首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Ceramides are known to have a regulatory function in apoptosis, including the release of cytochrome c and other proapoptotic factors from the mitochondrial intermembrane space. Ceramides can form large, stable channels in the outer mitochondrial membrane, leading to the proposal that ceramide channels are the pathway through which these proteins are released. Here, we report that sphingosine, a product of ceramide hydrolysis by ceramidase, is capable of destabilizing ceramide channels, leading to their disassembly. Sphingosine is directly responsible for the disassembly of ceramide channels in planar membrane experiments and markedly reduces the ability of ceramide to induce the release of intermembrane space proteins from mitochondria in vitro. Low concentrations of both L and D sphingosine potentiate the release of intermembrane space proteins by long-chain ceramide and channel formation in liposomes. These results provide evidence for a mechanism by which the disassembly of ceramide channels, as initiated by ceramidase, could be accelerated by the direct interaction of the hydrolysis product with the ceramide channels themselves. This mechanism therefore could form a positive feedback loop for rapid shut-down of ceramide channels. However, potentiation of ceramide channel formation is also possible and thus both effects could influence the propensity for mitochondria-mediated apoptosis.  相似文献   

2.
Ceramide channels formed in the outer membrane of mitochondria have been proposed to be the pathways by which proapoptotic proteins are released from mitochondria during the early stages of apoptosis. We report that sphingosine also forms channels in membranes, but these differ greatly from the large oligomeric barrel-stave channels formed by ceramide. Sphingosine channels have short open lifetimes and have diameters less than 2 nm, whereas ceramide channels have long open lifetimes, enlarge in size reaching diameters in excess of 10 nm. Unlike ceramide, sphingosine forms channels in erythrocyte plasma membranes that vary in size with concentration, but with a maximum possible channel diameter of 2 nm. In isolated mitochondria, a large proportion of the added sphingosine was rapidly metabolized to ceramide in the absence of externally added fatty acids or fatty-acyl-CoAs. The ceramide synthase inhibitor, fumonisin B1 failed to prevent sphingosine metabolism to ceramide and actually increased it. However, partial inhibition of conversion to ceramide was achieved in the presence of ceramidase inhibitors, indicating that reverse ceramidase activity is at least partially responsible for sphingosine metabolism to ceramide. A small amount of cytochrome c release was detected. It correlated with the level of ceramide converted from sphingosine. Thus, sphingosine channels, unlike ceramide channels, are not large enough to allow the passage of proapoptotic proteins from the intermembrane space of mitochondria to the cytoplasm.  相似文献   

3.
Tumor necrosis factor (TNF)-alpha signals cell death and simultaneously induces the generation of ceramide, which is metabolized to sphingosine and sphingosine 1-phosphate (S1P) by ceramidase (CDase) and sphingosine kinase. Because the dynamic balance between the intracellular levels of ceramide and S1P (the "ceramide/S1P rheostat") may determine cell survival, we investigated these sphingolipid signaling pathways in TNF-alpha-induced apoptosis of primary hepatocytes. Endogenous C16-ceramide was elevated during TNF-alpha-induced apoptosis in both rat and mouse primary hepatocytes. The putative acid sphingomyelinase (ASMase) inhibitor imipramine inhibited TNF-alpha-induced apoptosis and C16-ceramide increase as did the knock out of ASMase. Overexpression of neutral CDase (NCDase) inhibited the TNF-alpha-induced increase of C16-ceramide and apoptosis in rat primary hepatocytes. Moreover, NCDase inhibited liver injury and hepatocyte apoptosis in mice treated with D-galactosamine plus TNF-alpha. This protective effect was abrogated by the sphingosine kinase inhibitor N,N-demethylsphingosine, suggesting that the survival effect of NCDase is due to not only C16-ceramide reduction but also S1P formation. Administration of S1P or overexpression of NCDase activated the pro-survival kinase AKT, and overexpression of dominant negative AKT blocked the survival effect of NCDase. In conclusion, activation of ASMase and generation of C16-ceramide contributed to TNF-alpha-induced hepatocyte apoptosis. NCDase prevented apoptosis both by reducing C16-ceramide and by activation of AKT through S1P formation. Therefore, the cross-talk between sphingolipids and AKT pathway may determine hepatocyte apoptosis by TNF-alpha.  相似文献   

4.
In addition to immediate brain damage, traumatic brain injury (TBI) initiates a cascade of pathophysiological events producing secondary injury. The biochemical and cellular mechanisms that comprise secondary injury are not entirely understood. Herein, we report a substantial deregulation of cerebral sphingolipid metabolism in a mouse model of TBI. Sphingolipid profile analysis demonstrated increases in sphingomyelin species and sphingosine concurrently with up-regulation of intermediates of de novo sphingolipid biosynthesis in the brain. Investigation of intracellular sites of sphingosine accumulation revealed an elevation of sphingosine in mitochondria due to the activation of neutral ceramidase (NCDase) and the reduced activity of sphingosine kinase 2 (SphK2). The lack of change in gene expression suggested that post-translational mechanisms are responsible for the shift in the activities of both enzymes. Immunoprecipitation studies revealed that SphK2 is complexed with NCDase and cytochrome oxidase (COX) subunit 1 in mitochondria and that brain injury hindered SphK2 association with the complex. Functional studies showed that sphingosine accumulation resulted in a decreased activity of COX, a rate-limiting enzyme of the mitochondrial electron transport chain. Knocking down NCDase reduced sphingosine accumulation in mitochondria and preserved COX activity after the brain injury. Also, NCDase knockdown improved brain function recovery and lessened brain contusion volume after trauma. These studies highlight a novel mechanism of secondary TBI involving a disturbance of sphingolipid-metabolizing enzymes in mitochondria and suggest a critical role for mitochondrial sphingosine in promoting brain injury after trauma.  相似文献   

5.
Neutral ceramidase is a type II integral membrane protein, which is occasionally secreted into the extracellular milieu after the processing of its N-terminal anchor. We found that when overexpressed in CHOP cells, neutral ceramidase hydrolyzed cell surface ceramide, which increased in amount after the treatment of cells with bacterial sphingomyelinase, leading to an increase in the cellular level of sphingosine and sphingosine 1-phosphate. On the other hand, knockdown of the endogenous enzyme by siRNA decreased the cellular level of both sphingolipid metabolites. The treatment of cells with bovine serum albumin significantly reduced the cellular level of sphingosine, but not sphingosine 1-phosphate, generated by overexpression of the enzyme. The cellular level of sphingosine 1-phosphate increased with overexpression of the cytosolic sphingosine kinase. These results suggest that sphingosine 1-phosphate is mainly produced inside of the cell after the incorporation of sphingosine generated on the plasma membranes. The enzyme also seems to participate in the hydrolysis of serum-derived ceramide in the vascular system. Significant amounts of sphingosine as well as sphingosine 1-phosphate were generated in the cell-free conditioned medium of ceramidase transfectants, compared with mock transfectants. No increase in these metabolites was observed if serum or bacterial sphingomyelinase was omitted from the conditioned medium, suggesting that the major source of ceramide is the serum-derived sphingomyelin. A sphingosine 1-phosphate receptor, S1P(1), was internalized much faster by the treatment of S1P(1)-overexpressing cells with conditioned medium of ceramidase transfectants than that of mock transfectants. Collectively, these results clearly indicate that the enzyme is involved in the metabolism of ceramide at the plasma membrane and in the extracellular milieu, which could regulate sphingosine 1-phosphate-mediated signaling through the generation of sphingosine.  相似文献   

6.
Sphingolipids are degraded by sphingomyelinase and ceramidase in the gut to ceramide and sphingosine, which may inhibit cell proliferation and induce apoptosis, and thus have anti-tumour effects in the gut. Although previous rodent studies including experiments on knockout mice indicate a role of neutral ceramidase in ceramide digestion, the human enzyme has never been purified and characterized in its purified form. We here report the purification and characterization of neutral ceramidase from human ileostomy content, using octanoyl-[(14)C]sphingosine as substrate. After four chromatographic steps, a homogeneous protein band with 116kDa was obtained. MALDI mass spectrometry identified 16 peptide masses similar to human ceramidase previously cloned by El Bawab et al. [Molecular cloning and characterization of a human mitochondrial ceramidase, J. Biol. Chem. 275 (2000) 21508-21513] and Hwang et al. [Subcellular localization of human neutral ceramidase expressed in HEK293 cells, Biochem. Biophys. Res. Commun. 331 (2005) 37-42]. By RT-PCR and 5'-RACE methods, a predicted partial nucleotide sequence of neutral ceramidase was obtained from a human duodenum biopsy sample, which was homologous to that of known neutral/alkaline ceramidases. The enzyme has neutral pH optimum and catalyses both hydrolysis and formation of ceramide without distinct bile salt dependence. It is inhibited by Cu(2+) and Zn(2+) ions and by low concentrations of cholesterol. The enzyme is a glycoprotein but deglycosylation does not affect its activity. Our study indicates that neutral ceramidase is expressed in human intestine, released in the intestinal lumen and plays a major role in ceramide metabolism in the human gut.  相似文献   

7.
Ceramide is a key lipid mediator of cellular processes such as differentiation, proliferation, growth arrest and apoptosis. During apoptosis, ceramide is produced within the plasma membrane. Although recent data suggest that the generation of intracellular ceramide increases mitochondrial permeability, the source of mitochondrial ceramide remains unknown. Here, we determine whether a stress-mediated plasmalemmal pool of ceramide might become available to the mitochondria of apoptotic cells. We have previously established annexin A1--a member of a family of Ca(2+) and membrane-binding proteins--to be a marker of ceramide platforms. Using fluorescently tagged annexin A1, we show that, upon its generation within the plasma membrane, ceramide self-associates into platforms that subsequently invaginate and fuse with mitochondria. An accumulation of ceramide within the mitochondria of apoptotic cells was also confirmed using a ceramide-specific antibody. Electron microscopic tomography confirmed that upon the formation of ceramide platforms, the invaginated regions of the plasma membrane extend deep into the cytoplasm forming direct physical contacts with mitochondrial outer membranes. Ceramide might thus be directly transferred from the plasma membrane to the mitochondrial outer membrane. It is conceivable that this "kiss-of-death" increases the permeability of the mitochondrial outer membrane thereby triggering apoptosis.  相似文献   

8.
Sphingolipids have been implicated as key mediators of cell-stress responses and effectors of mitochondrial function. To investigate potential mechanisms underlying mitochondrial dysfunction, an important contributor to diabetic cardiomyopathy, we examined alterations of cardiac sphingolipid metabolism in a mouse with streptozotocin-induced type 1 diabetes. Diabetes increased expression of desaturase 1, (dihydro)ceramide synthase (CerS)2, serine palmitoyl transferase 1, and the rate of ceramide formation by mitochondria-resident CerSs, indicating an activation of ceramide biosynthesis. However, the lack of an increase in mitochondrial ceramide suggests concomitant upregulation of ceramide-metabolizing pathways. Elevated levels of lactosylceramide, one of the initial products in the formation of glycosphingolipids were accompanied with decreased respiration and calcium retention capacity (CRC) in mitochondria from diabetic heart tissue. In baseline mitochondria, lactosylceramide potently suppressed state 3 respiration and decreased CRC, suggesting lactosylceramide as the primary sphingolipid responsible for mitochondrial defects in diabetic hearts. Moreover, knocking down the neutral ceramidase (NCDase) resulted in an increase in lactosylceramide level, suggesting a crosstalk between glucosylceramide synthase- and NCDase-mediated ceramide utilization pathways. These data suggest the glycosphingolipid pathway of ceramide metabolism as a promising target to correct mitochondrial abnormalities associated with type 1 diabetes.  相似文献   

9.
A cardinal feature of brain tissue injury in stroke is mitochondrial dysfunction leading to cell death, yet remarkably little is known about the mechanisms underlying mitochondrial injury in cerebral ischemia/reperfusion (IR). Ceramide, a naturally occurring membrane sphingolipid, functions as an important second messenger in apoptosis signaling and is generated by de novo synthesis, sphingomyelin hydrolysis, or recycling of sphingolipids. In this study, cerebral IR-induced ceramide elevation resulted from ceramide biosynthesis rather than from hydrolysis of sphingomyelin. Investigation of intracellular sites of ceramide accumulation revealed the elevation of ceramide in mitochondria because of activation of mitochondrial ceramide synthase via post-translational mechanisms. Furthermore, ceramide accumulation appears to cause mitochondrial respiratory chain damage that could be mimicked by exogenously added natural ceramide to mitochondria. The effect of ceramide on mitochondria was somewhat specific; dihydroceramide, a structure closely related to ceramide, did not inflict damage. Stimulation of ceramide biosynthesis seems to be under control of JNK3 signaling: IR-induced ceramide generation and respiratory chain damage was abolished in mitochondria of JNK3-deficient mice, which exhibited reduced infarct volume after IR. These studies suggest that the hallmark of mitochondrial injury in cerebral IR, respiratory chain dysfunction, is caused by the accumulation of ceramide via stimulation of ceramide synthase activity in mitochondria, and that JNK3 has a pivotal role in regulation of ceramide biosynthesis in cerebral IR.  相似文献   

10.
Early in apoptosis, ceramide levels rise and the mitochondrial outer membrane becomes permeable to small proteins. The self-assembly of ceramide to form channels could be the means by which intermembrane space proteins are released to induce apoptosis. Dihydroceramide desaturase converts dihydroceramide to ceramide. This conversion may be removing an inhibitor as well as generating a pro-apoptotic agent. We report that both long and short chain dihydroceramides inhibit ceramide channel formation in mitochondria. One tenth as much dihydroceramide was sufficient to inhibit the permeabilization of the outer membrane by about 95% (C2) and 51% (C16). Similar quantities inhibited the release of carboxyfluorescein from liposomes indicating that other mitochondrial components are not necessary for the inhibition. The apoptogenic activity of ceramide may thus depend on the ceramide to dihydroceramide ratio resulting in a more abrupt transition from the normal to the apoptotic state when the de novo pathway is used in mitochondria.  相似文献   

11.
12.
The role of ceramide in biological functions is typically based on the elevation of cellular ceramide, measured by LC-MS in the total cell lysate. However, it has become increasingly appreciated that ceramide in different subcellular organelles regulates specific functions. In the plasma membrane, changes in ceramide levels might represent a small percentage of the total cellular ceramide, evading MS detection but playing a critical role in cell signaling. Importantly, there are currently no efficient techniques to quantify ceramide in the plasma membrane. Here, we developed a method to measure the mass of ceramide in the plasma membrane using a short protocol that is based on the hydrolysis of plasma membrane ceramide into sphingosine by the action of exogenously applied bacterial recombinant neutral ceramidase. Plasma membrane ceramide content can then be determined by measuring the newly generated sphingosine at a stoichiometry of 1:1. A key step of this protocol is the chemical fixation of cells to block cellular sphingolipid metabolism, especially of sphingosine to sphingosine 1-phosphate. We confirmed that chemical fixation does not disrupt the lipid composition at the plasma membrane, which remains intact during the time of the assay. We illustrate the power of the approach by applying this protocol to interrogate the effects of the chemotherapeutic compound doxorubicin. Here we distinguished two pools of ceramide, depending on the doxorubicin concentration, consolidating different reports. In summary, we have developed the first approach to quantify ceramide in the plasma membrane, allowing the study of new avenues in sphingolipid compartmentalization and function.  相似文献   

13.
Ceramide-induced cell death is thought to be mediated by change in mitochondrial function, although the precise mechanism is unclear. Proposed models suggest that ceramide induces cell death through interaction with latent binding sites on the outer or inner mitochondrial membranes, followed by an increase in membrane permeability, as an intermediate step in ceramide signal propagation. To investigate these models, we developed a new generation of positively charged ceramides that readily accumulate in isolated and in situ mitochondria. Accumulated, positively charged ceramides increased inner membrane permeability and triggered release of mitochondrial cytochrome c. Furthermore, the positively charged ceramide-induced permeability increase was suppressed by cyclosporin A (60%) and 1,3-dicyclohexylcarbodiimide (90%). These observations suggest that the inner membrane permeability increase is due to activation of specific ion transporters, not the generalized loss of lipid bilayer barrier functions. The difference in sensitivity of ceramide-induced ion fluxes to inhibitors of mitochondrial transporters suggests activation of at least two transport systems: the permeability transition pore and the electrogenic H(+) channel. Our results indicate the presence of specific ceramide targets in the mitochondrial matrix, the occupation of which triggers permeability alterations of the inner and outer mitochondrial membranes. These findings also suggest a novel therapeutic role for positively charged ceramides.  相似文献   

14.
Ceramide and sphingosine are sphingolipids with important functional and structural roles in cells. In this paper we report a new enzyme-based method to simultaneously quantify the levels of ceramide and sphingosine in biological samples. This method utilizes purified human recombinant acid ceramidase to completely hydrolyze ceramide to sphingosine, followed by derivatization of the latter with naphthalene-2,3-dialdehyde (NDA) and quantification by reverse-phase high-performance liquid chromatography. The limits of detection for sphingosine-NDA and ceramidase-derived sphingosine-NDA were 9.6 and 12.3 fmol, respectively, and the limits of quantification were 34.2 and 45.7 fmol, respectively. The recovery of sphingosine and ceramide standards quantified by this assay were between 95.6 and 104.6%. The relative standard deviations for the intra- and interday sphingosine assay were 2.1 and 4.5%, respectively, and those for the ceramide assay were 3.3 and 4.1%, respectively. To validate this procedure, we quantified ceramide and sphingosine in mouse plasma, white blood cells, and hemoglobin, the first reported time that the amounts of these lipids have been documented in individual blood components. We also used this technique to evaluate the ability of a novel ceramide analog, AD2646, to inhibit the hydrolytic activity of acid ceramidase. The results demonstrate that this new procedure can provide sensitive, reproducible, and simultaneous ceramide and sphingosine quantification. The technique also may be used for determining the activity and inhibition of ceramidases and may be adapted for quantifying sphingomyelin and sphingosine-1-phosphate levels. In the future it could be an important tool for investigators studying the role of ceramide/sphingosine metabolism in signal transduction, cell growth and differentiation, and cancer pathogenesis and treatment.  相似文献   

15.
Complex sphingolipids are abundant as eukaryotic cell membrane components, whereas their metabolites, in particular ceramide, sphingosine, and sphingosine 1-phosphate, are involved in diverse cell signaling processes. In mammals, degradation of ceramide by ceramidase yields sphingosine, which is phosphorylated by the action of sphingosine kinase to generate sphingosine 1-phosphate. Therefore, ceramidases are key enzymes in the regulation of the cellular levels of ceramide, sphingosine, and sphingosine 1-phosphate. To explore the physiological functions of a neutral ceramidase with diverse cellular locations, we disrupted the Asah2 gene in mice. Asah2 null mice have a normal life span and do not show obvious abnormalities or major alterations in total ceramide levels in tissues. The Asah2-encoded neutral ceramidase is highly expressed in the small intestine along the brush border, suggesting that the neutral ceramidase may be involved in a pathway for the digestion of dietary sphingolipids. Indeed, Asah2 null mice were deficient in the intestinal degradation of ceramide. Thus, the results indicate that the Asah2-encoded neutral ceramidase is a key enzyme for the catabolism of dietary sphingolipids and regulates the levels of bioactive sphingolipid metabolites in the intestinal tract.  相似文献   

16.
An overexpression system was recently developed to produce and purify recombinant, human acid ceramidase. In addition to ceramide hydrolysis, the purified enzyme was able to catalyze ceramide synthesis using [14C]lauric acid and sphingosine as substrates. Herein we report detailed characterization of this acid ceramidase-associated "reverse activity" and provide evidence that this reaction occurs in situ as well as in vitro. The pH optimum of the reverse reaction was approximately 5.5, as compared with approximately 4.5 for the hydrolysis reaction. Non-ionic detergents and zinc cations inhibited the activity, whereas most other cations were stimulatory. Of note, sphingomyelin also was very inhibitory toward this reaction, whereas the anionic lipids, phosphatidic acid and phosphatidylserine, were stimulatory. Of various sphingosine stereoisomers tested in the reverse reaction, only the natural, D-erythro form could efficiently serve as a substrate. Using D-erythro-sphingosine and lauric acid as substrates, the reaction followed normal Michaelis-Menten kinetics. The Km and Vmax values toward sphingosine were 23.75 microM and 208.3 pmol/microg/h, respectively, whereas for lauric acid they were 73.76 microM and 232.5 pmol/microg/h, respectively. Importantly, the reverse activity was reduced in cell lysates from a Farber disease patient to the same extent as the acid ceramidase activity. Furthermore, when 12-(N-methyl-N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)) (NBD)-conjugated lauric acid and sphingosine were added to cultured lymphoblasts from a Farber disease patient in the presence of fumonisin B (1), the conversion to NBD-ceramide was reduced approximately 30% when compared with normal cells. These data provide important new information on human acid ceramidase and further document its central role in sphingolipid metabolism.  相似文献   

17.
Ceramides, which are membrane sphingolipids and key mediators of cell-stress responses, are generated by a family of (dihydro) ceramide synthases (Lass1-6/CerS1-6). Here, we report that brain development features significant increases in sphingomyelin, sphingosine, and most ceramide species. In contrast, C(16:0)-ceramide was gradually reduced and CerS6 was down-regulated in mitochondria, thereby implicating CerS6 as a primary ceramide synthase generating C(16:0)-ceramide. Investigations into the role of CerS6 in mitochondria revealed that ceramide synthase down-regulation is associated with dramatically decreased mitochondrial Ca(2+)-loading capacity, which could be rescued by addition of ceramide. Selective CerS6 complexing with the inner membrane component of the mitochondrial permeability transition pore was detected by immunoprecipitation. This suggests that CerS6-generated ceramide could prevent mitochondrial permeability transition pore opening, leading to increased Ca(2+) accumulation in the mitochondrial matrix. We examined the effect of high CerS6 expression on cell survival in primary oligodendrocyte (OL) precursor cells, which undergo apoptotic cell death during early postnatal brain development. Exposure of OLs to glutamate resulted in apoptosis that was prevented by inhibitors of de novo ceramide biosynthesis, myriocin and fumonisin B1. Knockdown of CerS6 with siRNA reduced glutamate-triggered OL apoptosis, whereas knockdown of CerS5 had no effect: the pro-apoptotic role of CerS6 was not stimulus-specific. Knockdown of CerS6 with siRNA improved cell survival in response to nerve growth factor-induced OL apoptosis. Also, blocking mitochondrial Ca(2+) uptake or decreasing Ca(2+)-dependent protease calpain activity with specific inhibitors prevented OL apoptosis. Finally, knocking down CerS6 decreased calpain activation. Thus, our data suggest a novel role for CerS6 in the regulation of both mitochondrial Ca(2+) homeostasis and calpain, which appears to be important in OL apoptosis during brain development.  相似文献   

18.
The conversion of free lignoceric acid and sphingosine to lignoceroyl sphingosine (ceramide) by rat brain particulate fraction and two cytosolic factors, one heat-stable and the other heat-labile, requires pyridine nucleotide. This enzymatic reaction is apparently different from two previously published enzymic reactions, microsomal sphingosine:acyl CoA acyltransferase and the reverse reaction of lysosomal ceramidase. The reaction is strongly inhibited by common respiratory chain inhibitors, KCN, Antimycin A and sodium azide, this indicates the involvement of an electron-transfer system. From these observations it appears that the brain ceramide synthesis described above is catalyzed by an enzyme system which involves a mechanism for amide formation which has not been previously characterized.  相似文献   

19.
Recent evidence suggests that the ability of ceramides to induce apoptosis is due to a direct action on mitochondria. Mitochondria are known to contain enzymes responsible for ceramide synthesis and hydrolysis and mitochondrial ceramide levels have been shown to be elevated prior to the mitochondrial phase of apoptosis. Ceramides have been reported to induce the release of intermembrane space proteins from mitochondria, which has been linked to their ability to form large channels in membranes. The aim of this study was to determine if the membrane concentration of ceramide required for the formation of protein permeable channels is within the range that is present in mitochondria during the induction phase of apoptosis. Only a very small percentage of the ceramide actually inserts into the mitochondrial membranes. The permeability of the mitochondrial outer membrane correlates directly with the level of ceramide in the membrane. Importantly, the concentration of ceramide at which significant channel formation occurs is consistent with the level of mitochondrial ceramide that occurs during the induction phase of apoptosis (4 pmol ceramide/nanomole phospholipid). Similar results were obtained with short- and long-chain ceramide. Ceramide channel formation is specific to mitochondrial membranes in that no channel formation occurs in the plasma membranes of erythrocytes even at concentrations 20 times higher than those required for channel formation in mitochondrial outer membranes. Thus, ceramide channels are good candidates for the pathway by which proapoptotic proteins are released from mitochondria during the induction phase of apoptosis.  相似文献   

20.
We report here a novel ceramidase that was purified more than 150, 000-fold from the membrane fraction of mouse liver. The enzyme was a monomeric polypeptide having a molecular mass of 94 kDa and was highly glycosylated with N-glycans. The amino acid sequence of a fragment obtained from the purified enzyme was homologous to those deduced from the genes encoding an alkaline ceramidase of Pseudomonas aeruginosa and a hypotheical protein of the slime mold Dictyostelium discoideum. However, no significant sequence similarities were found in other known functional proteins including acid ceramidases of humans and mice. The enzyme hydrolyzed various N-acylsphingosines but not galactosylceramide, sulfatide, GM1a, or sphingomyelin. The enzyme exhibited the highest activity around pH 7.5 and was thus identified as a type of neutral ceramidase. The apparent K(m) and V(max) values for C12-4-nitrobenzo-2-oxa-1, 3-diazole-ceramide and C16-(14)C-ceramide were 22.3 microM and 29.1 micromol/min/mg and 72.4 microM and 3.6 micromol/min/mg, respectively. This study also clearly demonstrated that the purified 94-kDa ceramidase catalyzed the condensation of fatty acid to sphingosine to generate ceramide, but did not catalyze acyl-CoA-dependent acyl-transfer reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号