首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Improving Spirulina platensis biomass yield using a fed-batch process   总被引:6,自引:0,他引:6  
Increasing interest is being shown in the cyanobacterium Spirulina platensis because of its nutritional properties when used as food supplement and possible therapeutic effects. One of the most important areas being studied is the development of alternative nutrient sources which can be used to decrease the production costs of commercially produced S. platensis and obtain high productivity. Water from Mangueira Lagoon (Rio Grande do Sul State, Brazil) has high levels of carbonates and a high pH and has the potential to be used as a culture medium for S. platensis, although some nutrient supplementation may be required. We tested the effect of unsupplemented Mangueira Lagoon water (MLW) or MLW supplemented with 1.125 or 2.250 mg/l of urea and/or 21 or 42 mg/l of sodium bicarbonate on the growth of S. platensis in fed-batch culture using a 3(2) factorial design and found that there the addition of 1.125 mg/l of urea resulted in a 2.67 fold increase times in the final biomass concentration of S. platensis.  相似文献   

2.
The Spirulina platensis biomass was characterized for its metal accumulation as a function of pH, external metal concentration, equilibrium isotherms, kinetics, effect of co-ions under free (living cells, lyophilized, and oven-dried) and immobilized (Ca-alginate and polyacrylamide gel) conditions. The maximum metal biosorption by S. platensis biomass was observed at pH 6.0 with free and immobilized biomass. The studies on equilibrium isotherm experiments showed highest maximum metal loading by living cells (181.0 +/- 13.1 mg Co(2+)/g, 272.1 +/- 29.4 mg Cu(2+)/g and 250.3 +/- 26.4 mg Zn(2+)/g) followed by lyophilized (79.7 +/- 9.6 mg Co(2+)/g, 250.0 +/- 22.4 mg Cu(2+)/g and 111.2 +/- 9.8 mg Zn(2+)/g) and oven-dried (25.9 +/- 1.9 mg Co(2+)/g, 160.0 +/- 14.2 mg Cu(2+)/g and 35.1 +/- 2.7 mg Zn(2+)/g) biomass of S. platensis on a dry weight basis. The polyacrylamide gel (PAG) immobilization of lyophilized biomass found to be superior over Ca-alginate (Ca-Alg) and did not interfere with the S. platensis biomass biosorption capacity, yielding 25% of metal loading after PAG entrapment. The time-dependent metal biosorption in both the free and immobilized form revealed existence of two phases involving an initial rapid phase (which lasted for 1-2 min) contributing 63-77% of total biosorption, followed by a slower phase that continued for 2 h. The metal elution studies conducted using various reagents showed more than 90% elution with mineral acids, calcium salts, and Na(2)EDTA with free (lyophilized or oven-dried) as well as immobilized biomass. The experiments conducted to examine the suitability of PAG-immobilized S. platensis biomass over multiple cycles of Co(2+), Cu(2+), and Zn(2+) sorption and elution showed that the same PAG cubes can be reused for at least seven cycles with high efficiency.  相似文献   

3.
The effects of sodium bicarbonate and a bicarbonate-carbonate mixture on expired CO2 and the volume of distribution of bicarbonate were studied in eight anesthetized, paralyzed, and ventilated dogs made acidotic with HCl (5 mmol/kg) infused over 90 min. Both sodium bicarbonate and Carbicarb resulted in systemic alkalinization and comparable increases in the serum bicarbonate at 50 min (7.07 +/- 0.91 vs. 7.99 +/- 0.77, respectively; P = NS). Sodium bicarbonate infusion resulted in an increase in CO2 excretion that accounted for a fractional CO2 excretion of 0.20 +/- 0.09, whereas infusion of a bicarbonate-carbonate mixture resulted in a fractional CO2 excretion of -0.06 +/- 0.09 (P less than 0.01). The uncorrected volume of distribution of bicarbonate after sodium bicarbonate infusion was higher than that seen with the bicarbonate-carbonate mixture (0.60 +/- 0.07 vs. 0.34 +/- 0.03 l/kg; P less than 0.01). However, when the volume of bicarbonate distribution was corrected for expired CO2, there was no difference between treatment with sodium bicarbonate and the bicarbonate-carbonate mixture (0.44 +/- 0.07 vs. 0.38 +/- 0.04 l/kg; P = NS). These data demonstrate that, in this animal model of acidosis, sodium bicarbonate treatment of systemic acidosis is accompanied by a generation of a considerable amount of CO2, whereas treatment with a bicarbonate-carbonate mixture is not. This suggests that in states of impaired ventilation, a bicarbonate-carbonate mixture may offer more efficient systemic alkalinization and may be associated with less CO2 generation than sodium bicarbonate.  相似文献   

4.
The cyanobacterium Spirulina platensis is an attractive alternative source of the pigment chlorophyll, which is used as a natural color in food, cosmetic, and pharmaceutical products. In this work, the influence of the light intensity and urea supplementation as a nitrogen source using fed-batch cultivation for S. platensis growth and chlorophyll content was examined. Cultivations were carried out in 5 l open tanks, at 30+/-1 degrees C. Response surface methodology was utilized for analysis of the results, and models were obtained for biomass productivity, nitrogen-cell conversion factor and chlorophyll productivity. The best cellular growth was observed with 500 mg/l of urea at a light intensity of 5600 lx, whereas the highest concentration of chlorophyll in the biomass was observed with 500 mg/l of urea at a light intensity of 1400 lx. Overall, the best chlorophyll productivity was observed with 500 mg/l of urea at a light intensity of 3500 lx, providing the optimal balance between the cellular growth and the biomass chlorophyll content.  相似文献   

5.
Cultivation of Spirulina platensis using ammonium salts or wastewater containing ammonium as alternative nitrogen sources is considered as a commercial way to reduce the production cost. In this research, by analyzing the relationship between biomass production and ammonium- N consumption in the fed-batch culture of Spirulina platensis using ammonium bicarbonate as a nitrogen nutrient source, an online adaptive control strategy based on optical density (OD) measurements for controlling ammonium feeding was presented. The ammonium concentration was successfully controlled between the cell growth inhibitory and limiting concentrations using this OD-based feedback feeding method. As a result, the maximum biomass concentration (2.98 g/l), productivity (0.237 g/l·d), nitrogen-to-cell conversion factor (7.32 gX/gN), and contents of protein (64.1%) and chlorophyll (13.4 mg/g) obtained by using the OD-based feedback feeding method were higher than those using the constant and variable feeding methods. The OD-based feedback feeding method could be recognized as an applicable way to control ammonium feeding and a benefit for Spirulina platensis cultivations.  相似文献   

6.
Spirulina platensis was cultivated, in comparative studies, using several sources of nitrogen. The standard source used (sodium nitrate) was the same as that used in the synthetic medium Zarrouk, whereas the alternative nitrogen sources consisted of ammonium nitrate, urea, ammonium chloride, ammonium sulphate or acid ammonium phosphate. The initial nitrogen concentrations tested were 0.01, 0.03 and 0.05 M in an aerated photobioreactor at 30 °C, with an illuminance of 1900 lux, and 12 h-light/12 h-dark photoperiod over a period of 672 h. Maximum biomass was produced in medium containing sodium nitrate (0.01–0.03–0.05 M), followed by ammonium nitrate (0.01 M) and urea (0.01 M). The final biomass concentrations were 1.992 g l–1 (0.03 M sodium nitrate), 1.628 g l–1 (0.05 M sodium nitrate), 1.559 g l–1 (0.01 M sodium nitrate), 0.993 g l–1 (0.01 M ammonium nitrate) and 0.910 g l–1 (0.01 M urea). This suggested that it is possible to utilize nitrogen sources other than sodium nitrate for growing S. platensis, in order to decrease the production costs of scaled up projects.  相似文献   

7.
The concentrations of inorganic and organic ions and osmolality in the blood of the medicinal leech, Hirudo medicinalis, were determined during normoxia and hypercapnic and hypocapnic hypoxia. In normoxic animals, the blood sodium concentration was 124.5 +/- 4.2 mmol/l and the total cation concentration was 132.2 +/- 4.3 mEq/l (mean +/- S.D.). Major anionic compounds were chloride (40.8 +/- 1.6 mmol/l), bicarbonate (8.4 +/- 1.3 mmol/l), and organic anions (42.5 +/- 2.3 mEq/l). Among the latter, malate accounts for 30.4 +/- 2.2 mEq/l. The nature of the remaining anion fraction, which balances cation and anion concentrations in leech blood, remains unknown. Within 96 h of hypercapnic hypoxia, the amount of organic osmolytes in leech tissue increased from the control level of 56.6 +/- 9.1 to 158.3 +/- 19.5 mumol/g dry weight. An even higher amount of organic acids was accumulated within 96 h of hypocapnic hypoxia (218.0 +/- 53.7 mumol/g dry weight). A possible reason for this is that lactate, which is a major end-product of hypocapnic hypoxia, cannot be excreted to the external medium as easily as propionate. The accumulation of blood organic acids generating osmotic stress in the animals was compensated by an equimolar decrease in sodium and chloride ion concentrations. In hypercapnic animals these changes resulted in a constant osmotic concentration of the blood (200 mosmol/kg H2O) during the experimental period. Between 24 and 96 h of hypocapnic hypoxia, however, the increase in the osmotic gradient between animal and medium was correlated with further net water uptake and the obvious deterioration of the volume- and ion-regulatory mechanisms in these animals.  相似文献   

8.
Eucalyptus hemicellulose was hydrolyzed by treating eucalyptus wood chips with sulfuric acid. The hydrolyzate was used as the substrate to produce single-cell protein by growing Paecilomyces variotii IOC-3764 for 72 or 96 h. The influences of rice bran, ammonium sulfate and fermentation time were verified by a 23 full-factorial central composite design. At the optimum process conditions, the cell concentration was 12.06 g/l, which was obtained when the microorganisms were cultivated for 89 h in a medium composed of 10 g/l rice bran, 2.0 g/l nitrogen and 1.1 g/l sodium phosphate. The mathematical model Y = 10.65 + 2.40X2 + 2.36X3 + 1.16X2X3 - 2.10X2(2) - 1.06X3(2) describes biomass production by P. variotii in eucalyptus hemicellulosic hydrolyzate with a determination coefficient of R2 = 0.9561, where X2 and X3 are ammonium sulfate and fermentation time, respectively.  相似文献   

9.
Spirulina platensis was cultivated in a bench-scale airlift photobioreactor using synthetic wastewater (total nitrogen 412 mg L(-1), total phosphorous 90 mg L(-1), pH 9-10) with varying ammonia/total nitrogen ratios (50-100% ammonia with balance nitrate) and hydraulic residence times (15-25 d). High average biomass density (3500-3800 mg L(-1)) and productivity (5.1 g m(-2) d(-1)) were achieved when ammonia was maintained at 50% of the total nitrogen. Both high ammonia concentrations and mutual self-shading, which resulted from the high biomass density in the airlift reactor, were found to partially inhibit the growth of S. platensis. The performance of the airlift bioreactor used in this study compared favorably with other published studies. The system has good potential for treatment of high strength wastewater combined with production of algae for biofuels or other products, such as human and animal food, food supplements or pharmaceuticals.  相似文献   

10.
The cyanobacterium Spirulina platensis has been used by humans because of its nutritional and possibly medicinal effects. Our study evaluated the influence of temperature and nitrogen concentration in the medium on the production of biomass by this cyanobacterium and the biomass composition in protein, lipid and phenolic compounds. We found that at 35 degrees C there was a negative effect on biomass production but a positive effect on the production of protein, lipids and phenolics, the highest levels of these compounds being obtained in Zarrouk's medium containing 1.875 or 2.500 g l(-1) sodium nitrate. Higher biomass densities and productivity were obtained at 30 degrees C than at 35 degrees C, but nitrogen concentration appeared to have no effect on the amount of protein, lipid or phenolics, indicating that at 30 degrees C the concentration of sodium nitrate in Zarrouk's medium (2.50 g l(-1)) can be reduced without loss of productivity, an important cost-saving factor in large-scale cultivation.  相似文献   

11.
Apical membrane vesicles were prepared from confluent monolayers of LLC-PK1 cells grown upon microcarrier beads. The final membrane preparation, obtained by a modified divalent cation precipitation technique, was enriched in alkaline phosphatase, leucine aminopeptidase and trehalase (8-fold compared to the initial homogenate). Analysis of phosphate uptake into the vesicles identified a specific sodium-dependent pathway. Lithium and other cations were unable to replace sodium. At 100 mmol/l sodium and pH 7.4, an apparent Km for phosphate of 99 +/- 19 mumol/l and an apparent Ki for arsenate of 1.9 mmol/l were found. Analysis of the sodium activation of phosphate uptake gave an apparent Km for sodium of 32 +/- 12 mmol/l and suggested the involvement of two sodium ions in the transport mechanism. Sodium modified the apparent Km of the transport system for phosphate. The rate of sodium-dependent phosphate uptake was higher at pH 6.4 than at pH 7.4. At both pH values, an inside negative membrane potential (potassium gradient plus valinomycin) had no stimulatory effect on the rate of the sodium-dependent component of phosphate uptake. It is concluded that the apical membrane of LLC-PK1 cells contains a sodium-phosphate cotransport system with a stoichiometry of 2 sodium ions: 1 phosphate anion.  相似文献   

12.
AIM: To develop a new medium for enhanced production of biomass of an aquaculture probiotic Pseudomonas MCCB 103 and its antagonistic phenazine compound, pyocyanin. METHODS AND RESULTS: Carbon and nitrogen sources and growth factors, such as amino acids and vitamins, were screened initially in a mineral medium for the biomass and antagonistic compound of Pseudomonas MCCB 103. The selected ingredients were further optimized using a full-factorial central composite design of the response surface methodology. The medium optimized as per the model for biomass contained mannitol (20 g l(-1)), glycerol (20 g l(-1)), sodium chloride (5 g l(-1)), urea (3.3 g l(-1)) and mineral salts solution (20 ml l(-1)), and the one optimized for the antagonistic compound contained mannitol (2 g l(-1)), glycerol (20 g l(-1)), sodium chloride (5.1 g l(-1)), urea (3.6 g l(-1)) and mineral salts solution (20 ml l(-1)). Subsequently, the model was validated experimentally with a biomass increase by 19% and fivefold increase of the antagonistic compound. CONCLUSION: Significant increase in the biomass and antagonistic compound production could be obtained in the new media. SIGNIFICANCE AND IMPACT OF THE STUDY: Media formulation and optimization are the primary steps involved in bioprocess technology, an attempt not made so far in the production of aquaculture probiotics.  相似文献   

13.
The effects of anions on the thermostability of ovotransferrin (oTf) were investigated. The temperature, T(m), causing aggregation of oTf was measured in the presence or absence of anions, and the denaturation temperature, T(m)(DSC), was also determined by differential scanning calorimetry (DSC) in the presence of the citrate anion. We found that some anions (phosphate, sulfate and citrate) raised temperature T(m) of oTf by about 5-7 degrees C. However, neither sodium chloride nor sodium bicarbonate raised T(m) by that much. Temperature T(m) was increased by increasing the concentration of the citrate anion, and was in good agreement with denaturation temperature T(m)(DSC), suggesting that denaturation of the oTf molecules resulted in aggregation of oTf. We also demonstrated that the anions, especially sulfate, repressed the heat-aggregation of liquid egg white.The Van't Hoff plot from the T(m) and DeltaH(d) values revealed that two anion-binding sites were concerned with heat stabilization. These binding sites may have been concerned with sulfate binding (not bicarbonate binding) that is found in the crystal structure of apo-form of oTf, since the bicarbonate anion did not raise T(m).  相似文献   

14.
Chen T  Zheng W  Wong YS  Yang F  Bai Y 《Bioresource technology》2006,97(18):2260-2265
Accumulation of Se in mixotrophic culture of Spirulina platensis was investigated in this study. Results indicated that glucose was better than acetate as an organic carbon source for mixotrophic culture of S. platensis. Supplementation of glucose (2 gL(-1)) significantly enhanced the biomass concentration (2.57 gL(-1)) and the production of phycocyanin (0.279 gL(-1)) and allophycocyanin (0.126 gL(-1)) in S. platensis, which were much higher than those of photoautotrophic culture (1.08 gL(-1), 0.119 gL(-1) and 0.042 gL(-1), respectively). Stepwise addition of Se during the growth phase avoided the inhibitory effect of high Se concentration on the growth of S. platensis. The Se enrichment favored the production of phycocyanin and allophycocyanin in the algal cells. The highest Se yield (1033 microgL(-1)) was obtained at an accumulative Se concentration of 250 mgL(-1), with organic Se percentage, biomass concentration, phycocyanin and allophycocyanin yields of 92.3%, 2.55 gL(-1), 0.295 gL(-1) and 0.153 gL(-1), respectively. These results indicated that the application of mixotrophic culture S. platensis with stepwise addition of Se to the medium could offer an effective and economical way for the production of high Se-enriched algal products.  相似文献   

15.
Nutrient limitation conditions, optimization and comparison of polyhydroxyalkanoate (PHA) yields and biomass production by parent and mutant strains of Rhizobium meliloti were investigated. Complex interactions among concentrations of sucrose (5–55 g/l), urea (0.05–0.65 g/l) inoculum (10–250 ml/l) and K2HPO4 (0.5–2 g/l), were studied using central composite rotatable design (CCRD) experiments. Phosphate-limiting medium (0.33 g K2HPO4/l) in the presence of excess carbon (sucrose 42.5 g/l) results in more production of PHA (2.2 g/l) in the parent strain. In comparison, the mutant strain required moderate levels of sucrose (30 g/l), along with excess of phosphate (1 g/l) for high PHA content of cell biomass (80%) and PHA yield (3.3 g/l). Optimised PHA production (biomass 4.8 g/l and PHA 3.09 g/l) by the parent strain occurred at: sucrose 51.58 g/l, urea 0.65 g/l, K2HPO4 0.48 g/l and inoculum 10 ml/l. In the mutant strain, higher yields of biomass (9.05 g/l) and PHA (5.66 g/l) were obtained in Optimised medium containing: sucrose 55 g/l, urea 0.65 g/l, K2HPO4 1.0 g/l and inoculum 150.58 ml/l.  相似文献   

16.
Water supplemented with 10% or 20% (v/v) of Zarrouk medium was used to cultivate Spirulina platensis in closed and open bioreactors under controlled conditions (30 degrees C, 32.5 micromol m(-2) s(-1), 12 h light/dark photoperiod) and in a greenhouse (9.4 to 46 degrees C, up to 2800 micromol m(-2) s(-1), variable day length photoperiod) using different initial biomass concentrations (X0) in the extreme south of Brazil (32.05 degrees S, 52.11 degrees W). Under controlled conditions the maximum specific growth rate (micromax) was 0.102 d(-1), the biomass doubling time (t(d)) was 6.8 d, the maximum dry biomass concentration (Xmax) was 1.94 g L(-1) and the maximum productivity (Pmax) was 0.059 g L(-)1 d(-1), while the corresponding values in the greenhouse experiments were micromax = 0.322 d(-1), t(d) = 2.2 d, Xmax = 1.73 g L(-1) and Pmax = 0.112 g L(-1) d(-1). Under controlled conditions the highest values for these parameters occurred when X0 = 0.15 g L(-1), while in the greenhouse X0 = 0.4 g L(-1) produced the highest values. These results show that the cultivation of S. platensis in greenhouses in the extreme south of Brazil is technically viable and that the S. platensis inoculum and the concentration of Zarrouk medium can be combined in such a way as to obtain growth and productivity parameters comparable, or superior, to those occurring in bioreactors under controlled conditions of temperature, illuminance and photoperiod.  相似文献   

17.
Akar T  Tunali S 《Bioresource technology》2006,97(15):1780-1787
The Pb(II) and Cu(II) biosorption characteristics of Aspergillus flavus fungal biomass were examined as a function of initial pH, contact time and initial metal ion concentration. Heat inactivated (killed) biomass was used in the determination of optimum conditions before investigating the performance of pretreated biosorbent. The maximum biosorption values were found to be 13.46 +/- 0.99 mg/g for Pb(II) and 10.82 +/- 1.46 mg/g for Cu(II) at pH 5.0 +/- 0.1 with an equilibrium time of 2 h. Detergent, sodium hydroxide and dimethyl sulfoxide pretreatments enhanced the biosorption capacity of biomass in comparison with the heat inactivated biomass. The biosorption data obtained under the optimum conditions were well described by the Freundlich isotherm model. Competitive biosorption of Pb(II) and Cu(II) ions was also investigated to determine the selectivity of the biomass. The results indicated that A. flavus is a suitable biosorbent for the removal of Pb(II) and Cu(II) ions from aqueous solution.  相似文献   

18.
Porphyridium spp. is a red micro alga and is gaining importance as a source of valuable products viz., phycobiliproteins (PB), sulfated exopolysaccharides, and polyunsaturated fatty acids with potential applications in the food and pharmaceutical industries. In the present study, the effects of the major media constituents of Porphyridium species were studied using response surface methodology (RSM) on biomass yield, total PB and the production of phycoerythrin (PE). A second order polynomial can be used to predict the PB and PE production in terms of the independent variables. The independent variables such as the concentrations of sodium chloride, magnesium sulfate, sodium nitrate, and dipotassium hydrogen phosphate influenced the total PB and PE production. The optimum conditions showed that total PB was 4.8% at the concentration of sodium chloride 26.1 g/L, magnesium sulfate 5.23 g/L, sodium nitrate 1.56 g/L, and dipotassium hydrogen phosphate 0.034 g/L. In case of optimum PE production (3.3%), the corresponding values are 29.62, 6.11, 1.59, and 0.076 g/L, respectively. PE production depends greatly on the concentrations of chloride, nitrate, and sulfate as well as phosphate of which the former possess the maximum effect.  相似文献   

19.
The semi-outdoor cultivation of Spirulina platensis was attempted using an underground-water-based medium. Occurrence of contaminant organisms such as Chlorella sp. and Chlamydomonas sp. was not found from a microscopic observation and bacteria were not detected from denaturing gradient gel electrophoresis (DGGE) analysis of PCR-amplified 16S rDNA during the cultivation, owing to pH control and the high quality of the underground water. The mean productivity was high at 10.5 g/m2/d with a range of 4.2-12.3 g/m2/d despite the unfavorable weather conditions of the rainy season. The cultivated S. platensis included a normal protein content of 58.9%. Consequently, the underground water improved the biomass productivity and the biomass quality because of an abundant supplementation of natural minerals and through a contaminant-free culture.  相似文献   

20.
Biosorption of chromium (VI) was studied using both fresh and spent algal biomass of Spirulina platensis and Chlorella vulgaris. Both showed comparable behavior suggesting that biosorption is primarily a surface phenomenon. Biosorption rate was very fast during the first five minutes, in which almost 50% of the chromium (VI) was adsorbed. Two step kinetic model was proposed for biosorption. Equilibrium data obeyed Freundlich and Langmuir adsorption isotherms. Fresh algal biomass of S. platensis gave maximum of 73.6% biosorption of chromium (VI) in 100 ppm solution at 1 g l(-1) cell loading. For improved economics, beta-carotene was extracted from S. platensis and the spent biomass was used for chromium (VI) biosorption. The maximum biosorption by spent biomass was increased to 86.2%. Thus, this two step process not only showed improved efficiency in biosorption ( approximately 17% increase) but also gave valuable byproduct, namely beta-carotene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号