expanded numbers of vaccine-induced, self/tumor Ag-specific T cells cannot by themselves be used as a "surrogate marker" for vaccine efficacy. Further, the induction of even high levels of antitumor T cells may be insufficient to alter tumor progression.  相似文献   

16.
Help from CD4 T cells may be required for optimal generation and maintenance of memory CD8 T cells and also for optimal Ag reactivation. We examined whether the helper cell and the CD8 killer cell need to have the same Ag specificity for help to be effective during interactions of memory T cells with mature APC. This is important because virus and tumor Ag-specific CD4 T cell responses are selectively impaired in several chronic viral infections and malignancies. We performed studies in vitro and in vivo and found that functional memory CD4 T cells generated from a distinct antigenic source (heterospecific helpers) could provide direct and effective help to memory CD8 T cells. Functional heterospecific memory CD4 T cells could also rescue secondary CD8 T cell responses in an experimental tumor model in which homospecific CD4 help was impaired. This could provide a rationale for immunotherapy strategies designed to bypass impaired homospecific help.  相似文献   

17.
Presentation of bacteria-derived CD8 T cell epitopes by dendritic cells (DC) requires either their direct infection or that DC acquire and cross-present Ags from other infected cells. We found that cross-presentation of Listeria monocytogenes-derived CD8 T cell epitopes was much stronger than direct Ag presentation by infected murine DC. Cross-presentation of Listeria-derived CD8 T cell epitopes showed unique physiological requirements. It was dependent upon the delivery of unstable bacterial translation products by infected, but still viable, Ag donor cells. Cross-presentation was enhanced both when unstable translation products in infected Ag donor cells were protected from proteasomal degradation and when the production of misfolded bacterial proteins was increased. The requirement of unstable translation products for cross-presentation may represent a novel pathway that functions to focus the CD8 T cell response toward epitopes derived from newly synthesized proteins.  相似文献   

18.
T cell tolerance is a critical element of tumor escape. However, the mechanism of tumor-associated T cell tolerance remains unresolved. Using an experimental system utilizing the adoptive transfer of transgenic T cells into naive recipients, we found that the population of Gr-1+ immature myeloid cells (ImC) from tumor-bearing mice was able to induce CD8+ T cell tolerance. These ImC accumulate in large numbers in spleens, lymph nodes, and tumor tissues of tumor-bearing mice and are comprised of precursors of myeloid cells. Neither ImC from control mice nor progeny of tumor-derived ImC, including tumor-derived CD11c+ dendritic cells, were able to render T cells nonresponsive. ImC are able to take up soluble protein in vivo, process it, and present antigenic epitopes on their surface and induce Ag-specific T cell anergy. Thus, this is a first demonstration that in tumor-bearing mice CD8+ T cell tolerance is induced primarily by ImC that may have direct implications for cancer immunotherapy.  相似文献   

19.
EBV, a B lymphotropic herpesvirus, encodes two immediate early (IE)-, >30 early (E)-, and >30 late (L)-phase proteins during its replication (lytic) cycle. Despite this, lytic Ag-induced CD8 responses are strongly skewed toward IE and a few E proteins only, all expressed before HLA I presentation is blocked in lytically infected cells. For comparison, we examined CD4(+) T cell responses to eight IE, E, or L proteins, screening 14 virus-immune donors to overlapping peptide pools in IFN-γ ELISPOT assays, and established CD4(+) T cell clones against 12 defined epitopes for target-recognition assays. We found that the lytic Ag-specific CD4(+) T cell response differs radically from its CD8 counterpart in that it is widely distributed across IE, E, and L Ag targets, often with multiple reactivities detectable per donor and with IE, E, or L epitope responses being numerically dominant, and that all CD4(+) T cell clones, whether IE, E, or L epitope-specific, show strong recognition of EBV-transformed B cell lines, despite the lines containing only a small fraction of lytically infected cells. Efficient recognition occurs because lytic Ags are released into the culture and are acquired and processed by neighboring latently infected cells. These findings suggested that lytic Ag-specific CD4 responses are driven by a different route of Ag display than drives CD8 responses and that such CD4 effectors could be therapeutically useful against EBV-driven lymphoproliferative disease lesions, which contain similarly small fractions of EBV-transformed cells entering the lytic cycle.  相似文献   

20.
Using the DO11.10 CD4+ TCR-transgenic mouse system, we have recently shown that CD8 blockade promotes the expansion of Ag-specific regulatory CD4+ T cells in mice made tolerant to OVA with anti-CD4 mAb. We now show that CD8 blockade is also critical to promoting responses to nontolerizing Ag in anti-CD4 mAb-treated tolerant mice. Previously published work shows that treatment with anti-CD4 mAb without CD8 blockade induces Ag-specific tolerance. We now show that, in addition to inducing tolerance, anti-CD4 mAb treatment also significantly reduces responsiveness to irrelevant, nontolerizing Ag, and this unresponsiveness is associated with significant apoptosis of the CD4+ T cells. Anti-CD4 mAb-induced apoptosis is inhibited by cotreatment with anti-CD8 mAb and responsiveness to irrelevant Ag is restored, while Ag-specific tolerance is maintained. These data suggest that CD8 blockade promotes responsiveness to nontolerizing Ags in tolerant mice by inhibiting CD4+ T cell apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号