首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In addition to efficiently decreasing VLDL-triglycerides (TGs), fenofibrate increases HDL-cholesterol levels in humans. We investigated whether the fenofibrate-induced increase in HDL-cholesterol is dependent on the expression of the cholesteryl ester transfer protein (CETP). To this end, APOE*3-Leiden (E3L) transgenic mice without and with the human CETP transgene, under the control of its natural regulatory flanking regions, were fed a Western-type diet with or without fenofibrate. Fenofibrate (0.04% in the diet) decreased plasma TG in E3L and E3L.CETP mice (-59% and -60%; P < 0.001), caused by a strong reduction in VLDL. Whereas fenofibrate did not affect HDL-cholesterol in E3L mice, fenofibrate dose-dependently increased HDL-cholesterol in E3L.CETP mice (up to +91%). Fenofibrate did not affect the turnover of HDL-cholesteryl ester (CE), indicating that fenofibrate causes a higher steady-state HDL-cholesterol level without altering the HDL-cholesterol flux through plasma. Analysis of the hepatic gene expression profile showed that fenofibrate did not differentially affect the main players in HDL metabolism in E3L.CETP mice compared with E3L mice. However, in E3L.CETP mice, fenofibrate reduced hepatic CETP mRNA (-72%; P < 0.01) as well as the CE transfer activity in plasma (-73%; P < 0.01). We conclude that fenofibrate increases HDL-cholesterol by reducing the CETP-dependent transfer of cholesterol from HDL to (V)LDL, as related to lower hepatic CETP expression and a reduced plasma (V)LDL pool.  相似文献   

3.
4.
Fibrate treatment in mice is known to modulate high density lipoprotein (HDL) metabolism by regulating apolipoprotein (apo)AI and apoAII gene expression. In addition to alterations in plasma HDL levels, fibrates induce the emergence of large, cholesteryl ester-rich HDL in treated transgenic mice expressing human apoAI (HuAITg). The mechanisms of these changes may not be restricted to the modulation of apolipoprotein gene expression, and the aim of the present study was to determine whether the expression of factors known to affect HDL metabolism (i.e. phospholipid transfer protein (PLTP), lecithin:cholesterol acyltransferase, and hepatic lipase) are modified in fenofibrate-treated mice. Significant rises in plasma PLTP activity were observed after 2 weeks of fenofibrate treatment in both wild-type and HuAITg mice. Simultaneously, hepatic PLTP mRNA levels increased in a dose-dependent fashion. In contrast to PLTP, lecithin:cholesterol acyltransferase mRNA levels in HuAITg mice were not significantly modified by fenofibrate despite a significant decrease in plasma cholesterol esterification activity. Fenofibrate did not induce any change in hepatic lipase activity. Fenofibrate significantly increased HDL size, an effect that was more pronounced in HuAITg mice than in wild-type mice. This effect in wild-type mice was completely abolished in PLTP-deficient mice. Finally, fenofibrate treatment did not influence PLTP activity or hepatic mRNA in peroxisome proliferator-activated receptor-alpha-deficient mice. It is concluded that 1) fenofibrate treatment increases plasma phospholipid transfer activity as the result of up-regulation of PLTP gene expression through a peroxisome proliferator-activated receptor-alpha-dependent mechanism, and 2) increased plasma PLTP levels account for the marked enlargement of HDL in fenofibrate-treated mice.  相似文献   

5.
Fenofibrate, a selective 1PPAR-α activator, is prescribed to treat human dyslipidemia. The aim of this study was to delineate the mechanism of fenofibrate-mediated reductions in adiposity, improvements in insulin sensitivity, and lowering of triglycerides (TG) and free fatty acids (FFA) and to investigate if these favorable changes are related to the inhibition of lipid deposition in the aorta. To test this hypothesis we used male LDLr deficient mice that exhibit the clinical features of metabolic syndrome X when fed a high fat high cholesterol (HF) diet. LDLr deficient mice fed HF diet and simultaneously treated with fenofibrate (100 mg/kg body weight) prevented development of obesity, lowered serum triglycerides and cholesterol, improved insulin sensitivity, and prevented accumulation of lipids in the aorta. Lowering of circulating lipids occurred via down-regulation of lipogenic genes, including fatty acid synthase, acetyl CoA carboxylase and diacyl glycerol acyl transferase-2, concomitant with decreased liver TG and cholesterol, and TG output rate. Fenofibrate also suppressed liver apoCIII mRNA levels and markedly increased lipoprotein lipase mRNA levels, known to enhance serum TG catabolism. In addition, fenofibrate profoundly reduced epididymal fat and mesenteric fat mass to the levels seen in lean mice. The reductions in body weight were associated with elevation of hepatic uncoupling protein 2 (UCP2) mRNA, a concomitant increase in the ketone body formation, and improved insulin sensitivity associated with tumor necrosis factor-α reductions and phosphoenol pyruvate carboxykinase down-regulation. These results demonstrate that fenofibrate improves lipid abnormalities partly via inhibition of TG production and partly via clearance of TG-rich apoB particles by elevating LPL and reduced apoCIII. The prevention of obesity development occurred via energy expenditure. Fenofibrate-mediated hypolipidemic effects together with improved insulin sensitivity and loss of adiposity led to the reductions in the aortic lipid deposition by inhibiting early stages of atherosclerosis possibly via vascular cell adhesion molecule-1 (VCAM-1) modulation. These results suggest that potent PPAR-α activators may be useful in the treatment of syndrome X. (Mol Cell Biochem xxx: 1–16, 2005)  相似文献   

6.
Estrogens are suggested to be antiatherogenic by affecting the vessel wall components. Since ABCA1 was recently shown to be atheroprotective, it was examined if estrogen-induced atheroprotection occurs partly via the regulation of the ABCA1. Since hepatic ABCA1 expression was also suggested to contribute to the bulk HDL levels, regulation of the ABCA1 under conditions of high or low levels of HDL were investigated in mice expressing normal or elevated levels of apoAI. To delineate whether estrogen's effect occurs via estrogen receptor--mediated pathway, the estrogen receptor--deficient (ER-)–/– mice were also administered either placebo or -estradiol for 5 consecutive days. Estrogen treatments decreased circulating HDL levels by 30%, but increased hepatic and intestinal ABCA1 mRNA by 2- and 1.5-fold, respectively. Hepatic ABCA1 mRNA also increased in the ER-–/– mice by 3-fold. These results suggest that estrogen, despite lowering the levels of HDL, it up-regulated the hepatic ABCA1 mRNA, and in the absence of ER-, ER- could compensate for ER-. To study whether HDL levels correlate with the ABCA1 expression, wild-type (WT) and the apoAI transgenic (A1-Tg) mice were fed high fat (HF) diet with or without cholic acid (CA) for 3 weeks. One group of mice was treated with fenofibrate, known to elevate HDL levels. CA without HF decreased HDL levels, while fenofibrate increased HDL levels. However, neither CA nor fenofibrate altered hepatic ABCA1 mRNA levels. HF diet increased the hepatic ABCA1 mRNA 1.8-fold in WT, but lowered ABCA1 mRNA by 2-fold in A1-Tg mice, suggesting that ABCA1 levels did not correlate with circulating HDL levels, while basal levels of HDL influenced ABCA1 expression. These data show for the first time that estrogen's antiatherogenic effects may occur via ABCA1-mediated pathway, and circulating HDL levels may influence expression of ABCA1.  相似文献   

7.
8.
Gemfibrozil and fenofibrate, two of the fibrates most used in clinical practice, raise HDL cholesterol (HDLc) and are thought to reduce the risk of atherosclerotic cardiovascular disease. These drugs act as PPARα agonists and upregulate the expression of genes crucial in reverse cholesterol transport (RCT). In the present study, we determined the effects of these two fibrates on RCT from macrophages to feces in vivo in human apoA-I transgenic (hApoA-ITg) mice. [(3)H]cholesterol-labeled mouse macrophages were injected intraperitoneally into hApoA-ITg mice treated with intragastric doses of fenofibrate, gemfibrozil or a vehicle solution for 17days, and radioactivity was determined in plasma, liver and feces. Fenofibrate, but not gemfibrozil, enhanced [(3)H]cholesterol flux to plasma and feces of female hApoA-ITg mice. Fenofibrate significantly increased plasma HDLc, HDL phospholipids, hApoA-I levels and phospholipid transfer protein activity, whereas these parameters were not altered by gemfibrozil treatment. Unlike gemfibrozil, fenofibrate also induced the generation of larger HDL particles, which were more enriched in cholesteryl esters, together with higher potential to generate preβ-HDL formation and caused a significant increase in [(3)H]cholesterol efflux to plasma. Our findings demonstrate that fenofibrate promotes RCT from macrophages to feces in vivo and, thus, highlight a differential action of this fibrate on HDL.  相似文献   

9.
Fenofibrate, a drug in the fibrate class of amphiphathic carboxylic acids, has multiple blood lipid modifying actions, which are beneficial to the prevention of atherosclerosis. One of its benefits is in lowering fasting and postprandial blood triglyceride (TG) concentrations. The goal of this study was to determine whether the hypotriglyceridemic actions of fenofibrate in the postprandial state include alterations in TG and fatty acid metabolism in the small intestine. We found that the hypotriglyceridemic actions of fenofibrate in the postprandial state of high-fat (HF) fed mice include a decrease in supply of TG for secretion by the small intestine. A decreased supply of TG for secretion was due in part to the decreased dietary fat absorption and increased intestinal fatty acid oxidation in fenofibrate compared to vehicle treated HF fed mice. These results suggest that the effects of fenofibrate on the small intestine play a critical role in the hypotriglyceridemic effects of fenofibrate.  相似文献   

10.
The metabolic and genetic determinants of HDL cholesterol (HDL-C) levels and HDL turnover were studied in 36 normolipidemic female subjects on a whole-food low-fat metabolic diet. Lipid, lipoprotein, and apolipoprotein levels, lipoprotein size, and apolipoprotein turnover parameters were determined, as were genetic variation at one site in the hepatic lipase promoter and six sites in the apolipoprotein AI/CIII/AIV gene cluster. Menopause had no significant effect on HDL-C or turnover. Stepwise multiple regression analysis revealed that HDL-C was most strongly correlated with HDL size, apolipoprotein A-II (apoA-II), and apolipoprotein A-I (apoA-I) levels, which together could account for 90% of the variation in HDL-C. HDL size was inversely correlated with triglycerides, body mass index, and hepatic lipase activity, which together accounted for 82% of the variation in HDL size. The hepatic lipase promoter genotype had a strong effect on hepatic lipase activity and could account for 38% of the variation in hepatic lipase activity. The apoA-I transport rate (AI-TR) was the major determinant of apoA-I levels, but AI-TR was not associated with six common genetic polymorphism in the apoAI/CIII/AIV gene cluster.A simplified model of HDL metabolism is proposed, in which A-I and apoA-II levels combined with triglycerides, and hepatic lipase activity could account for 80% of the variation in HDL-C.  相似文献   

11.
The levels of plasma apolipoprotein (apo) E, an anti-atherogenic protein involved in mammalian cholesterol transport, were found to be 2-3 fold lower in mice over-expressing human apoA-I gene. ApoE is mainly associated with VLDL and HDL-size particles, but in mice the majority of the apoE is associated with the HDL particles. Over-expression of the human apoA-I in mice increases the levels of human apoA-I-rich HDL particles by displacing mouse apoA-I from HDL. This results in lowering of plasma levels of mouse apoA-I. Since plasma levels of apoE also decreased in the apoA-I transgenic mice, the mechanism of apoE lowering was investigated. Although plasma levels of apoE decreased by 2-3 fold, apoB levels remained unchanged. As expected, the plasma levels of human apoA-I were almost 5-fold higher in the apoAI-Tg mice compared to mouse apoA-I in WT mice. If the over-expression of human apoA-I caused displacement of apoE from the HDL, the levels of hepatic apoE mRNA should remain the same in WT and the apoAI-Tg mice. However, the measurements of apoE mRNA in the liver showed 3-fold decreases of apoE mRNA in apoAI-Tg mice as compared to WT mice, suggesting that the decreased apoE mRNA expression, but not the displacement of the apoE from HDL, resulted in the lowering of plasma apoE in apoAI-Tg mice. As expected, the levels of hepatic apoA-I mRNA (transgene) were 5-fold higher in the apoAI-Tg mice. ApoE synthesis measured in hepatocytes also showed lower synthesis of apoE in the apoAI-Tg mice. These studies suggest that the integration of human apoA-I transgene in mouse genome occurred at a site that affected apoE gene expression. Identification of this locus may provide further understanding of the apoE gene expression.  相似文献   

12.
Fenofibrate is the ligand for PPARalpha subtype that mediates the action of its agonists' in lipid metabolism. How fibrate exerts hypolipidemic effect? The mechanism is studied in a newly developed high-fat fructose enriched diet induced dyslipidemia-diabetic hamster model. Fenofibrate lowered the basal plasma lipids like TC, TG, PL, FFA, glycerol, VLDL, and LDL, but HDL was increased. The activity of lipoprotein lipase in liver, adipose tissue, and small intestine was upregulated. However, that of triglyceride lipase was downregulated in liver. It has also improved the insulin secretion and plasma glucose lowering, caused by impairment in insulin secretion due to high-fat load. The drug was found effective in reducing body weight and diet due to rise in leptin level. Fenofibrate also enhanced the fecal excretion of total lipids, cholic acid, and deoxycholic acid probably by the activation of 7alpha cholesterol hydroxylase enzyme. Thus, causing broad-spectrum lipid lowering along with inhibition of hepatic lipid biosynthesis and maintaining lipid-glucose homeostasis.  相似文献   

13.
In humans, fibrates are used to treat dyslipidemia, because these drugs lower plasma triglycerides and raise HDL cholesterol. Treatment with fibrates lowers plasma phospholipid transfer protein (PLTP) activity in humans, but increases PLTP activity in mice, without a consistent effect on HDL-cholesterol concentration. Earlier, we found that PLTP overexpression in transgenic mice results in decreased plasma HDL levels and increased diet-induced atherosclerosis. So it seems that the interplay between fibrates, PLTP and HDL is different in mice and man, which may be important for atherosclerosis development. In the present study, we measured the effects of fibrates on PLTP expression in cultured human hepatocytes and effects of fibrate treatment on human PLTP expression, plasma PLTP activity and HDL levels in human PLTP transgenic mice. Fibrate treatment did not influence PLTP mRNA levels in human hepatocytes. Hepatic human PLTP mRNA levels and PLTP activity were both moderately elevated by fenofibrate treatment in human PLTP transgenic mice. In wild-type mice, however, feeding fenofibrate resulted in a strong induction of PLTP mRNA in the liver and a more than 4-fold increase of plasma PLTP activity. Plasma triglycerides were reduced in all mice by 48% or more by fenofibrate treatment. HDL-cholesterol concentrations were substantially increased by fenofibrate in PLTP overexpressing mice (+72%), but unaffected in wild-type mice. We conclude that fenofibrate treatment reverses the HDL-lowering effect of PLTP overexpression in human PLTP transgenic mice.  相似文献   

14.
A method is described for the isoelectric focusing (IEF) of lipoproteins on thin films of agarose. Within a pH gradient of 4.60-5.30 both high-density lipoproteins 2 and 3 (HDL2 and HDL3) are resolved into more than 10 fractions which could be stained either for protein or for lipids. The isoelectric focusing patterns for HDL2 and HDL3 are similar although HDL2 appears richer in the more alkaline bands. Narrow film strips from the IEF separation of HDL2 and HDL3 were interfaced with various agarose plates containing antisera against apolipoproteins apoAI, apoAII and apoCIII either alone or in combination, to provide two-dimensional IEF immunoelectrophoresis patterns. This technique demonstrated that apoAI and apoAII were present throughout the IEF gel for both subclasses of HDL. It also provided evidence for the existence of lipoproteins containing both apoAI and apoAII and other lipoproteins present in the alkaline region of the gel which contained apoAI but no apoAII. ApoCIII was found mostly in acidic lipoproteins and was not distributed identically in HDL2 and HDL3. The lipoproteins separated by IEF on agarose were also analysed by two-dimensional IEF-SDS electrophoresis and the individual apolipoproteins were identified by reaction with antibodies to apolipoproteins AI, AII, CI, CII, CIII, D, and E. This technique confirmed that in IEF of HDL, apoAI extended throughout the spectrum of lipoproteins whereas apoE was only present in alkaline lipoproteins and apoD was only present in acidic lipoproteins. IEF on agarose of either HDL2 or HDL3 allowed us to collect eight different fractions, which have the same pI in either lipoprotein class. The apolipoprotein composition of each isolated band was analysed by electroimmuno-assays for apolipoproteins AI, AII, CI, CII, CIII, D, and E and the results expressed as the ratio of the measured apolipoprotein to measured apoAI. In both HDL2 and HDL3, acidic lipoprotein fractions were enriched in apoAII, apoCIII and apoD. ApoCII and apoCII were not similarly distributed in HDL2 and HDL3 subfractions whereas the apoCI distribution was similar in both classes. Noteworthy in all experiments was the difference in the distributions of apoCI, apoCII, and apoCIII in HDL2 and HDL3, which indicated that the existence of a lipoprotein containing simultaneously CI, CII and CIII can only account for a small fraction of these apolipoproteins. Therefore these experiments substantiate the theory of the protein basis of HDL heterogeneity and suggest that the majority of apolipoproteins are present in complexes which upon IEF result in lipoprotein fractions of identical pI for both HDL2 or HDL3.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Effects of fenofibrate on lipid parameters in obese rhesus monkeys   总被引:3,自引:0,他引:3  
Fenofibrate is a member of the fibrate class of hypolipidemic agents used clinically to treat hypertriglyceridemia and mixed hyperlipidemia. The fibrates were developed primarily on the basis of their cholesterol and triglyceride lowering in rodents. Fibrates have historically been ineffective at lowering triglycerides in experimentally-induced dyslipidemia in nonhuman primate models. The spontaneously obese rhesus monkey is a well-recognized animal model for the study of human obesity and type 2 diabetes, and many of these monkeys exhibit naturally occurring lipid abnormalities, including elevated triglycerides and low HDL cholesterol (HDL-C), similar to patients with type 2 diabetes. To explore whether the obese rhesus model was predictive of the lipid lowering effects of fibrates, we evaluated fenofibrate in six hypertriglyceridemic, hyperinsulinemic, nondiabetic animals in a 20-week, dose-escalating study. The study consisted of a 4-week baseline period, two treatment periods of 10 mg/kg twice daily (b.i.d) for 4 weeks and 30 mg/kg b.i.d. for 8 weeks, and a 4-week washout period. Fenofibrate (30 mg/kg b.i.d) decreased serum triglycerides 55% and LDL-C 27%, whereas HDL-C increased 35%. Apolipoproteins B-100 and C-III levels were also reduced 70% and 29%, respectively. Food intake, body weight, and plasma glucose were not affected throughout the study. Interestingly, plasma insulin levels decreased 40% during the 30 mg/kg treatment period, suggesting improvement in insulin sensitivity. These results support the use of obese rhesus monkey as an excellent animal model for studying the effects of novel hypolipidemic agents, particularly agents that impact serum triglycerides and HDL-C.  相似文献   

16.
The apolipoprotein (Apo) AI-CIII-AIV gene cluster has a complex pattern of gene expression that is modulated by both gene- and cluster-specific cis-acting elements. In particular the regulation of Apo AIV expression has been previously studied in vivo and in vitro including several transgenic mouse lines but a complete, consistent picture of the tissue-specific controls is still missing. We have analysed the role of the Apo AIV 3' flanking sequences in the regulation of gene expression using both in vitro and in vivo systems including three lines of transgenic mice. The transgene consisted of a human fragment containing 7 kb of the 5' flanking region, the Apo AIV gene itself and 6 kb of the 3' flanking region (-7+6 Apo AIV). Accurate analysis of the Apo AIV mRNA levels using quantitative PCR and Northern blots showed that the 7+6 kb Apo AIV fragment confers liver-specific regulation in that the human Apo AIV transgene is expressed at approximately the same level as the endogenous mouse Apo AIV gene. In contrast, the intestinal regulation of the transgene did not follow, the pattern observed with the endogenous gene although it produced a much higher intestinal expression following the accepted human pattern. Therefore, this animal model provides an excellent substrate to design therapeutic protocols for those metabolic derangements that may benefit from variations in Apo AIV levels and its anti-atherogenic effect.  相似文献   

17.
Hepatic expression profiling has revealed miRNA changes in liver diseases, while hepatic miR-155 expression was increased in murine non-alcoholic fatty liver disease, suggesting that miR-155 might regulate the biological process of lipid metabolism. To illustrate the effects of miR-155 gain of function in transgenic mouse liver on lipid metabolism, transgenic mice (i.e., Rm155LG mice) for the conditional overexpression of mouse miR-155 transgene mediated by Cre/lox P system were firstly generated around the world in this study. Rm155LG mice were further crossed to Alb-Cre mice to realize the liver-specific overexpression of miR-155 transgene in Rm155LG/Alb-Cre double transgenic mice which showed the unaltered body weight, liver weight, epididymal fat pad weight and gross morphology and appearance of liver. Furthermore, liver-specific overexpression of miR-155 transgene resulted in significantly reduced levels of serum total cholesterol, triglycerides (TG) and high-density lipoprotein (HDL), as well as remarkably decreased contents of hepatic lipid, TG, HDL and free fatty acid in Rm155LG/Alb-Cre transgenic mice. More importantly, microarray data revealed a general downward trend in the expression profile of hepatic genes with functions typically associated with fatty acid, cholesterol and triglyceride metabolism, which is likely at least partially responsible for serum cholesterol and triglyceride lowering observed in Rm155LG/Alb-Cre mice. In this study, we demonstrated that hepatic overexpression of miR-155 alleviated nonalcoholic fatty liver induced by a high-fat diet. Additionally, carboxylesterase 3/triacylglycerol hydrolase (Ces3/TGH) was identified as a direct miR-155 target gene that is potentially responsible for the partial liver phenotypes observed in Rm155LG/Alb-Cre mice. Taken together, these data from miR-155 gain of function study suggest, for what we believe is the first time, the altered lipid metabolism and provide new insights into the metabolic state of the liver in Rm155LG/Alb-Cre mice.  相似文献   

18.
19.
The transport of HDL cholesteryl esters (CE) from plasma to the liver involves a direct uptake pathway, mediated by hepatic scavenger receptor B-I (SR-BI), and an indirect pathway, involving the exchange of HDL CE for triglycerides (TG) of TG-rich lipoproteins by cholesteryl ester transfer protein (CETP). We carried out HDL CE turnover studies in mice expressing human CETP and/or human lecithin:cholesterol acyltransferase (LCAT) transgenes on a background of human apoA-I expression. The fractional clearance of HDL CE by the liver was delayed by LCAT transgene, while the CETP transgene increased it. However, there was no incremental transfer of HDL CE radioactivity to the TG-rich lipoprotein fraction in mice expressing CETP, suggesting increased direct removal of HDL CE in the liver. To evaluate the possibility that this might be mediated by SR-BI, HDL isolated from plasma of the different groups of transgenic mice was incubated with SR-BI transfected or control CHO cells. HDL isolated from mice expressing CETP showed a 2- to 4-fold increase in SR-BI-mediated HDL CE uptake, compared to HDL from mice lacking CETP. The addition of pure CETP to HDL in cell culture did not lead to increased selective uptake of HDL CE by cells. However, when human HDL was enriched with TG by incubation with TG-rich lipoproteins in the presence of CETP, then treated with hepatic lipase, there was a significant enhancement of HDL CE uptake. Thus, the remodeling of human HDL by CETP, involving CE;-TG interchange, followed by the action of hepatic lipase (HL), leads to the enhanced uptake of HDL CE by cellular SR-BI.These observations suggest that in animals such as humans in which both the selective uptake and CETP pathways are active, the two pathways could operate in a synergistic fashion to enhance reverse cholesterol transport.  相似文献   

20.
目的研究过氧化物酶体增殖激活受体α激动剂药物在PPARα转基因小鼠体内对肝肾功能、血脂指标的影响,以评价该模型能否能应用于药效学研究中。方法选择27只6周龄的PPARα小鼠给予高脂饲料喂养一个月,随机分成3组,9只/组,分别为对照组1,高剂量组(非诺贝特60 mg/kg)和低剂量组(30 mg/kg)。同时选择9只C57BL/6小鼠作为对照组2。连续灌胃一个月,在动物给药前后分别检测肝功能指标、肾功能指标和血脂指标,并观察动物的一般生长情况。结果①给药后各组比较:与对照组1比较,非诺贝特各剂量组在PPARα转基因小鼠体内均能明显升高血脂中CHO和HDL-C(P〈0.05),明显降低TG(P〈0.05)。各组之间的体重没有明显的差异(P〉0.05)。②给药前后比较:与给药前比较,给药后高剂量组能明显降低ALT、AST、ALP、BUN、TG(P〈0.05);能明显升高CHO、HDL-C(P〈0.01)。而低剂量组能明显降低ALP(P〈0.05);能明显升高CHO、HDL-C(P〈0.05)。结论 PPARα转基因小鼠评价PPARα激动剂药物比常规C57BL/6小鼠更敏感,是一个新的动物模型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号