首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
T cells from different subsets play a major role in protective immunity against pre-erythrocytic stages of malaria parasites. Exposure of humans and animals to malaria sporozoites induces (alphabeta CD8(+) and CD4(+) T cells specific for antigens expressed in pre-erythrocytic stages of Plasmodium. These T cells inhibit parasite development in the liver, and immunization with subunit vaccines expressing the respective antigenic moieties confers protection against sporozoite challenge. gammadelta and natural killer T cells can also play a role in protective immunity. Recent studies with mice transgenic for the alphabeta T-cell receptor have revealed the existence of complex mechanisms regulating the induction and development of these responses.  相似文献   

2.
For a T-cell subset to be classified as immunoregulatory, it might reasonably be predicted that in its absence, animals would experience pathological immune dysregulation. Moreover, reconstitution of the subset should restore normal immune regulation. So far, these criteria have been satisfied by only a few of the candidate regulatory T-cell subsets, but among them is the intraepithelial gammadelta T-cell receptor (TCR)+ subset of mouse skin. In this article, we look at immunoregulatory gammadelta T cells, and the growing evidence for tissue-associated immunoregulation mediated by both gammadelta T cells and alphabeta T cells.  相似文献   

3.
BACKGROUND: The development of immature thymocytes is regulated by the pre-T-cell receptor (pre-TCR). The pre-TCR is involved in several developmental processes including rescuing cells from programmed cell death, allelic exclusion and alphabeta versus gammadelta T-cell lineage commitment. A major issue is how the pre-TCR functions to integrate these processes in developing thymocytes. RESULTS: We have used a sensitive immunofluorescence technique to reveal the surface-expression profile of the pre-TCR on immature thymocyte subsets. We show that early pre-T cells (CD25(+)CD44(-)) can be subdivided on the basis of the level of surface pre-TCR expression. Detectable surface pre-TCR expression identified a rapidly cycling population of early pre-T cells which had successfully undergone beta-selection and been rescued from programmed cell death. Late pre-T cells (CD25(-)CD44(-)), which had traversed the beta-selection checkpoint, expressed surprisingly heterogeneous surface levels of the pre-TCR: high levels of surface pre-TCR expression were associated with commitment to the alphabeta T-cell lineage, whereas late pre-T cells with lower levels of surface pre-TCR could develop along both the alphabeta or gammadelta T-cell lineages. CONCLUSIONS: These data demonstrate that the surface expression of the pre-TCR can be used to reveal newly identified stages of T-cell development and to provide insights into alphabeta T-cell lineage commitment. They show that, although pre-TCR expression does not act as a developmental switch per se, its level of surface expression on late pre-T cells predicts their developmental potential.  相似文献   

4.
5.
6.
Gammadelta T cells remain an enigma. They are capable of generating more unique antigen receptors than alphabeta T cells and B cells combined, yet their repertoire of antigen receptors is dominated by specific subsets that recognize a limited number of antigens. A variety of sometimes conflicting effector functions have been ascribed to them, yet their biological function(s) remains unclear. On the basis of studies of gammadelta T cells in infectious and autoimmune diseases, we argue that gammadelta T cells perform different functions according to their tissue distribution, antigen-receptor structure and local microenvironment; we also discuss how and at what stage of the immune response they become activated.  相似文献   

7.
8.
T cell receptors consist either of an alpha-chain combined with a beta-chain or a gamma-chain combined with a delta-chain. alphabeta T cells constitute the majority of T cells in human blood throughout life. Flow cytometric analyses presented in this study, which focus on the representation of the developmental (naive and memory) subsets of gammadelta T cells, show by function and phenotype that this lineage contains both naive and memory cells. In addition, we show that the representation of naive T cells is higher among alphabeta than gammadelta T cells in adults and that the low frequency of naive gammadelta T cells in adults reflects ontological differences between the two major gammadelta subsets, which are distinguished by expression of Vdelta1 vs Vdelta2 delta-chains. Vdelta1 cells, which mirror alphabeta cells with respect to naive representation, predominate during fetal and early life, but represent the minority of gammadelta cells in healthy adults. In contrast, Vdelta2 cells, which constitute the majority of adult gammadelta cells, show lower frequencies of naive cells than Vdelta1 early in life and show vanishingly small naive frequencies in adults. In essence, nearly all naive Vdelta2 cells disappear from blood by 1 year of life. Importantly, even in children less than 1 year old, most of the nonnaive Vdelta2 cells stain for perforin and produce IFN-gamma after short-term in vitro stimulation. This represents the earliest immunological maturation of any lymphocyte compartment in humans and most likely indicates the importance of these cells in controlling pathology due to common environmental challenges.  相似文献   

9.
Tumor necrosis factor-alpha (TNF-alpha) plays a crucial role in the early defense against pathogens. This cytokine is produced by several cell types including T lymphocytes expressing the alphabeta as well as the gammadelta T cell receptor (TcR). In human, the circulating gammadelta T cells, which mostly express Vgamma9Vdelta2 TcR, have been strongly suggested to play an important protective role against infectious agents. These activated cells early produce high amounts of TNF-alpha, which induce a determinant beneficial effect against development of intracellular pathogens; however, sustained production of this cytokine can result in immunopathological diseases. The signals that regulate TNF-alpha production in Vgamma9Vdelta2 T cells are totally unknown. In primary alphabeta T cells, TNF-alpha production was shown to necessitate engagement of the TcR and CD28, and to be independent of the p38 mitogen activated protein kinase pathway. We demonstrate herein that, in contrast to alphabeta T cells, TNF-alpha production in Vgamma9Vdelta2 T lymphocytes is independent of CD28 costimulation and highly dependent on TcR-induced p38 kinase and extracellular signal-regulated kinase 2 pathway activation for optimal cytokine release. Moreover, we bring elements supporting the idea that the "activation threshold" of gammadelta T cells leading to cytokine production is lower than that of alphabeta T cells.  相似文献   

10.
Murine gammadelta T cell subsets, defined by their Vgamma chain usage, have been shown in various disease models to have distinct functional roles. In this study, we examined the responses of the two main peripheral gammadelta T cell subsets, Vgamma1(+) and Vgamma4(+) cells, during collagen-induced arthritis (CIA), a mouse model that shares many hallmarks with human rheumatoid arthritis. We found that whereas both subsets increased in number, only the Vgamma4(+) cells became activated. Surprisingly, these Vgamma4(+) cells appeared to be Ag selected, based on preferential Vgamma4/Vdelta4 pairing and very limited TCR junctions. Furthermore, in both the draining lymph node and the joints, the vast majority of the Vgamma4/Vdelta4(+) cells produced IL-17, a cytokine that appears to be key in the development of CIA. In fact, the number of IL-17-producing Vgamma4(+) gammadelta T cells in the draining lymph nodes was found to be equivalent to the number of CD4(+)alphabeta(+) Th-17 cells. When mice were depleted of Vgamma4(+) cells, clinical disease scores were significantly reduced and the incidence of disease was lowered. A decrease in total IgG and IgG2a anti-collagen Abs was also seen. These results suggest that Vgamma4/Vdelta4(+) gammadelta T cells exacerbate CIA through their production of IL-17.  相似文献   

11.
12.
Little is known about what effector populations are associated with the control of human herpesvirus 8 (HHV-8) infection in vivo. We compared T lymphocyte subsets among HIV-HHV-8+ and HIV-HHV-8- infected human individuals. alphabeta+ T cells from HHV-8-infected individuals displayed a significantly higher percentage of differentiated effector cells among both CD4+ and CD8+ T cell subsets. HHV-8 infection was associated with significant expansion of gammadelta+ Vdelta1 T cells expressing a differentiated effector cell phenotype in peripheral blood. In vitro stimulation of PBMC from HHV-8-infected individuals with either infectious viral particles or different HHV-8 viral proteins resulted in gammadelta Vdelta1 T cell activation. In addition, gammadelta Vdelta1 T cells displayed a strong reactivity against HHV-8-infected cell lines and prevented the release of infectious viral particles following the induction of lyric replication. These data indicate that gammadelta T cells play a role in both innate and adaptive T cell responses against HHV-8 in immunocompetent individuals.  相似文献   

13.
The lungs are considered to have an impaired capacity to contain infection by pathogenic mycobacteria, even in the presence of effective systemic immunity. In an attempt to understand the underlying cellular mechanisms, we characterized the gammadelta T cell population following intranasal infection with Mycobacterium bovis bacillus Calmette-Guérin (BCG). The peak of gammadelta T cell expansion at 7 days postinfection preceded the 30 day peak of alphabeta T cell expansion and bacterial count. The expanded population of gammadelta T cells in the lungs of BCG-infected mice represents an expansion of the resident Vgamma2 T cell subset as well as an influx of Vgamma1 and of four different Vdelta gene-bearing T cell subsets. The gammadelta T cells in the lungs of BCG-infected mice secreted IFN-gamma following in vitro stimulation with ionomycin and PMA and were cytotoxic against BCG-infected peritoneal macrophages as well as against the uninfected J774 macrophage cell line. The cytotoxicity was selectively blocked by anti-gammadelta TCR mAb and strontium ions, suggesting a granule-exocytosis killing pathway. Depletion of gammadelta T cells by injection of specific mAb had no effect on the subsequent developing CD4 T cell response in the lungs of BCG-infected mice, but significantly reduced cytotoxic activity and IFN-gamma production by lung CD8 T cells. Thus, gammadelta T cells in the lungs might help to control mycobacterial infection in the period between innate and classical adaptive immunity and may also play an important regulatory role in the subsequent onset of alphabeta T lymphocytes.  相似文献   

14.
Linker for activation of T cells (LAT) is essential for T cell activation. Mice with mutations of distinct LAT tyrosine residues (LatY136F and Lat3YF) develop lymphoproliferative disorders involving TCR alphabeta or gammadelta T cells that trigger symptoms resembling allergic inflammation. We analyzed whether these T cells share a pattern of gene expression that may account for their pathogenic properties. Both LatY136F alphabeta and Lat3YF gammadelta T cells expressed high levels of the type 1 cysteinyl leukotriene receptor (CysLT(1)). Upon binding to the 5(S)-hydroxy-6(R)-S-cysteinylglycyl-7,9-trans-11,14-cis-eicosatetraenoic acid (LTD(4)) cysteinyl leukotriene, CysLT(1) induced Ca(2+) flux and caused chemotaxis in both LatY136F alphabeta and Lat3YF gammadelta T cells. Wild-type in vitro-activated T cells, but not resting T cells, also migrated toward LTD(4) however with a lower magnitude than T cells freshly isolated from LatY136F and Lat3YF mice. These results suggest that CysLT(1) is likely involved in the recruitment of activated alphabeta and gammadelta T cells to inflamed tissues.  相似文献   

15.
Although the importance of gammadelta T cells in pathogen-induced immune responses is becoming increasingly apparent, it is not clear that their involvement is always of benefit to the host. Here we review evidence for the protective and damaging roles of gammadelta T cells in infection and discuss how these disparate findings might be resolved by considering the nature and properties of the pathogen, the sites of infection and conditions under which gammadelta T cell responses are initiated, and the involvement of different subsets of gammadelta T cells.  相似文献   

16.
Gammadelta T lymphocytes play an important role in the immune defense against infection, based on the unique reactivity of human Vdelta2Vgamma9 gammadelta T cells toward bacterial phosphoantigens. Chemokines and their corresponding receptors orchestrate numerous cellular reactions, including leukocyte migration, activation, and degranulation. In this study we investigated the expression of various receptors for inflammatory and homeostatic chemokines on peripheral blood gammadelta T cells and compared their expression patterns with those on alphabeta T cells. Although several of the analyzed receptors (including CCR6, CCR7, CXCR4, and CXCR5) were not differentially expressed on gammadelta vs alphabeta T cells, gammadelta T cells expressed strongly increased levels of the RANTES/macrophage inflammatory protein-1alpha/-1beta receptor CCR5 and also enhanced levels of CCR1-3 and CXCR1-3. CCR5 expression was restricted to Vdelta2 gammadelta T cells, while the minor subset of Vdelta1 gammadelta T cells preferentially expressed CXCR1. Stimulation with heat-killed extracts of Mycobacterium tuberculosis down-modulated cell surface expression of CCR5 on gammadelta T cells in a macrophage-dependent manner, while synthetic phosphoantigen isopentenyl pyrophosphate and CCR5 ligands directly triggered CCR5 down-modulation on gammadelta T cells. The functionality of chemokine receptors CCR5 and CXCR3 on gammadelta T cells was demonstrated by Ca(2+) mobilization and chemotactic response to the respective chemokines. Our results identify high level expression of CCR5 as a characteristic and selective feature of circulating Vdelta2 gammadelta T cells, which is in line with their suspected function as Th1 effector T cells.  相似文献   

17.
Normal (noninflamed) human skin contains a network of lymphocytes, but little is known about the homing and function of these cells. The majority of alphabeta T cells in normal skin express CCR8 and produce proinflammatory cytokines. In this study we examined other subsets of cutaneous lymphocytes, focusing on those with potential function in purging healthy tissue of transformed and stressed cells. Human dermal cell suspensions contained significant populations of Vdelta1(+) gammadelta T cells and CD56(+)CD16(-) NK cells, but lacked the subsets of Vdelta2(+) gammadelta T cells and CD56(+)CD16(+) NK cells, which predominate in peripheral blood. The skin-homing receptors CCR8 and CLA were expressed by a large fraction of both cell types, whereas chemokine receptors associated with lymphocyte migration to inflamed skin were absent. Neither cell type expressed CCR7, although gammadelta T cells up-regulated this lymph node-homing receptor upon TCR triggering. Stimulation of cutaneous Vdelta1(+) gammadelta T cell lines induced secretion of large amounts of TNF-alpha, IFN-gamma, and the CCR8 ligand CCL1. In contrast to cutaneous alphabeta T cells, both cell types had the capacity to produce intracellular perforin and displayed strong cytotoxic activity against melanoma cells. We therefore propose that gammadelta T cells and NK cells are regular constituents of normal human skin with potential function in the clearance of tumor and otherwise stressed tissue cells.  相似文献   

18.
Since their discovery 15 years ago, the role of gammadelta T cells has remained somewhat elusive. Responses of gammadelta T cells have been found in numerous infectious and non-infectious diseases. New evidence points to gammadelta T cells' functioning in the airways to maintain normal airway responsiveness or tone. In the lung, distinct subsets of gammadelta T cell subsets seem to have specific roles, one subset promoting allergic inflammation, the other serving a protective role.  相似文献   

19.
Although the functions and antigen recognition requirements of alphabeta T cells are well characterised, the antigens recognised by gammadelta T cells and the consequences of this recognition are unclear. gammadelta T cells are enriched within epithelia, where they eradicate transformed epithelial cells and regulate inflammation. To understand how this occurs, we need to understand the cellular ligands recognised by the gammadelta cell through the gammadelta T-cell receptor (TCR). We have therefore generated a soluble TCR (sTCR) to identify ligands for the murine gammadelta intestinal intraepithelial lymphocyte (IEL) population. sTCR was produced in the baculovirus expression system and purified by affinity chromatography on an anti-TCRdelta affinity column. sTCR was recognised by a panel of conformation-specific anti-TCRgammadelta antibodies. We will now use our sTCR to directly test the binding of putative ligands to the TCR using surface plasmon resonance, and to isolate the ligand biochemically.  相似文献   

20.
Lupus-prone (MRLxC57BL/6) F(1) mice lacking gammadelta T cells show more severe lupus than their T cell-intact counterparts, suggesting that gammadelta T cells down-modulate murine lupus. To determine the mechanisms for this effect, we assessed the capacity of gammadelta T cell lines derived from spleens of alphabeta T cell-deficient MRL/Mp-Fas(lpr) (MRL/Fas(lpr)) mice to down-regulate anti-dsDNA production generated by CD4(+)alphabeta T helper cell lines and activated B cells from wild-type MRL/Fas(lpr) mice. One line, GD12 (gd TCR(+), CD4(-)CD8(-)), had the capacity to reduce anti-dsDNA production in a contact-dependent manner. GD12 also killed activated MRL/Fas(lpr) (H-2(k)) B cells, with less cytolysis of resting B cells than that generated by in comparison to cytokine-matched gammadelta T cell lines. In addition, GD12 also killed activated B cells derived from C57BL/6-Fas(lpr) (H-2(b)) or beta(2)-microglobulin (beta(2) M)-deficient MRL/Fas(lpr) mice, suggesting cytolysis was neither MHC- nor CD1-restricted. Killing by GD12 was inhibited by anti-TNFalpha and anti-TNF-R1, and partially blocked by anti-gd TCR Fab fragments, but not by anti-FasL, anti-TNF-R2 (p75) or concanamycin A. IL-10 produced by GD12 also partially inhibited alphabeta Th1-dependent but not alphabeta Th2-dependent autoantibody production. These findings prove that we have identtified a gammadelta T cell line that suppresses autoantibody synthesis by alphabeta T-B cell collaboration in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号