首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A review of paleontological, phyletic, geophysical, and climatic evidence leads to a new scenario of land mammal dispersal among South America, Antarctica, and Australia in the Late Cretaceous to early Tertiary epochs. New fossil land vertebrate material has been recovered from all three continents in recent years. As regards Gondwana, the present evidence suggests that monotreme mammals and ratite birds are of Mesozoic origin, based on both geochronological and phyletic grounds. The occurrence of monotremes in the early Paleocene (ca. 62 Ma) faunas of Patagonia and of ratites in late Eocene (ca. 41-37 m.y.) faunas of Seymour Island (Antarctic Peninsula) probably is an artifact of a much older and widespread Gondwana distribution prior to the Late Cretaceous Epoch. Except for South American microbiotheres being australidelphians, marsupial faunas of South America and Australia still are fundamentally disjunct. New material from Seymour Island (Microbiotheriidae) indicates the presence there of a derived taxon that resides in a group that is the sister taxon of most Australian marsupials. There is no compelling evidence that dispersal between Antarctica and Australia was as recent as ca. 41 Ma or later. In fact, the derived marsupial and placental land mammal fauna of Seymour Island shows its greatest affinity with Patagonian forms of Casamayoran age (ca. 51–54 m.y.). This suggests an earlier dispersal of more plesiomorphic marsupials from Patagonia to Australia via Antarctica, and vicariant disjunction subsequently. This is consistent with geophysical evidence that the South Tasman Rise was submerged by 64 Ma and with geological evidence that a shallow water marine barrier was present from then onward. The scenario above is consistent with molecular evidence suggesting that australidelphian bandicoots, dasyurids, and diprotodontians were distinct and present in Australia at least as early as the 63-Ma-old australidelphian microbiotheres and the ancient but not basal australidelphian,Andinodelphys, in the Tiupampa Fauna of Bolivia. Land mammal dispersal to Australia typically has been considered to be at a low level of probability (e.g., by sweepstakes dispersal). This study suggests that the marsupial colonizers of Australia included already recognizable members of the Peramelina, Dasyuromorphia, and Diprotodontia, at least, and entered via a filter route rather than by a sweepstakes dispersal.To whom correspondence should be addressed.  相似文献   

3.
Sauropod dinosaurs have been found in sediments dating to most of the Cretaceous Period on all major Mesozoic landmasses, but this record is spatiotemporally uneven, even in relatively well-explored North American sediments. Within the 80 million-year-span of the Cretaceous, no definitive sauropod occurrences are known in North America from two ca. 20–25 million-year-long gaps, one from approximately the Berriasian–Barremian and the other from the mid-Cenomanian–late Campanian. Herein, we present an undescribed specimen that was collected in the middle part of the twentieth century that expands the known spatiotemporal distribution of Early Cretaceous North American sauropods, partially filling the earlier gap. The material is from the Berriasian–Valanginian-aged (ca. 139 Ma) Chilson Member of the Lakota Formation of South Dakota and appears to represent the only non-titanosauriform from the Cretaceous of North America or Asia. It closely resembles Camarasaurus and may represent a form closely related to that genus that persisted across the Jurassic–Cretaceous boundary.  相似文献   

4.
Although vertebrate herbivory has existed on land for about 300 million years, the grazingadaptation, principally developed in mammals, did not appear until the middle Cenozoic about 30 million years ago. Paleontological evidence indicates that grazing mammals diversified at the time of the spread of grasslands. Recently revised fossil calibrations reveal that the grazing mammal guild originated during the early Miocene in South America about 10-15 million years earlier than it did during the late Miocene in the northern hemisphere. Carbon isotopic analyses of extinct grazers' teeth reveal that this guild originated predominantly in C(3) terrestrial ecosystems. The present-day distribution of C(3) and C(4) grasslands evolved on the global ecological landscape since the late Miocene, after about 7 million years ago.  相似文献   

5.
Here, a fragment of a mandible recently discovered in the Cerro Zamuro site (Castillo Formation, Lara State, northwestern Venezuela) is assigned to the giant gavialoid Gryposuchus. This specimen, recovered from putative brackish environments of the early Miocene (~18 Ma) age, is unequivocally the earliest record of the genus in South America. Gryposuchus, together with the other gryposuchine previously recognized from the Castillo Formation, Siquisiquesuchus venezuelensis, increases the early Miocene taxonomic diversity of the group in the northern Neotropics. This new information from the Castillo Formation supports the conclusion that early gryposuchine evolutionary stages were in coastal, shallow marine or brackish environments, while the presence of some genera, such as Gryposuchus, in middle to late Miocene freshwater environments, is secondary habitat colonization late in the evolution of the clade. Freshwater colonization is probably the result of the gradual adaptation of early marine-adapted gryposuchines to the extensive estuarine-like environments of northern South America lowlands associated with marine transgressions that systematically occurred during the middle Eocene to early Oligocene. This new record is evidence of the wide chronological distribution of Gryposuchus in northern South America, highlighting the importance of this area as the center of origin and radiation of this successful Miocene gavialoid.  相似文献   

6.
Three Tertiary microfossil floras from northern Latin America are considered with reference to paleoenvironments and paleoenvironmental trends, especially paleotemperatures: Gatuncillo (middle (?) to late Eocene, Panama), Uscari (early Miocene, Costa Rica), and Paraje Solo (late Miocene, Veracruz, Mexico). The composition of the floras reflect lower temperatures in the late Miocene for terrestrial environments at ca. 18°N latitude, and temperatures comparable to the present for the middle (?) to late Eocene and early Miocene at ca. 9°N latitude. These values are consistent with Tertiary paleotemperature curves derived from 18O and 13C isotope studies of marine invertebrates, and show that the global drop in temperature at the end of the Miocene affected terrestrial biotas at least as far south as 18°N latitude. Comparison of the paleobotanical data with paleotemperature curves further reveals that the late Miocene was not only a likely time for the introduction of northern temperate elements into the Latin American biota (viz., establishment of the floristic and faunal relationship between eastern United States and eastern Mexico), but that earlier times were progressively less favorable because of generally rising temperatures and more tropical conditions. Information on the Tertiary history of vegetation in the Gulf/Caribbean region is also being monitored with reference to the effect of global sea level changes, although the specific influence of these fluctuations cannot as yet be detected.  相似文献   

7.

Glyptodonts (Xenarthra, Cingulata) are one of the most amazing Cenozoic South American mammals, with some terminal forms reaching ca. two tons. The Paleogene record of glyptodonts is still poorly known, although some of their diversification is observable in Patagonian Argentina. Since the early and middle Miocene (ca. 19–13 Ma), two large clades can be recognized in South America. One probably has a northern origin (Glyptodontinae), while the other one, called the “austral clade”, is interpreted to have had an austral origin, with the oldest records represented by the “Propalaehoplophorinae” from the late early Miocene of Patagonian Argentina. In this scenario, the extra-Patagonian radiations are still poorly known, despite their importance for understanding the late Miocene and Pliocene diversity. Here, we carry out a comprehensive revision of late Miocene (Chasicoan Stage/Age) glyptodonts of central Argentina (Buenos Aires and San Juan provinces). Our results show that, contrary to what is traditionally assumed, it was a period of very low diversity, with only one species recognized in this region, Kelenkura castroi gen et sp. nov. Our phylogenetic analysis shows that this species represents the sister taxon of the remaining species of the “austral clade”, representing the first branch of the extra-Patagonian radiation. Additionally, K. castroi is the first taxon showing a “fully modern” morphology of the caudal tube.

  相似文献   

8.
“Anilioidea” is a likely paraphyletic assemblage of pipe snakes that includes extant Aniliidae from equatorial South America, Uropeltoidea from South and Southeast Asia, and a fossil record that consists primarily of isolated precloacal vertebrae ranging from the earliest Late Cretaceous and includes geographic distributions in North America, South America, Europe, and Africa. Articulated precloacal vertebrae from the middle Eocene Bridger Formation of Wyoming, attributed to Borealilysia nov. gen., represent an unambiguous North American aniliid record and prompts a reconsideration of described pipe snakes and their resultant biogeographic histories. On the basis of vertebral apomorphies, the vast majority of reported fossils cannot be assigned to “Anilioidea”. Instead, most records represent stem taxa and macrostomatans erroneously assigned to anilioids on the basis of generalized features associated with fossoriality. A revised fossil record demonstrates that the only extralimital distributions of fossil “anilioids” consist of the North American aniliid record, and there is no unambiguous fossil record of Old World taxa. The occurrence of aniliids in the mid-high latitudes of the late early Eocene of North America is consistent with histories of northward shifts in equatorial ecosystems during the early Paleogene Greenhouse.  相似文献   

9.
Lactoridaceae are a monotypic family confined to Masatierra Island, Juan Fernández Archipelago, in the Pacific Ocean. It grows in the understorey of a subtropical montane rain forest. Lactoridaceae most probably originated in southern South Africa in the Cretaceous, with the oldest records in the Turonian–Campanian, and reached its widest palaeogeographical distribution by the Maastrichtian, extending into Australia, India, Antarctica, and North and South America. In this paper, we report a new fossil find of lactoridaceous tetrads from the early Miocene of eastern Patagonia, southern South America. This record is the youngest and geographically one of the closest to the extant Lactoris distribution area. Patagonian fossil material shows greater similarities to extant L. fernandeziana Phil. than to any other described morphotaxon. The family may have migrated into South America, either via Africa (through the Atlantic Ocean) or Antarctica, by the Maastrichtian, growing in eastern Patagonia up to the early Miocene. Arid conditions established in this region by the middle–late Miocene onwards would have determined the restriction of forests to the western lands. Lactoridaceae may have followed a similar migration pattern towards the Pacific coast of South America. The shifting of Lactoridaceae towards Masatierra Island would have occurred in the last 4 Myr by long‐distance dispersal events (perhaps by birds). © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 158 , 41–50.  相似文献   

10.
本文对南海北部IODP 367航次U1500B孔45R–56R段(1 262.4~1 378.8 m)岩心的浮游有孔虫进行生物地层学研究,共识别出15个浮游有孔虫生物事件,并结合锶同位素测年结果,建立了可靠的年代地层框架。45R–49R段为中中新世–晚渐新世沉积地层; 50R–53R以及55R(不包括55R-1 0~10 cm段)为早渐新世沉积地层; 54R、55R-1 0~10cm段与56R段获得岩心含有中中新世浮游有孔虫特征分子。综合岩性、地震反射剖面及物理性质参数等分析结果,推断1 306.84 m层位(位于49R)存在的沉积间断(约26.93–28.09 Ma),由南海在27 Ma的洋脊跃迁引起; 54R、55R-10~10 cm段与56R段岩心(约14.89–15.10 Ma)的混入可能与南海扩张结束后的断层活动有关。  相似文献   

11.
Bumble bees (Bombus) are a cold-adapted, largely alpine group that can elucidate patterns of Holarctic historical biogeography, particularly in comparison to the alpine plants with which they likely coevolved. A recently published molecular phylogeny of bumble bees provides uniquely comprehensive species sampling for exploring historical patterns of distribution and diversification. Using this phylogeny and detailed data on extant distributions, I reconstruct the historical distribution of bumble bees in a temporal framework, estimating divergence times using fossil data and molecular rates derived from the literature. The nearly comprehensive phylogeny allows assessment of the tempo of diversification within the bumble bees using lineage-through-time plots and diversification statistics, which have been performed with special consideration to confidence intervals. These analyses reveal movements of Bombus concordant with geographic and climatic events of the late Cenozoic. The initial diversification of extant bumble bee lineages was estimated at around 25 to 40 Ma, near the Eocene-Oligocene boundary 34 Ma, a period of dramatic global cooling. Dispersal-vicariance analysis (DIVA) predicted an Old World Bombus ancestor, with early diversification events largely restricted to the eastern Old World. The numerous intercontinental dispersal events occurred mostly in the direction of Old World to New World and North America to South America. Early movements from the Palearctic into the Nearctic most likely took place after 20 Ma and may have coincided with a period of Miocene cooling that gave rise to taiga habitat across Beringia. Subsequent dispersal between these regions is estimated to have occurred among boreal and tundra-adapted species mostly in the last 5 million years. Radiations are estimated in both Nearctic and Neotropical regions at approximately 6 to 8 Ma and after 3.5 Ma, concordant with the opening of land corridors between the continents.  相似文献   

12.
With about 400 living species and 82 genera, rodents of the subfamily Sigmodontinae comprise one of the most diverse and more broadly distributed Neotropical mammalian clades. There has been much debate on the origin of the lineage or the lineages of sigmodontines that entered South America, the timing of entrance and different aspects of further diversification within South America. The ages of divergence of the main lineages and the crown age of the subfamily were estimated by using sequences of the interphotoreceptor retinoid binding protein and cytochrome b genes for a dense sigmodontine and muroid sampling. Bayesian inference using three fossil calibration points and a relaxed molecular clock estimated a middle Miocene origin for Sigmodontinae (~12 Ma), with most tribes diversifying throughout the Late Miocene (6.9–9.4 Ma). These estimates together results of analyses of ancestral area reconstructions suggest a distribution for the most recent common ancestor of Sigmodontinae in Central-South America and a South American distribution for the most recent common ancestor of Oryzomyalia.  相似文献   

13.
Abelisauroid predators have been recorded almost exclusively from South America, India and Madagascar, a distribution thought to document persistent land connections exclusive of Africa. Here, we report fossils from three stratigraphic levels in the Cretaceous of Niger that provide definitive evidence that abelisauroid dinosaurs and their immediate antecedents were also present on Africa. The fossils include an immediate abelisauroid antecedent of Early Cretaceous age (ca. 130-110 Myr ago), early members of the two abelisauroid subgroups (Noasauridae, Abelisauridae) of Mid-Cretaceous age (ca. 110 Myr ago) and a hornless abelisaurid skull of early Late Cretaceous age (ca. 95 Myr ago). Together, these fossils fill in the early history of the abelisauroid radiation and provide key evidence for continued faunal exchange among Gondwanan landmasses until the end of the Early Cretaceous (ca. 100 Myr ago).  相似文献   

14.
Wadi Moghara, Egypt, is an early Miocene fossil locality with a mammalian fauna that includes Prohylobates tandyi, one of the earliest known representatives of the Cercopithecoidea. Faunal correlations were conducted between Moghara, Gebel Zelten (Libya) and a series of East African fossil sites with established radiometric dates in order to estimate the age of the Moghara mammals, including P. tandyi. Results confirm hypotheses proposed in some previous studies that: (1) Moghara is about 18-17 Ma, approximately the same age as the Hiwegi fauna from Rusinga Island (Kenya); (2) Moghara is slightly older than Gebel Zelten (Libya) (17-15 Ma); and (3) the cercopithecoid tooth presently identified as Victoriapithecus sp. from Napak V (ca. 19 Ma) is currently the oldest known record of a fossil Old World monkey, followed by P. tandyi from Moghara (Egypt) (18-17 Ma) and Prohylobates sp. from Buluk (Kenya) (>17.2 Ma), P. simonsi from Gebel Zelten (Libya) (ca. 17-15 Ma), and V. macinnesi from Maboko (Kenya) (ca. 16-14.7 Ma).  相似文献   

15.
The first steps in the history of South American mammals took place ca. 130 Ma., when the South American plate, still connected to the Antarctic Peninsula, began to drift away from the African-Indian plate. Most of the Mesozoic history of South American mammals is still unknown, and we only have a few enigmatic taxa (i.e., a Jurassic Australosphenida and an Early Cretaceous Prototribosphenida) that pose more evolutionary and biogeographic questions than answers. The best-known Mesozoic, South American land-mammal fossils are from Late Cretaceous Patagonian beds. These fossils represent the last survivors of non- and pre-tribosphenic Pangaean lineages, all of them with varying endemic features: some with few advanced features (e.g., ?Eutriconodonta and “Symmetrodonta”), some very diversified as endemic groups (e.g., ?Docodonta Reigitheriidae), and others representing vicariant types of well known Laurasian Mesozoic lineages (e.g., Gondwanatheria as vicariant of Multituberculata). These endemic mammals lived as relicts (although advanced) of pangeic lineages when a primordial South American continent was still connected to the Antarctic Peninsula and, at the northern extreme, near the North American Plate. By the beginning of the Late Cretaceous, the volcanic and diastrophic processes that finally led to the differentiation of the Caribbean region and Central America built up transient geographic connections that permitted the initiation of an overland inter-American exchange that included, for example, dinosaurian titanosaurs from South America and hadrosaurs from North America. The immigration of other vertebrates followed the same route, for example, polydolopimorphian marsupials. These marsupials were assumed to have differentiated in South America prior to new discoveries from the North American Late Cretaceous. The complete extinction of endemic South American Mesozoic mammals by the Late Cretaceous-Early Paleocene, and the subsequent and in part coetaneous immigration of North American therians, respectively, represent two major moments in the history of South American mammals: a Gondwanan Episode and a South American Episode. The Gondwanan Episode was characterized by non- and pre-tribosphenic mammal lineages that descended from the Pangeic South American stage (but already with a pronounced Gondwanan accent, and wholly extinguished during the Late Cretaceous-Early Paleocene span). The South American Episode, in turn, was characterized only by therian mammals, mostly emigrated from the North American continent and already with a South American accent obtained through isolation. The southernmost extreme of South America (Patagonia) remained connected to the present Antarctic Peninsula at least up until about 30 Ma., and both provided the substratum where the primordial cladogenesis of “South American” mammals occurred. The resulting cladogenesis of South American therian mammals followed Gould's motto: early experimentation, later standardization. That is to say, early cladogenesis engendered a great variety of taxa with scarce morphological differentiation. After this early cladogenesis (Late Eocene-Early Oligocene), the variety of taxa became reduced, but each lineage became clearly recognizable distinctive by a constant morphologic pattern. At the same time, those mammals that underwent the “early experimentation” were part of communities dominated by archaic lineages (e.g., brachydont types among the native “ungulates”), whereas the subsequent communities were dominated by mammals of markedly “modern” stamp (e.g., protohypsodont types among the native “ungulates”). The Gondwanan and South American Episodes were separated by a critical latest Cretaceous-earliest Paleocene hiatus, it is as unknown as it is important in which South American land-mammal communities must have experienced extinction of the Gondwanan mammals and the arrival and radiation of the North American marsupials and placentals (with the probable exception of the xenarthrans, whose biogeographic origin is still unclear).  相似文献   

16.
The Lythraceae (Myrtales) are a family of 28 genera and ca. 600 species constituting with the Combretaceae and sister family Onagraceae a major lineage of the Myrtales and including the former Sonneratiaceae, Duabangaceae, Punicaceae, and Trapaceae. The fossil record of the family is extensive and significant new discoveries have been added to the record in recent years. This review provides a vetted summary of fossils attributed to the Lythraceae, their geographic distributions, and their stratigraphic ranges. It anticipates the use of the information to generate robustly dated molecular phylogenies to accurately reconstruct the evolutionary and biogeographic history of the family. Fossils of 44 genera or form genera have been attributed to the Lythraceae; 24 are accepted here as lythracean. Fourteen of the 28 modern genera have fossil representatives: Adenaria, Crenea, Cuphea, Decodon, Duabanga, Lafoensia, Lagerstroemia, Lawsonia, Lythrum, Pemphis, Punica, Sonneratia, Trapa, and Woodfordia. Ten extinct genera are recognized. The most common kinds of fossil remains are seeds and pollen. The only fossil flower confidently accepted in the family is the extinct genus Sahnianthus from the Early Paleocene of India. The oldest confirmed evidence of the Lythraceae is pollen of Lythrum/Peplis from the Late Cretaceous (early Campanian, 82?81 Ma) of Wyoming. Seeds of Decodon from the late Campanian (73.5 Ma) of northern Mexico are next oldest. Sonneratia, Lagerstroemia, and extinct Sahnianthus first appear in the Paleocene of the Indian subcontinent; extinct Hemitrapa fruits first occur in the Paleocene of northwestern North America. Diversification of the Lythraceae occurred primarily during two major periods of global temperature change, during the Paleocene-Eocene Thermal Maximum and from the middle Miocene forward when temperatures decreased markedly and seasonality and dry-adapted vegetation types became more prominent. Fossils of the Lythraceae from South America and Africa are limited in number. The few dates available for South American genera are comparatively young and diversification of the largest genus, Cuphea (ca. 240 species), was mainly a Quaternary event. A phylogeny of the family is briefly explored and examples of specialized characters occurring in the oldest known genera are noted. The fossil record of the Lythraceae is presently too fragmentary to confidently reconstruct the early history of the family. The record indicates, however, that the family was well-diversified and widely dispersed globally over a wide latitudinal range by the end of the Paleocene.  相似文献   

17.
The holly genus, Ilex L., in the monogeneric Aquifoliaceae, is the largest woody dioecious genus (>664 spp.), with a near‐cosmopolitan distribution in mesic environments. We constructed a phylogeny based on two nuclear genes, representing 177 species spread across the geographical range, and dated using macrofossil records. The five main clades had a common ancestor in the early Eocene, much earlier than previously suggested. Ilex originated in subtropical Asia and extant clades colonized South America by 30 Ma, North America by 23 Ma, Australia by 8 Ma, Europe by 6 Ma, and Africa by 4 Ma. South and North America were colonized multiple times. Ilex also reached Hawaii (10 Ma) and other oceanic islands. Macrofossil and pollen records show the genus has tracked mesic climates through time and space, and had a wider distribution before late Miocene global cooling. Our phylogeny provides a framework for studies in comparative ecology and evolution.  相似文献   

18.
Javier Luque 《Palaeontology》2015,58(2):251-263
Despite the extensive fossil record of higher crabs (Eubrachyura) from Late Cretaceous and Cenozoic rocks worldwide, their Early Cretaceous occurrences are scarce and fragmentary, obscuring our understanding of their early evolution. Until now, representatives of only two families of eubrachyuran‐like crabs were known from the Early Cretaceous: Componocancridae and Tepexicarcinidae fam. nov., both monospecific lineages from the Albian (~110–100 Ma) of North and Central America, respectively. The discovery of Telamonocarcinus antiquus sp. nov. (Telamonocarcinidae) from the early Albian of Colombia, South America (~110 Ma), increases to three the number of known Early Cretaceous eubrachyuran‐like families. The ages and geographical distributions of the oldest eubrachyuran‐like taxa (i.e. Componocancridae, Telamonocarcinidae and Tepexicarcinidae fam. nov.) suggest that the oldest higher true crabs might have originated in the Americas; that they were already morphologically diverse by the late Early Cretaceous; and that their most recent common ancestor must be rooted in the Early Cretaceous, or even the Late Jurassic.  相似文献   

19.
New World primates comprise a diverse group of neotropical mammals that suddenly appeared in the Late Oligocene deposits of South America at around 26 million years ago (MYA). Platyrrhines seem to have separated from Old World anthropoids ca. 35 MYA, and their subsequent diversfication is not well documented in the fossil record. Therefore, molecular clock studies were conducted to unveil the temporal scenario for the evolution of the group. In this study, divergence times of all splits within platyrrhines until the generic level were investigated, using two different gene data sets under relaxed molecular clocks. Special attention was paid to the basal diversification of living platyrrhines and to the basal split of the modern Cebidae family, since these nodes were reported to be phylogenetically difficult to resolve. The results showed that analyses from various genomic regions are similar to estimates obtained by early single-gene studies. Living New World primates are descendants of ancestors that lived in the Early Miocene, at around 20 MYA, and modern Cebidae and Pitheciidae appeared ca. 16.9 and 15.6 MYA, respectively. The last common ancestor of living Atelidae is 12.4 million years old, making this clade the youngest New World primate family; at approximately the same time, modern Callitrichinae was evolving (11.8 MYA). The gap between the Platyrrhini/Catarrhini separation and the last common ancestor of living Platyrrhini may be as big as 20 million years. Paleontological and geoclimatological evidence corroborates that the sudden appearance of modern families may be a consequence of environmental changes during the Miocene.  相似文献   

20.
The origin of the Old World brevirostrine gomphotheriid taxon Sinomastodon has been debated intensively. The discovery of the oldest known Sinomastodon cranium, reported herein, supports its endemic origin and contradicts the prevalent theory of its North America origin. The new cranium was discovered from the Shuitangba locality, southwestern China, and is dated at about 6.5–6.0 Ma, corresponding to the latest Miocene. The new specimen shows distinct characters from the other species of Sinomastodon and was therefore named Sinomastodon praeintermedius, sp. nov. Newly discovered, isolated Sinomastodon-like teeth from the upper Miocene to the lower Pleistocene of southwestern China and Southeast Asia indicate a long evolution of Sinomastodon endemically. Remains of this species are frequently accompanied by those of stegodontid species. These two groups may have had a similar migration route, invading northern China and Japan during the latest Miocene, and retreating or becoming extinct from the Palearctic realm by the end of the Pliocene. The migrations of proboscideans may have been sparked by major paleoenviromental changes, i.e., the strengthened summer monsoon beginning in the late Miocene (~7–8 Ma) and global cooling due to the expansion of ice sheets from the middle Pliocene to the early Pleistocene. The new finding reveals a close relationship of the early Pliocene fauna of northern China and the latest Miocene fauna of southwestern China, and thus provides novel insight into the origin and components of Pliocene fauna in northern China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号